Efficient Computation of Null Affine Parameters
Abstract
:1. Introduction
- Manifestly ultrastatic spacetimes.
- Manifestly static spacetimes.
- Stationary spacetimes.
- Spacetimes with a timelike conformal Killing vector.
- Conformal deformations.
- The completely general case.
2. Generalities
3. Nonaffine Parameterizations
4. Manifestly Ultrastatic Spacetimes
5. Manifestly Static Spacetimes
- Examples:
- Schwarzschild spacetime in curvature coordinates:One hasSo in particular, for radial null geodesics, without any further calculation,(this is tolerably well-known, though it is usually checked by a brute-force analysis of the radial null geodesics).
- Reissner–Nordström spacetime in curvature coordinates:One hasSo in particular, for radial null geodesics, without any further calculation,(this is tolerably well-known, though it is usually checked by a brute-force analysis of the radial null geodesics).
- Static spherical symmetry (in curvature coordinates):One hasSo in particular, for radial null geodesics, the affine parameter isThis result does not appear to be particularly well-known (but see, for instance [15]).
- Static spherical symmetry (in Buchdahl coordinates):So in particular, for radial null geodesics in Buchdahl coordinates, the affine parameter is simply the radial coordinateThis result does not appear to be at all well-known.
- Exponential metric:So for the exponential metric, the null affine parameter is simply the naive distance . This result does not appear to be particularly well-appreciated.
- Black bounce spacetimes:So for the black bounce metric, the radial null affine parameter is simply .This result does not appear to be particularly well-appreciated.
- More generally, consider Synge’s “confromastat” metrics [124] (signifying: static, spatially conformally flat). The line element can then without a loss of generality be cast in the formThat is, the spacetime metric can be put into the formThen, the affine three-metric for these conformastat spacetimes is itself conformally flat:So for the conformastat metrics, the null affine parameter is simply proportional (in a position-dependent manner) to the naive distance .
- A special case of the conformastat metrics is (this is a generalization of the exponential metric mentioned above). The line element can then without a loss of generality be cast in the formThat is, the spacetime metric can be put into the formThen, the affine three-metric for this specific subclass of conformastat spacetimes is flat:So for this specific subclass of conformastat metrics, the null affine parameter is simply the naive distance .
6. Stationary Spacetimes
6.1. ADM Form
6.2. Threaded Form
6.3. Examples
- Strong Painlevé–Gullstrand metrics (static but not manifestly so):Thence,That is,Then, for null geodesics parallel to the flow , we have , while for null geodesics perpendicular to the flow , we have . That is, .
- Weak Painlevé–Gullstrand metrics (static but not manifestly so):Thence,That isThen, for null geodesics parallel to the flow , we have , while for null geodesics perpendicular to the flow , we have . That is, .
- Boyer–Lindquist metrics (not necessarily limited to Kerr or Kerr–Newman spacetime):One has, see references [125,126,127,128,129,130,131,132,133,134,135,136,137,138,148,149,150,151,152],Then,That is,The affine three-metric is singular at both the ergosurfaces, where , and at the horizons, where .
- For the Kerr spacetime itself, the affine three-metric is particularly simple. A brief calculation (in Boyer–Lindquist coordinates) yieldsThis can also be written asIt is somewhat unusual to have any Kerr-related result looking relatively simple.In particular, for photons emitted along the axis of rotation, we have , as we saw happens for Schwarzschild. More subtly, for null geodesics confined to the equatorial plane , we can restrict the spatial coordinates to and introduce an affine two-metric
7. Spacetimes with Timelike Conformal Killing Vector
7.1. ADM Form
7.2. Threaded Form
7.3. Examples
- FLRW cosmology:ThenTo check this, work in conformal time wherein(working in these coordinates, it is particularly easy to check that K is indeed a conformal Killing vector). Then,
- Any constant-spatial-shape cosmology:(the key constraint here is that the shape of the spatial slices is assumed to be governed by , which is assumed to be an arbitrary time-independent three-metric). Then,To check this work in conformal time, , wherein(working in these coordinates, it is particularly easy to check that K is indeed a conformal Killing vector). Then,
8. Geometrical (3 + 1) Interpretation
9. Conformal Transformations
- Examples:
- As a consistency check, note that the observations above are compatible with what we already saw happening for FLRW spacetimes and for constant-spatial-shape cosmologies.
