Ghost Condensates and Pure Kinetic k-Essence Condensates in the Presence of Field–Fluid Non-Minimal Coupling in the Dark Sector
Abstract
:1. Introduction
2. Purely Kinetic k-Essence Fields and the Ghost Connection
3. A General Outline of the Paper
- When and are non-zero, they are functions of and X. The functions are such that none of them can be written as a sum of a function of X and a function of at any time. The factors of and X cannot be separated in and . This assumption is natural because if one can write ( are some functions) at any instant of cosmic evolution, then there appears an ambiguity about the interpretation of the functions 6. Should one interpret as a pure kinetic k-essence pressure or as pressure due to interaction? To avoid such ambiguous situations, the interaction terms are assumed to be made up of functions in which X and remain additively inseparable.
- If , then both and may tend to zero or infinity but cannot take any other values. This assumption is also natural, as we do not expect the field and fluid to interact smoothly with each other when the fluid does not exist in the system at all. For those kinds of interactions where the interaction terms diverge as , one never reaches a stable phase where the fluid energy density vanishes. If an equilibrium is reached, the fluid energy density always remains finite in that phase.
- As the interaction terms do not arise from any particular matter sector, we assume can take all possible values. It can be positive, negative or zero. The total energy density of the system is where individually and . We can sometimes choose the parameters of the theory and the form of the interaction in such a way that throughout the cosmic evolution.
- In the absence of non-minimal coupling, a stable accelerating phase of the universe will always be formed when the barotropic fluid density (with a positive semidefinite equation of state) tends to zero and the condensate forms in the far future.
- When a stable ghost condensate is formed in the accelerating phase of the universe in the presence of field–fluid non-minimal coupling, the non-minimal coupling term vanishes in the far future and the system becomes decoupled into two non-interacting phases. The fluid density tends to zero in the far future.
4. Cosmological Dynamics in the Presence of a Purely Kinetic k-Essence Field and a Relativistic Fluid
Dynamical Analysis in the Case Where the Pure Kinetic k-Essence Field and the Hydrodynamic Fluid Interact Gravitationally
5. Cosmological Dynamics in the Presence of a Purely Kinetic k-Essence Scalar Field Non-Minimally Interacting with a Relativistic Fluid
5.1. Dynamical Analysis of a Non-Minimally Coupled Field–Fluid Scenario
5.2. Cosmological Dynamics in Case I:
- and , or
- and .
5.3. Cosmological Dynamics in Case II: , with
- Coincidence parameter: The coincidence parameter is defined to be the ratio of dark-matter energy density to dark energy density [58], and it can be written as,We can check the coincidence ratio for both of our cases and investigate the evolutionary dynamics. From an SNe Ia + BAO + OHD observation, we can see that is always a decreasing function at late times. From Case I, we initially get to be approximately a constant, and in Case II, initially increases, while in both models decreases at late times. These features can be useful to rule out some of the present models. We know from the measurement of satellite-borne experiments, WMAP [59] and Planck [60], that, at the present epoch, 96% of total energy density of the universe is due to dark matter and dark energy, with respective dark matter and dark energy contributions amounting to 27% and 69% of total energy density. This implies that, at the present epoch, the coincidence ratio is almost . It is seen that the value of the coincidence ratio at late-time tends to zero for Case I, whereas for Case II, the value has the same order of magnitude as that of the observed value. In Case II, the ratio we have is more than the observed value by a factor of two, but this increase can always be tuned by tuning the parameters of our model.
