Interaction between Everett Worlds and Fundamental Decoherence in Non-Unitary Newtonian Gravity
Abstract
:1. Introduction
2. Nonunitary Newtonian Gravity Model: A Brief Survey
3. Path Integral Formulation of NNG Model in a Simple Case
4. Analysis of a COW-like Experiment
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | In a different view, instead of a communication between Everett branches, the whole mechanism can be interpreted, in general, in terms of interactions between the “environments" formed by the bodies’ copies and the bodies themselves. |
References
- Stamp, P.C.E. Environmental decoherence versus intrinsic decoherence. Phil. Trans. R. Soc. A 2012, 370, 4429–4453. [Google Scholar] [CrossRef] [Green Version]
- Zurek, W.H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 2003, 75, 715–785. [Google Scholar] [CrossRef] [Green Version]
- Joos, E.; Zeh, D.H.; Kiefer, C.; Giulini, D.; Kupsch, K.; Stamatescu, I.O. Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Weinberg, S. Precision Tests of Quantum Mechanics. Phys. Rev. Lett. 1989, 62, 485–488. [Google Scholar] [CrossRef]
- Weinberg, S. Testing quantum mechanics. Ann. Phys. 1989, 194, 336–386. [Google Scholar] [CrossRef]
- Ghirardi, G.C.; Rimini, A.; Weber, T. Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 1986, 34, 470–491. [Google Scholar] [CrossRef]
- Pearle, P. Ways to describe dynamical state-vector reduction. Phys. Rev. A 1993, 48, 913–923. [Google Scholar] [CrossRef]
- Bassi, A.; Ghirardi, G.C. Dynamical reduction models. Phys. Rep. 2003, 379, 257–426. [Google Scholar] [CrossRef] [Green Version]
- Pearle, P. Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys. Rev. A 1989, 39, 2277–2289. [Google Scholar] [CrossRef]
- Ghirardi, G.C.; Pearle, P.; Rimini, A. Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 1990, 42, 78–89. [Google Scholar] [CrossRef]
- Károlyházy, F. Gravitation and quantum mechanics of macroscopic objects. Il Nuovo Cimento A 1966, 42, 390–402. [Google Scholar] [CrossRef]
- Frenkel, A. Spontaneous localizations of the wave function and classical behavior. Found. Phys. 1990, 20, 159–188. [Google Scholar] [CrossRef]
- Frenkel, A. A Tentative Expression of the Károlyházy Uncertainty of the Space-Time Structure Through Vacuum Spreads in Quantum Gravity. Found. Phys. 2002, 32, 751–771. [Google Scholar] [CrossRef] [Green Version]
- Diosi, L. Gravitation and quantum mechanical localization of macroobjects. Phys. Lett. A 1984, 105, 199–202. [Google Scholar] [CrossRef] [Green Version]
- Diosi, L. Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 1989, 40, 1165–1174. [Google Scholar] [CrossRef]
- Diosi, L. Notes on certain Newton gravity mechanisms of wavefunction localization and decoherence. J. Phys. A Math. Gen. 2007, 40, 2989–2995. [Google Scholar] [CrossRef]
- Penrose, R. Gravity and state-vector reduction. In Quantum Concepts in Space and Time; Penrose, R., Isham, C.J., Eds.; Clarendon Press: Oxford, UK, 1986; pp. 129–146. [Google Scholar]
- Penrose, R. On gravity’s role in quantum state reduction. Gen. Rel. Grav. 1996, 28, 581–600. [Google Scholar] [CrossRef] [Green Version]
- Napolitano, F.; Addazi, A.; Bassi, A.; Bazzi, M.; Bragadireanu, M.; Cargnelli, M.; Clozza, A.; De Paolis, L.; Del Grande, R.; Derakhshani, M.; et al. Underground Tests of Quantum Mechanics by the VIP Collaboration at Gran Sasso. Symmetry 2023, 15, 480. [Google Scholar] [CrossRef]