- CFLRW spacetimes: As a further generalization, consider the conformally FLRW spacetimes of reference [153]:Here, is allowed to depend on both space and time. The CFLRW spacetimes are of interest because they have the same null geodesics (though not the same null affine parameter) as FLRW. In view of the preceding discussion, for any such spacetime, we can identify a suitable affine parameter asWe can also unwrap this as
10. General Case
11. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANEC | Averaged null energy condition |
ADM | Arnowitt–Deser–Misner |
FLRW | Friedmann–Lemaitre–Robertson–Walker |
CFLRW | Conformally Friedmann–Lemaitre–Robertson–Walker |
1 | The situation for nongeodesic null curves is, if anything, worse. Changing the parameterization of a nongeodesic null curve will again modify the “acceleration” by terms proportional to the tangent vector k, but there is now no longer a simple prescription for choosing a preferred affine parameterization. |
2 | We emphasize: The overdots are not proper time derivatives or affine derivatives. The overdots are intimately entangled with the specific choice of coordinate system. |
3 | We emphasize: this is a choice, not a physical constraint. |
4 | The only even mildly surprising part of the result is the presence in the three-acceleration of a term cubic in the three-velocity. |
5 | Note the perhaps naively unexpected occurrence of the square of the conformal factor . |
References
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Freeman: San Francisco, CA, USA, 1972; Reprinted: Princeton, NJ, USA, 2018; ISBN 13 978-0691177793. [Google Scholar]
- Wald, R.M. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar] [CrossRef]
- Carroll, S.M. Spacetime and Geometry: An Introduction to General Relativity; Addison-Wesley: Boston, MA, USA, 2003; ISBN 13 978-0805387322. [Google Scholar]
- Hartle, J.B. Gravity: An Introduction to Einstein’s General Relativity; Pearson: London, UK, 2002; ISBN 13 978-0805386622. [Google Scholar]
- Schutz, B. A First Course in General Relativity; Cambridge University Press: Cambridge, UK, 1985; ISBN 13 978-0521887052. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications; John Wiley: Hoboken, NJ, USA, 1972; ISBN 10 0-471-92567-5. [Google Scholar]
- Weinberg, S. Cosmology; Oxford University Press: Oxford, UK, 2008; ISBN 13 978-0-19-852682-7. [Google Scholar]
- Peebles, P.J.E. Principles of Physical Cosmology; Princeton University: Princeton, NJ, USA, 1993; ISBN 10 0-961-07428-3. [Google Scholar]
- Padmanabhan, T. Gravitation: Foundations and Frontiers; Cambridge University Press: Cambridge, UK, 2010; ISBN 13 978-0-521-88223-1. [Google Scholar]
- Hobson, M.P.; Efstathiou, G.P.; Lasenby, A.N. General Relativity: An Introduction for Physicists; Cambridge University Press: Cambridge, UK, 2006; ISBN 13 978-0521829519. [Google Scholar]
- Sachs, R.K.; Wu, H.-H. General Relativity for Mathematicians; Springer: Berlin/Heidelberg, Germany, 1977; ISBN 13 978-1-4612-9905-9 (softcover)/13 978-1-4612-9903-5 (e-book). [Google Scholar] [CrossRef]
- Stephani, H. Relativity: An Introduction to Special and General Relativity; Cambridge University Press: Cambridge, UK, 1982; ISBN 13 978-0521010696. [Google Scholar]
- D’Inverno, R. Introducing Einstein’s Relativity; Oxford University Press: Oxford, UK, 1992; ISBN 13 978-0198596868. [Google Scholar]
- Poisson, E. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics; Cambridge University Press: Cambridge, UK, 2004; ISBN 13 978-0511606601. [Google Scholar] [CrossRef]
- Visser, M. Lorentzian Wormholes: From Einstein to Hawking; AIP Press [Now Springer]: New York, NY, USA, 1996; ISBN 10 1-56396-653-0. [Google Scholar]