- Deceleration parameter: The deceleration parameter [58] can be expressed in terms of Hubble’s parameter as,In the late-time accelerating cosmological scenarios, the value of q is always negative at different values of redshift. If in the future an attempt is made to match the results of our calculations with actual observational data, then one can compute the evolution of q from the early to the late-time phase. As time evolves, q changes its sign from positive to negative according to an SNe Ia observation. One can, in principle, figure out the nature of the evolution of the deceleration parameter for both these models and check our result with the recent observational work [61]. Near the critical point, the value of the deceleration parameter (q) always tends to -1 for both the cases we studied.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Although we call it a potential, , in reality, it does not play the role of a potential function in the conventional sense. |
2 | This conclusion gets modified when a barotropic fluid is also present. |
3 | Both the papers were published near the same time. |
4 | |
5 | The forms of these functions will become explicit when we discuss specific models of field–fluid interaction later in Section 5. |
6 | The function does not contain any term which is purely a function of X or . |
References
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gillil, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Riess, A.G.; Strolger, L.G.; Casertano, S.; Ferguson, H.C.; Mobasher, B.; Gold, B.; Challis, P.J.; Filippenko, A.V.; Jha, S.; Li, W.; et al. New Hubble Space Telescope Discoveries of Type Ia Supernovae at z≥1: Narrowing Constraints on the Early Behavior of Dark Energy. Astrophys. J. 2007, 659, 98–121. [Google Scholar] [CrossRef] [Green Version]
- Gawiser, E.; Silk, J. The Cosmic microwave background radiation. Phys. Rept. 2000, 333, 245–267. [Google Scholar] [CrossRef] [Green Version]
- Eisenstein, D.J.; Zehavi, I.; Hogg, D.W.; Scoccimarro, R.; Blanton, M.R.; Nichol, R.C.; Scranton, R.; Seo, H.J.; Tegmark, M.; Zheng, Z.; et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies. Astrophys. J. 2005, 633, 560–574. [Google Scholar] [CrossRef]
- Percival, W.J.; Nichol, R.C.; Eisenstein, D.J.; Weinberg, D.H.; Fukugita, M.; Pope, A.C.; Schneider, D.P.; Szalay, A.S.; Vogeley, M.S.; Zehavi, I.; et al. Measuring the matter density using baryon oscillations in the SDSS. Astrophys. J. 2007, 657, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Riess, A.G.; Macri, L.; Casertano, S.; Sosey, M.; Lampeitl, H.; Ferguson, H.C.; Filippenko, A.V.; Jha, S.W.; Li, W.; Chornock, R.; et al. A Redetermination of the Hubble Constant with the Hubble Space Telescope from a Differential Distance Ladder. Astrophys. J. 2009, 699, 539. [Google Scholar] [CrossRef] [Green Version]
- Martin, J. Everything You Always Wanted To Know About The Cosmological Constant Problem (But Were Afraid To Ask). C. R. Phys. 2012, 13, 566–665. [Google Scholar] [CrossRef] [Green Version]
- Zlatev, I.; Wang, L.M.; Steinhardt, P.J. Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 1999, 82, 896–899. [Google Scholar] [CrossRef] [Green Version]
- Peccei, R.D.; Sola, J.; Wetterich, C. Adjusting the Cosmological Constant Dynamically: Cosmons and a New Force Weaker Than Gravity. Phys. Lett. B 1987, 195, 183–190. [Google Scholar] [CrossRef]
- Ford, L.H. Cosmological constant damping by unstable scalar fields. Phys. Rev. D 1987, 35, 2339. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Ratra, B. The Cosmological Constant and Dark Energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef] [Green Version]
- Nishioka, T.; Fujii, Y. Inflation and the decaying cosmological constant. Phys. Rev. D 1992, 45, 2140–2143. [Google Scholar] [CrossRef]
- Ferreira, P.G.; Joyce, M. Structure formation with a selftuning scalar field. Phys. Rev. Lett. 1997, 79, 4740–4743. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, P.G.; Joyce, M. Cosmology with a primordial scaling field. Phys. Rev. D 1998, 58, 023503. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, R.R.; Dave, R.; Steinhardt, P.J. Cosmological imprint of an energy component with general equation of state. Phys. Rev. Lett. 1998, 80, 1582–1585. [Google Scholar] [CrossRef] [Green Version]
- Carroll, S.M. Quintessence and the rest of the world. Phys. Rev. Lett. 1998, 81, 3067–3070. [Google Scholar] [CrossRef] [Green Version]
