Tolman VI Fluid Sphere in f(R,T) Gravity
Abstract
:1. Introduction
2. Mathematics behind Gravity
3. Interior Space-Time and the Realistic Viable Gravity Models
4. Exterior Space-Time and Boundary Condition
5. Physical Properties of the Present Model
- Nature of equation of state: It is very important to describe a relationship between the energy density and the pressure, which is called the equation of state (EoS). The relation between the pressure and matter density can be found out by the dimensionless quantity, which is known as the equation of state parameter.Hence, the equation of state parameter (w) for Einstein and our model is obtained as follows:The behavior of equation of state parameter is shown in Figure 8. We can see that the equation of state parameter is a monotonic decreasing function of radius r.
- Relativistic adiabatic index: For a compact star, stability is one of the most crucial requirements. For this reason, we have discussed stability along with the variation of adiabatic index inside the compact star. The adiabatic index can be displays the stability for both non-relativistic and relativistic compact stars. The stability condition for a Newtonian sphere is and is the condition for a neutral equilibrium according to [35]. The expression relativistic adiabatic index for Einstein and our present model is
- TOV Equation: The hydrostatic equilibrium equation is an important feature of the physical realistic compact objects. The fluid sphere remains at equilibrium under three forces, namely, gravitational force , hydrostatic force and the additional force due to modified gravity , and this situation is represented by an equation, which is known as the Tolman–Oppenheimer–Volkov (TOV) equation. With the help of a generalized TOV equation, we can analyze the equilibrium equation for our three compact stars. The generalized TOV equation for the isotropic fluid [36] distribution in modified gravity can be written asSince corresponds to GR. Hence, , the TOV equation for Einstein reduces to
- Mass radius relationship and compactness parameter: let be the compactification factor and M be the mass function (see Figure 9 for mass profile). Then, we can obtain the following relation between them:
- Gravitational red-shift () function and surface red-shift (): The gravitational redshift can be determined by the formulaFurthermore, the following formula can be used to calculate the surface redshift for Einstein and our present model:Figure 10 shows the nature of the redshift function with respect to the radial coordinate function r. For our model, is a monotonically decreasing function. The values of the surface redshift for three compact stars are shown in Table 2. One can see from the table that the value of redshift lies within the range .
6. Discussion and Concluding Remarks
- A clear picture of energy progression has been obtained in Figure 1. The figure shows declining the nature of the surface and promises the real origination of the stellar body with positive behavior at the stellar interior.
- We have plotted pressure p versus radius r in Figure 2 for the three compact stars PSR J1614-2230 (left panel), Vela X-1 (middle panel) and 4U 1538-52 (right panel) for various values of . One can see that , i.e., positive, continuous and monotonically decreasing. Additionally, at some radial value, the pressure does vanish for both of the cases.
- Square of the sound speed and relativistic adiabatic index have been plotted in Figure 3 and Figure 4, respectively. From Figure 3, one can see that the square of the sound speed lies in the predicted range, i.e., throughout the fluid sphere. The Figure 4 confirms the stability of under the adiabatic index for our present model.
- In our gravity model, the weak energy condition (WEC) in Figure 5, the strong energy condition (SEC) in Figure 6 and dominant energy condition (DEC) in Figure 7 are also met. For the complication in the expressions of density and pressure we have shown a graphical presentation the certifies the well-behaved nature of the energy conditions.
- We have plotted an equation of state parameter profile in Figure 8 for different values of . It is clear from the figure that, at the center of the star, these parameter take maximum values, while it decreases towards the boundary. Moreover, lies between 0 and 1, i.e., , which indicates the non-exotic behavior of matter distribution. Additionally, we can see that there are linear relations between the isotropic pressure (p) and matter density ().
- The mass function is plotted against the radius in Figure 9. This figure shows that the mass function is a monotonically increasing function of the radius and has no central singularity. The mass functional values are in agreement with the required physical conditions as one can investigate from the figure. In our model, one can see that the maximum mass is less than . Thus, it is less than the critical maximum mass of neutron stars, so we cannot say our studied stars’ cores contain nucleons only, such as neutron star cores, where realistic nuclear forces are used.