- Flanagan, E.E.; Wald, R.M. Does back reaction enforce the averaged null energy condition in semiclassical gravity? Phys. Rev. D 1996, 54, 6233–6283. [Google Scholar] [CrossRef] [PubMed]
- Yurtsever, U. Does quantum field theory enforce the averaged weak energy condition? Class. Quant. Grav. 1990, 7, L251–L258. [Google Scholar] [CrossRef]
- Wald, R.M.; Yurtsever, U. General proof of the averaged null energy condition for a massless scalar field in two-dimensional curved space-time. Phys. Rev. D 1991, 44, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Borde, A. Geodesic focusing, energy conditions and singularities. Class. Quant. Grav. 1987, 4, 343–356. [Google Scholar] [CrossRef]
- Ford, L.H.; Roman, T.A. Averaged energy conditions and quantum inequalities. Phys. Rev. D 1995, 51, 4277–4286. [Google Scholar] [CrossRef] [PubMed]
- Ford, L.H.; Roman, T.A. Averaged energy conditions and evaporating black holes. Phys. Rev. D 1996, 53, 1988–2000. [Google Scholar] [CrossRef] [PubMed]
- Graham, N.; Olum, K.D. Achronal averaged null energy condition. Phys. Rev. D 2007, 76, 064001. [Google Scholar] [CrossRef]
- Wall, A.C. Proving the Achronal Averaged Null Energy Condition from the Generalized Second Law. Phys. Rev. D 2010, 81, 024038. [Google Scholar] [CrossRef]
- Kontou, E.A.; Olum, K.D. Proof of the averaged null energy condition in a classical curved spacetime using a null-projected quantum inequality. Phys. Rev. D 2015, 92, 124009. [Google Scholar] [CrossRef]
- Capozziello, S.; Lobo, F.S.N.; Mimoso, J.P. Energy conditions in modified gravity. Phys. Lett. B 2014, 730, 280–283. [Google Scholar] [CrossRef]
- Capozziello, S.; Lobo, F.S.N.; Mimoso, J.P. Generalized energy conditions in Extended Theories of Gravity. Phys. Rev. D 2015, 91, 124019. [Google Scholar] [CrossRef]
- Curiel, E. A Primer on Energy Conditions. Einstein Stud. 2017, 13, 43–104. [Google Scholar] [CrossRef]
- Hochberg, D.; Visser, M. Dynamic wormholes, anti-trapped surfaces, and energy conditions. Phys. Rev. D 1998, 58, 044021. [Google Scholar] [CrossRef]
- Barceló, C.; Visser, M. Twilight for the energy conditions? Int. J. Mod. Phys. D 2002, 11, 1553–1560. [Google Scholar] [CrossRef]
- Fewster, C.J.; Roman, T.A. Null energy conditions in quantum field theory. Phys. Rev. D 2003, 67, 044003, Erratum in Phys. Rev. D 2009, 80, 069903. [Google Scholar] [CrossRef]
- Kar, S.; Dadhich, N.; Visser, M. Quantifying energy condition violations in traversable wormholes. Pramana 2004, 63, 859–864. [Google Scholar] [CrossRef]
- Martín-Moruno, P.; Visser, M. Classical and semi-classical energy conditions. Fundam. Theor. Phys. 2017, 189, 193–213. [Google Scholar] [CrossRef]
- Visser, M. Scale anomalies imply violation of the averaged null energy condition. Phys. Lett. B 1995, 349, 443–447. [Google Scholar] [CrossRef]
- Visser, M.; Barceló, C. Energy conditions and their cosmological implications. In COSMO99; World Scientific: Singapore, 2000. [Google Scholar] [CrossRef]
- Yurtsever, U. A note on the averaged null energy condition in quantum field theory. Phys. Rev. D 1995, 52, R564–R568. [Google Scholar] [CrossRef]
- Yurtsever, U. The Averaged null energy condition and difference inequalities in quantum field theory. Phys. Rev. D 1995, 51, 5797–5805. [Google Scholar] [CrossRef]
- Fewster, C.J.; Olum, K.D.; Pfenning, M.J. Averaged null energy condition in spacetimes with boundaries. Phys. Rev. D 2007, 75, 025007. [Google Scholar] [CrossRef]
- Graham, N.; Olum, K.D. Plate with a hole obeys the averaged null energy condition. Phys. Rev. D 2005, 72, 025013. [Google Scholar] [CrossRef]
- Kontou, E.A. Averaged null energy condition and quantum inequalities in curved spacetime. arXiv 2015, arXiv:1507.06299. [Google Scholar]
- Penrose, R.; Sorkin, R.D.; Woolgar, E. A Positive mass theorem based on the focusing and retardation of null geodesics. arXiv 1993, arXiv:gr-qc/9301015. [Google Scholar]