- Copeland, E.J.; Liddle, A.R.; Wands, D. Exponential potentials and cosmological scaling solutions. Phys. Rev. D 1998, 57, 4686–4690. [Google Scholar] [CrossRef] [Green Version]
- Hebecker, A.; Wetterich, C. Quintessential adjustment of the cosmological constant. Phys. Rev. Lett. 2000, 85, 3339–3342. [Google Scholar] [CrossRef] [Green Version]
- Hebecker, A.; Wetterich, C. Natural quintessence? Phys. Lett. B 2001, 497, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Armendariz-Picon, C.; Damour, T.; Mukhanov, V.F. k-inflation. Phys. Lett. B 1999, 458, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Garriga, J.; Mukhanov, V.F. Perturbations in k-inflation. Phys. Lett. B 1999, 458, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Armendariz-Picon, C.; Mukhanov, V.F.; Steinhardt, P.J. Essentials of k essence. Phys. Rev. D 2001, 63, 103510. [Google Scholar] [CrossRef]
- Armendariz-Picon, C.; Mukhanov, V.F.; Steinhardt, P.J. A Dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration. Phys. Rev. Lett. 2000, 85, 4438–4441. [Google Scholar] [CrossRef] [Green Version]
- Chimento, L.P.; Feinstein, A. Power-law expansion in k-essence cosmology. Mod. Phys. Lett. A 2004, 19, 761–768. [Google Scholar] [CrossRef]
- Chimento, L.P. Extended tachyon field, Chaplygin gas and solvable k-essence cosmologies. Phys. Rev. D 2004, 69, 123517. [Google Scholar] [CrossRef] [Green Version]
- Scherrer, R.J. Purely kinetic k-essence as unified dark matter. Phys. Rev. Lett. 2004, 93, 011301. [Google Scholar] [CrossRef] [Green Version]
- Chiba, T.; Okabe, T.; Yamaguchi, M. Kinetically driven quintessence. Phys. Rev. D 2000, 62, 023511. [Google Scholar] [CrossRef] [Green Version]
- Bose, N.; Majumdar, A.S. A k-essence Model Of Inflation, Dark Matter and Dark Energy. Phys. Rev. D 2009, 79, 103517. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S. Curvature Quintessence. Int. J. Mod. Phys. D 2002, 11, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Cardone, V.F.; Carloni, S.; Troisi, A. Curvature quintessence matched with observational data. Int. J. Mod. Phys. D 2003, 12, 1969–1982. [Google Scholar] [CrossRef] [Green Version]
- Amendola, L. Scaling solutions in general nonminimal coupling theories. Phys. Rev. D 1999, 60, 043501. [Google Scholar] [CrossRef] [Green Version]
- Sahni, V.; Shtanov, Y. Brane world models of dark energy. JCAP 2003, 11, 014. [Google Scholar] [CrossRef]
- Brown, J.D. Action functionals for relativistic perfect fluids. Class. Quant. Grav. 1993, 10, 1579–1606. [Google Scholar] [CrossRef] [Green Version]
- Boehmer, C.G.; Tamanini, N.; Wright, M. Interacting quintessence from a variational approach Part I: Algebraic couplings. Phys. Rev. D 2015, 91, 123002. [Google Scholar] [CrossRef] [Green Version]
- Boehmer, C.G.; Tamanini, N.; Wright, M. Interacting quintessence from a variational approach Part II: Derivative couplings. Phys. Rev. D 2015, 91, 123003. [Google Scholar] [CrossRef] [Green Version]
- Shahalam, M.; Pathak, S.D.; Li, S.; Myrzakulov, R.; Wang, A. Dynamics of coupled phantom and tachyon fields. Eur. Phys. J. C 2017, 77, 686. [Google Scholar] [CrossRef] [Green Version]
- Barros, B.J. Kinetically coupled dark energy. Phys. Rev. D 2019, 99, 064051. [Google Scholar] [CrossRef] [Green Version]
- Kerachian, M.; Acquaviva, G.; Lukes-Gerakopoulos, G. Classes of nonminimally coupled scalar fields in spatially curved FRW spacetimes. Phys. Rev. D 2019, 99, 123516. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A.; Hussain, S.; Bhattacharya, K. Dynamical stability of the k-essence field interacting nonminimally with a perfect fluid. Phys. Rev. D 2021, 104, 2021. [Google Scholar] [CrossRef]
- Chakraborty, A.; Ghosh, A.; Banerjee, N. Dynamical systems analysis of a k-essence model. Phys. Rev. D 2019, 99, 103513. [Google Scholar] [CrossRef] [Green Version]
- Roy, N.; Bhadra, N. Dynamical systems analysis of phantom dark energy models. JCAP 2018, 6, 002. [Google Scholar] [CrossRef] [Green Version]
- De-Santiago, J.; Cervantes-Cota, J.L.; Wands, D. Cosmological phase space analysis of the F(X) - V(ϕ) scalar field and bouncing solutions. Phys. Rev. D 2013, 87, 023502. [Google Scholar] [CrossRef] [Green Version]
- Dutta, J.; Khyllep, W.; Tamanini, N. Cosmological dynamics of scalar fields with kinetic corrections: Beyond the exponential potential. Phys. Rev. D 2016, 93, 063004. [Google Scholar] [CrossRef] [Green Version]