- We have plotted the gravitational redshift in Figure 10 for different values of . One can see that the gravitational redshift is a monotonically decreasing function of the radius. Additionally, the gravitational redshift is lower with higher values of coupling parameter .
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tolman, R.C. Static Solutions of Einstein’s Field Equations for Spheres of Fluid. Phys. Rev. 1939, 55, 364. [Google Scholar] [CrossRef] [Green Version]
- Ray, S.; Das, B. A class of regular and well behaved relativistic super-dense star models. Mon. Not. R. Astron. Soc. 2004, 349, 1331–1334. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.E.S.; Moraes, P.H.R.S.; de Araujo, J.C.N.; Malheiro, M. Gravitational waves in the f(R,T) theory of gravity. Phys. Rev. D 2016, 94, 024032. [Google Scholar] [CrossRef] [Green Version]
- Moraes, P.H.R.S.; Sahoo, P.K. Nonexotic matter wormholes in a trace of the energy-momentum tensor squared gravity. Phys. Rev. D 2018, 97, 024007. [Google Scholar] [CrossRef] [Green Version]
- Moraes, P.H.R.S.; Arbanil, J.D.V.; Malheiro, M. Cosmological solutions from Induced Matter Model applied to 5D f (R, T) gravity and the shrinking of the extra coordinate. J. Cosmol. Astropart. Phys. 2016, 7, 168. [Google Scholar] [CrossRef] [Green Version]
- Manna, T.; Rahaman, F.; Mondal, M. Solar system tests in Rastall gravity. Mod. Phys. Lett. A 2019, 35, 2050034. [Google Scholar] [CrossRef]
- Rej, P.; Bhar, P. Charged strange star in f(R,T) gravity with linear equation of state. arXiv 2021, arXiv:2105.12572. [Google Scholar] [CrossRef]
- Li, B.; Barrow, J.D. Cosmology of f(R) gravity in the metric variational approach. Phys. Rev. D 2007, 75, 084010. [Google Scholar] [CrossRef] [Green Version]
- Bean, R.; Bernat, D.; Pogosian, L.; Silvestri, A.; Trodden, M. Dynamics of linear perturbations in f(R) gravity. Phys. Rev. D 2007, 75, 064020. [Google Scholar] [CrossRef] [Green Version]
- Mondal, M.; Rahaman, F.; Singh, K.N. Lyapunov exponent, ISCO and Kolmogorov–Senai entropy for Kerr–Kiselev black hole. Eur. Phys. J. C 2021, 81, 84. [Google Scholar] [CrossRef]
- Das, S.; Sarkar, N.; Mondal, M.; Rahaman, F. A new model for dark matter fluid sphere. Mod. Phys. Lett. A 2020, 35, 2050280. [Google Scholar] [CrossRef]
- Cruz-Dombriz, A.D.; Dobado, A. A f(R) gravity without cosmological constant. Phys. Rev. D 2006, 74, 087501. [Google Scholar] [CrossRef] [Green Version]
- Perez Bergliaffa, S.E. Constraining f(R) theories with the energy conditions. Phys. Lett. B 2006, 642, 311. [Google Scholar] [CrossRef] [Green Version]
- Mondal, M.; Pradhan, P.; Rahamann, F.; Karar, I. Geodesic stability and Quasi normal modes via Lyapunov exponent for Hayward black hole. Mod. Phys. Lett. A 2020, 35, 2050249. [Google Scholar] [CrossRef]
- Rahamana, F.; Manna, T.; Shaikh, R.; Aktar, S.; Mondal, M.; Samanta, B. Thin accretion disks around traversable wormholes. Nucl. Phys. B 2021, 972, 115548. [Google Scholar] [CrossRef]