- Bassi, A.; Großardt, A.; Ulbricht, H. Gravitational decoherence. Class. Quant. Grav. 2017, 34, 193002. [Google Scholar] [CrossRef] [Green Version]
- Anastopoulos, C.; Hu, B.L. Gravitational Decoherence: A Thematic Overview. AVS Quantum Sci. 2022, 4, 015602. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle Creation by Black Holes. Comm. Math. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Hawking, S.W. Breakdown of predictability in gravitational collapse. Phys. Rev. D 1976, 14, 2460–2473. [Google Scholar] [CrossRef]
- Anastopoulos, C.; Hu, B.L. A Master Equation for Gravitational Decoherence: Probing the Textures of Spacetime. Class. Quant. Grav. 2013, 30, 165007. [Google Scholar] [CrossRef] [Green Version]
- Blencowe, M. Effective Field Theory Approach to Gravitationally Induced Decoherence. Phys. Rev. Lett. 2013, 111, 021302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kok, P.; Yurtsever, U. Gravitational Decoherence. Phys. Rev. D 2003, 68, 085006. [Google Scholar] [CrossRef] [Green Version]
- Asprea, L.; Gasbarri, G.; Ulbricht, H.; Bassi, A. On the decoherence effect of a stochastic gravitational perturbation on scalar matter and the possibility of its interferometric detection. Phys. Rev. Lett. 2021, 126, 200403. [Google Scholar] [CrossRef] [PubMed]
- Pikowski, I.; Zych, M.; Costa, F.; Brukner, C. Universal decoherence due to gravitational time dilation. Nat. Phys. 2015, 11, 668–672. [Google Scholar] [CrossRef] [Green Version]
- Pikowski, I.; Zych, M.; Costa, F.; Brukner, C. Time dilation in quantum systems and decoherence. New J. Phys. 2017, 19, 025011. [Google Scholar] [CrossRef] [Green Version]
- Fahn, M.J.; Giesel, K.; Kobler, M. A gravitationally induced decoherence model using Ashtekar variables. arXiv 2022, arXiv:2206.06397. [Google Scholar]
- Aspelmeyer, M.; Kippenberg, T.J.; Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 2014, 86, 1391–1452. [Google Scholar] [CrossRef] [Green Version]
- Ulbricht, H. Testing Fundamental Physics by Using Levitated Mechanical Systems. In Molecular Beams in Physics and Chemistry; Friedrich, B., Schmidt-Bocking, H., Eds.; Springer: Cham, Switzerland, 2021; pp. 303–332. [Google Scholar]
- Fein, Y.Y.; Geyer, P.; Zwick, P.; Kialka, F.; Pedalino, S.; Mayor, M.; Gerlich, S.; Arndt, M. Quantum superposition of molecules beyond 25 kDa. Nat. Phys. 2019, 15, 1242–1245. [Google Scholar] [CrossRef]
- Joshi, S.K.; Pienaar, J.; Ralph, T.C.; Cacciapuoti, L.; McCutcheon, W.; Rarity, J.; Giggenbach, D.; Lim, J.G.; Makarov, V.; Fuentes, I.; et al. Space quest mission proposal: Experimentally testing decoherence due to gravity. New J. Phys. 2018, 20, 063016. [Google Scholar] [CrossRef]
- Mohageg, M.; Mazzarella, L.; Anastopoulos, C.; Gallicchio, J.; Hu, B.-L.; Jennewein, T.; Johnson, S.; Lin, S.-Y.; Ling, A.; Marquardt, C.; et al. The Deep Space Quantum Link: Prospective fundamental physics experiments using long-baseline quantum optics. EPJ Quantum Technol. 2022, 9, 25. [Google Scholar] [CrossRef] [PubMed]
- Bassi, A.; Cacciapuoti, L.; Capozziello, S.; Dell’Agnello, S.; Diamanti, E.; Giulini, D.; Iess, L.; Jetzer, P.; Joshi, S.K.; Landragin, A.; et al. A way forward for fundamental physics in space. npj Microgravity 2022, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- De Filippo, S.; Maimone, F. Nonunitary higher derivative gravity classically equivalent to Einstein gravity and its Newtonian limit. Phys. Rev. D 2002, 66, 044018. [Google Scholar] [CrossRef] [Green Version]