- Ng, S.C.C.; Nunes, N.J.; Rosati, F. Applications of scalar attractor solutions to cosmology. Phys. Rev. D 2001, 64, 083510. [Google Scholar] [CrossRef] [Green Version]
- Koivisto, T.S.; Nunes, N.J. Inflation and dark energy from three-forms. Phys. Rev. D 2009, 80, 103509. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Böhmer, C.G.; Carloni, S.; Copeland, E.J.; Fang, W.; Tamanini, N. Dynamical systems applied to cosmology: Dark energy and modified gravity. Phys. Rept. 2018, 775–777, 1–122. [Google Scholar] [CrossRef] [Green Version]
- Tamanini, N. Dynamics of cosmological scalar fields. Phys. Rev. D 2014, 89, 083521. [Google Scholar] [CrossRef] [Green Version]
- Dutta, J.; Khyllep, W.; Tamanini, N. Dark energy with a gradient coupling to the dark matter fluid: Cosmological dynamics and structure formation. JCAP 2018, 1, 038. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, K.; Chatterjee, A.; Hussain, S. Dynamical Stability in presence of non-minimal derivative dependent coupling of k-essence field with a relativistic fluid. arXiv 2022, arXiv:2206.12398. [Google Scholar]
- Novosyadlyj, B.; Sergijenko, O.; Durrer, R.; Pelykh, V. Do the cosmological observational data prefer phantom dark energy? Phys. Rev. D 2012, 86, 083008. [Google Scholar] [CrossRef] [Green Version]
- Teng, Y.P.; Lee, W.; Ng, K.W. Constraining the dark-energy equation of state with cosmological data. Phys. Rev. D 2021, 104, 083519. [Google Scholar] [CrossRef]
- Valentino, E.D.; Mukherjee, A.; Sen, A.A. Dark Energy with Phantom Crossing and the H0 Tension. Entropy 2021, 23, 404. [Google Scholar] [CrossRef]
- Pan, S.; Sharov, G.S.; Yang, W. Field theoretic interpretations of interacting dark energy scenarios and recent observations. Phys. Rev. D 2020, 101, 103533. [Google Scholar] [CrossRef]
- Pourtsidou, A.; Skordis, C.; Copeland, E.J. Models of dark matter coupled to dark energy. Phys. Rev. D 2013, 88, 083505. [Google Scholar] [CrossRef] [Green Version]
- Sharov, G.S.; Bhattacharya, S.; Pan, S.; Nunes, R.C.; Chakraborty, S. A new interacting two fluid model and its consequences. Mon. Not. R. Astron. Soc. 2017, 466, 3497–3506. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Cheng, H.C.; Luty, M.A.; Mukohyama, S. Ghost condensation and a consistent infrared modification of gravity. JHEP 2004, 5, 074. [Google Scholar] [CrossRef] [Green Version]
- Rabiei, S.W.; Sheikhahmadi, H.; Saaidi, K.; Aghamohammadi, A. Interacting scalar tensor cosmology in light of SNeIa, CMB, BAO and OHD observational data sets. Eur. Phys. J. C 2016, 76, 66. [Google Scholar] [CrossRef] [Green Version]
- Hinshaw, G.; Weiland, J.L.; Hill, R.S.; Odegard, N.; Larson, D.; Bennett, C.L.; Dunkley, J.; Gold, B.; Greason, M.R.; Jarosik, N.; et al. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, and Basic Results. Astrophys. J. Suppl. 2009, 180, 225–245. [Google Scholar] [CrossRef] [Green Version]
- Ade, P.A.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 2014, 571, A16. [Google Scholar] [CrossRef] [Green Version]
- Camarena, D.; Marra, V. Local determination of the Hubble constant and the deceleration parameter. Phys. Rev. Res. 2020, 2, 013028. [Google Scholar] [CrossRef] [Green Version]
f | C | D | y |
---|---|---|---|
Points | Stability | |||||
---|---|---|---|---|---|---|
P | −1 | Stable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, S.; Chatterjee, A.; Bhattacharya, K. Ghost Condensates and Pure Kinetic k-Essence Condensates in the Presence of Field–Fluid Non-Minimal Coupling in the Dark Sector. Universe 2023, 9, 65. https://doi.org/10.3390/universe9020065
Hussain S, Chatterjee A, Bhattacharya K. Ghost Condensates and Pure Kinetic k-Essence Condensates in the Presence of Field–Fluid Non-Minimal Coupling in the Dark Sector. Universe. 2023; 9(2):65. https://doi.org/10.3390/universe9020065
Chicago/Turabian StyleHussain, Saddam, Anirban Chatterjee, and Kaushik Bhattacharya. 2023. "Ghost Condensates and Pure Kinetic k-Essence Condensates in the Presence of Field–Fluid Non-Minimal Coupling in the Dark Sector" Universe 9, no. 2: 65. https://doi.org/10.3390/universe9020065
APA StyleHussain, S., Chatterjee, A., & Bhattacharya, K. (2023). Ghost Condensates and Pure Kinetic k-Essence Condensates in the Presence of Field–Fluid Non-Minimal Coupling in the Dark Sector. Universe, 9(2), 65. https://doi.org/10.3390/universe9020065