- Mondal, M.; Yadav, A.K.; Pradhan, P.; Islam, S.; Rahaman, F. Tolman VI fluid sphere in f(R,T) gravity. Int. J. Mod. Phys. D 2021, 30, 2150095. [Google Scholar] [CrossRef]
- Ganguly, A.; Gannouji, R.; Goswami, R.; Ray, S. Neutron stars in the Starobinsky model. Phys. Rev. D 2014, 89, 064019. [Google Scholar] [CrossRef] [Green Version]
- Goswami, R.; Nzioki, A.M.; Maharaj, S.D.; Ghosh, S.G. Collapsing spherical stars in f(R) gravity. Phys. Rev. D 2014, 90, 084011. [Google Scholar] [CrossRef] [Green Version]
- Yadav, A.K.; Mondal, M.; Rahaman, F. Singularity-free non-exotic compact star in f(R,T) gravity. Pramana J. Phys. 2020, 94, 90. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.; Nojiri, S.I.; Odintsov, S.D. f(R,T) gravity. Phys. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef] [Green Version]
- Houndjo, M. Reconstruction of f (R, T) gravity describing matter dominated and accelerated phases. Int. J. Mod. Phys. D 2012, 21, 1250003. [Google Scholar] [CrossRef] [Green Version]
- Baffou, E.H.; Kpadonou, A.V.; Rodrigues, M.E.; Houndjo, M.J.S.; Tossa, J. Cosmological viable f (R, T) dark energy model: Dynamics and stability. Astrophys. Space Sci. 2015, 356, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef] [Green Version]
- Tonry, J.L.; Schmidt, B.P.; Barris, B.; Candia, P.; Challis, P.; Clocchiatti, A.; Coil, A.L.; Filippenko, A.V.; Garnavich, P.; Hogan, C.; et al. Cosmological results from high-z supernovae. Astrophys. J. 2003, 594, 1. [Google Scholar] [CrossRef] [Green Version]
- Knop, R.A.; Aldering, G.; Amanullah, R.; Astier, P.; Blanc, G.; Burns, M.S.; Conley, A.; Deustua, S.E.; Doi, M.; Ellis, R.; et al. New constraints on ΩM, ΩΛ, and w from an independent set of 11 high-redshift supernovae observed with the Hubble Space Telescope. Astrophys. J. 2003, 598, 102. [Google Scholar] [CrossRef] [Green Version]
- Riess, A.G.; Strolger, L.G.; Tonry, J.; Casertano, S.; Ferguson, H.C.; Mobasher, B.; Challis, P.; Filippenko, A.V.; Jha, S.; Li, W.; et al. Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 2004, 607, 665. [Google Scholar] [CrossRef] [Green Version]
- Hinshaw, G.; Spergel, D.N.; Verde, L.; Hill, R.S.; Meyer, S.S.; Barnes, C.; Bennett, C.L.; Halpern, M.; Jarosik, N.; Kogut, A.; et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP)* Observations: The Angular Power Spectrum. Astrophys. J. Suppl. Ser. 2003, 148, 135. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, E.; Smith, K.M.; Dunkley, J.; Bennet, C.L. Seven-Year Wilkinson Microwave Anisotropy Probe (Wmap*) Observations: Cosmological Interpretation. Astrophys. J. Suppl. Ser. 2011, 192, 18. [Google Scholar] [CrossRef] [Green Version]
- Percival, W.J.; Reid, B.A.; Eisenstein, D.J.; Bahcall, N.A.; Budavari, T.; Frieman, J.A.; Fukugita, M.; Gunn, J.; Ivezic, Z.; Knapp, G.I.; et al. (SDSS Collaboration), Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample. Astrophys. J. 2010, 401, 2148–2168. [Google Scholar]