- De Filippo, S.; Maimone, F. Nonunitary Classically Stable HD Gravity. AIP Conf. Proc. 2002, 643, 373–378. [Google Scholar]
- De Filippo, S.; Naddeo, A. Microscopic foundation of thermodynamics, transition to classicality and regularization of gravitational collapse singularities within non-unitary fourth-derivative gravity and its Newtonian limit. Eur. Phys. J. Plus 2022, 137, 467. [Google Scholar] [CrossRef]
- De Filippo, S.; Maimone, F. Entropic localization in non-unitary Newtonian gravity. Entropy 2004, 6, 153–157. [Google Scholar] [CrossRef] [Green Version]
- De Filippo, S.; Maimone, F.; Robustelli, A.L. Numerical simulation of non-unitary gravity-induced localization. Physica A 2003, 330, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Scelza, G.; Maimone, F.; Naddeo, A. A two-particle simulation of nonunitary Newtonian gravity. J. Phys. Comm. 2018, 2, 015014. [Google Scholar] [CrossRef]
- De Filippo, S.; Maimone, F.; Naddeo, A.; Scelza, G. Microscopic foundation of the second law of thermodynamics within nonunitary Newtonian gravity. Int. J. Quant. Inf. 2019, 17, 1941006. [Google Scholar] [CrossRef] [Green Version]
- Bahrami, M.; Großardt, A.; Donadi, S.; Bassi, A. The Schrödinger-Newton equation and its foundations. New J. Phys. 2014, 16, 115007. [Google Scholar] [CrossRef]
- De Filippo, S. The Schrödinger-Newton model as N→∞ limit of a N color model. arXiv 2001, arXiv:gr-qc/0106057. [Google Scholar]
- Maimone, F.; Scelza, G.; Naddeo, A. A natural cure for causality violations in Newton–Schrödinger equation. Phys. Scr. 2019, 94, 075001. [Google Scholar] [CrossRef] [Green Version]
- Polchinski, J. Weinberg’s nonlinear quantum mechanics and the Einstein-Podolsky-Rosen paradox. Phys. Rev. Lett. 1991, 66, 397–400. [Google Scholar] [CrossRef]
- Feynman, R.P.; Hibbs, A.R. Quantum Mechanics and Path Integrals; McGraw-Hill: New York, NY, USA, 2005. [Google Scholar]
- Colella, R.; Overhauser, A.W.; Werner, S.A. Observation of Gravitationally Induced Quantum Interference. Phys. Rev. Lett. 1975, 34, 1472–1474. [Google Scholar] [CrossRef]
- Stamp, P.C.E. Rationale for a correlated worldline theory of quantum gravity. New J. Phys. 2015, 17, 065017. [Google Scholar] [CrossRef]
- Maimone, F.; Scelza, G.; Naddeo, A.; Pelino, V. Quantum superpositions of a mirror for experimental tests for nonunitary Newtonian gravity. Phys. Rev. A 2011, 83, 062124. [Google Scholar] [CrossRef] [Green Version]
- Milburn, G.J. Lorentz invariant intrinsic decoherence. New J. Phys. 2006, 8, 96. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maimone, F.; Naddeo, A.; Scelza, G. Interaction between Everett Worlds and Fundamental Decoherence in Non-Unitary Newtonian Gravity. Universe 2023, 9, 121. https://doi.org/10.3390/universe9030121
Maimone F, Naddeo A, Scelza G. Interaction between Everett Worlds and Fundamental Decoherence in Non-Unitary Newtonian Gravity. Universe. 2023; 9(3):121. https://doi.org/10.3390/universe9030121
Chicago/Turabian StyleMaimone, Filippo, Adele Naddeo, and Giovanni Scelza. 2023. "Interaction between Everett Worlds and Fundamental Decoherence in Non-Unitary Newtonian Gravity" Universe 9, no. 3: 121. https://doi.org/10.3390/universe9030121
APA StyleMaimone, F., Naddeo, A., & Scelza, G. (2023). Interaction between Everett Worlds and Fundamental Decoherence in Non-Unitary Newtonian Gravity. Universe, 9(3), 121. https://doi.org/10.3390/universe9030121