- Hansraj, S.; Banerjee, A. Dynamical behavior of the Tolman metrics in f(R,T) gravity. Phys. Rev. D 2018, 97, 104020. [Google Scholar] [CrossRef]
- Ray, S.; Das, B. Relativistic Gravitational Mass In Tolman-VI Solution. arXiv 2007, arXiv:astro-ph/0409527. [Google Scholar]
- Deb, D.; Rahaman, F.; Ray, S.; Guha, B.K. Anisotropic strange stars under simplest minimal matter-geometry coupling in the f (R,T) gravity. Phys. Rev. D 2018, 97, 084026. [Google Scholar] [CrossRef] [Green Version]
- Singha, K.N.; Mauryab, S.K.; Errehymyc, A.; Rahamand, F.; Daoude, M. Tolman VI fluid sphere in f(R,T) gravity. Phys. Dark Universe 2020, 30, 10062. [Google Scholar]
- Bondi, H. The contraction of gravitating spheres. Prac. R. Soc. Lond. A 1964, 281, 39. [Google Scholar]
- Bhar, P.; Rej, P.; Zubair, M. Tolman IV fluid sphere in f(R,T) gravity. arXiv 2021, arXiv:2112.07581. [Google Scholar] [CrossRef]
Compact Star | (km) | M () | R (km) | ||
---|---|---|---|---|---|
PSR J1614-2230 | 1.97± 0.4 | 9.69± 0.02 | 1.97 | 9.69 | 0.56 |
Vela X-1 | 1.77± 0.08 | 9.56± 0.08 | 1.77 | 9.56 | 0.64 |
4U 1538-52 | 9.69 | 1.97 | 1.97 | 9.69 | 0.85 |
Compact Star | (g/cm) | (r = 0) | |||||
PSR J1614-2230 | 2 | 0.31368 | 0.00236 | 1.88338 | 0.22404 | 1.80526 | 0.33257 |
4 | 0.31746 | 0.00266 | 1.57940 | 0.18006 | 3.42727 | 0.28188 | |
6 | 0.32019 | 0.00288 | 1.35301 | 0.15082 | 5.59965 | 0.24493 | |
8 | 0.32225 | 0.00304 | 1.19365 | 0.12990 | 8.32942 | 0.21671 | |
10 | 0.32386 | 0.00316 | 1.06375 | 0.11415 | 11.6206 | 0.19441 | |
Compact Star | (g/cm) | (r = 0) | |||||
Vela X-1 | 2 | 0.37509 | 0.00128 | 1.76517 | 0.19764 | 1.22451 | 0.30282 |
4 | 0.37862 | 0.00148 | 1.47994 | 0.15965 | 2.43408 | 0.25640 | |
6 | 0.38117 | 0.00162 | 1.27408 | 0.13419 | 4.08345 | 0.22263 | |
8 | 0.38309 | 0.00173 | 1.11849 | 0.11585 | 6.17906 | 0.19687 | |
10 | 0.38460 | 0.00181 | 0.99677 | 0.10200 | 8.72458 | 0.17655 | |
Compact Star | (g/cm) | (r = 0) | |||||
4U 1538-52 | 2 | 0.65534 | 0.00230 | 1.52410 | 0.10190 | 0.19370 | 0.17640 |
4 | 0.65764 | 0.00299 | 1.27783 | 0.83973 | 0.48583 | 0.14893 | |
6 | 0.65930 | 0.00349 | 1.10008 | 0.07154 | 0.91913 | 0.12907 | |
8 | 0.66055 | 0.00387 | 0.96574 | 0.06237 | 1.49672 | 0.11398 | |
10 | 0.66153 | 0.00416 | 0.860641 | 0.05532 | 2.22038 | 0.10211 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondal, M.; Rahaman, F. Tolman VI Fluid Sphere in f(R,T) Gravity. Universe 2023, 9, 122. https://doi.org/10.3390/universe9030122
Mondal M, Rahaman F. Tolman VI Fluid Sphere in f(R,T) Gravity. Universe. 2023; 9(3):122. https://doi.org/10.3390/universe9030122
Chicago/Turabian StyleMondal, Monimala, and Farook Rahaman. 2023. "Tolman VI Fluid Sphere in f(R,T) Gravity" Universe 9, no. 3: 122. https://doi.org/10.3390/universe9030122
APA StyleMondal, M., & Rahaman, F. (2023). Tolman VI Fluid Sphere in f(R,T) Gravity. Universe, 9(3), 122. https://doi.org/10.3390/universe9030122