- Morris, M.S.; Thorne, K.S.; Yurtsever, U. Wormholes, Time Machines, and the Weak Energy Condition. Phys. Rev. Lett. 1988, 61, 1446–1449. [Google Scholar] [CrossRef] [PubMed]
- Witten, E. Light Rays, Singularities, and All That. Rev. Mod. Phys. 2020, 92, 045004. [Google Scholar] [CrossRef]
- Senovilla, J.M.M. Singularity Theorems and Their Consequences. Gen. Relativ. Grav. 1998, 30, 701. [Google Scholar] [CrossRef]
- Hawking, S.; Ellis, G. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973; ISBN 13 978-0521099066. [Google Scholar]
- Roman, T.A.; Bergmann, P.G. Stellar collapse without singularities? Phys. Rev. D 1983, 28, 1265–1277. [Google Scholar] [CrossRef]
- Roman, T.A. Quantum Stress Energy Tensors and the Weak Energy Condition. Phys. Rev. D 1986, 33, 3526–3533. [Google Scholar] [CrossRef]
- Roman, T.A. On the `Averaged Weak Energy Condition’ and Penrose’s Singularity Theorem. Phys. Rev. D 1988, 37, 546–548. [Google Scholar] [CrossRef]
- Bojowald, M. Singularities and Quantum Gravity. AIP Conf. Proc. 2007, 910, 294–333. [Google Scholar] [CrossRef]
- Parker, L.; Fulling, S.A. Quantized matter fields and the avoidance of singularities in general relativity. Phys. Rev. D 1973, 7, 2357–2374. [Google Scholar] [CrossRef]
- Fewster, C.J.; Galloway, G.J. Singularity theorems from weakened energy conditions. Class. Quant. Grav. 2011, 28, 125009. [Google Scholar] [CrossRef]
- Abreu, G.; Visser, M. Some generalizations of the Raychaudhuri equation. Phys. Rev. D 2011, 83, 104016. [Google Scholar] [CrossRef]
- Ford, L.H. The Classical singularity theorems and their quantum loop holes. Int. J. Theor. Phys. 2003, 42, 1219–1227. [Google Scholar] [CrossRef]
- Friedman, J.L.; Schleich, K.; Witt, D.M. Topological censorship. Phys. Rev. Lett. 1993, 71, 1486–1489, Erratum in Phys. Rev. Lett. 1995, 75, 1872. [Google Scholar] [CrossRef] [PubMed]
- Galloway, G.J.; Schleich, K.; Witt, D.M.; Woolgar, E. Topological censorship and higher genus black holes. Phys. Rev. D 1999, 60, 104039. [Google Scholar] [CrossRef]
- Jacobson, T.; Venkataramani, S. Topology of event horizons and topological censorship. Class. Quant. Grav. 1995, 12, 1055–1062. [Google Scholar] [CrossRef]
- Shapiro, S.L.; Teukolsky, S.A.; Winicour, J. Toroidal black holes and topological censorship. Phys. Rev. D 1995, 52, 6982–6987. [Google Scholar] [CrossRef]
- Chrusciel, P.T.; Galloway, G.J.; Solis, D. Topological censorship for Kaluza-Klein space-times. Ann. Henri Poincare 2009, 10, 893–912. [Google Scholar] [CrossRef]
- Browdy, S.F.; Galloway, G.J. Topological censorship and the topology of black holes. J. Math. Phys. 1995, 36, 4952–4961. [Google Scholar] [CrossRef]
- Eichmair, M.; Galloway, G.J.; Pollack, D. Topological censorship from the initial data point of view. J. Diff. Geom. 2013, 95, 389–405. [Google Scholar] [CrossRef]
- Chruściel, P.T.; Galloway, G.J. Roads to topological censorship. arXiv 2019, arXiv:1906.02151. [Google Scholar]
- Hawking, S.W. The Chronology protection conjecture. Phys. Rev. D 1992, 46, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Visser, M. From wormhole to time machine: Comments on Hawking’s chronology protection conjecture. Phys. Rev. D 1993, 47, 554–565. [Google Scholar] [CrossRef] [PubMed]
- Kay, B.S.; Radzikowski, M.J.; Wald, R.M. Quantum field theory on space-times with a compactly generated Cauchy horizon. Commun. Math. Phys. 1997, 183, 533–556. [Google Scholar] [CrossRef]
- Visser, M. Traversable wormholes: The Roman ring. Phys. Rev. D 1997, 55, 5212–5214. [Google Scholar] [CrossRef]
- Visser, M. The Reliability horizon for semiclassical quantum gravity: Metric fluctuations are often more important than back reaction. Phys. Lett. B 1997, 415, 8–14. [Google Scholar] [CrossRef]
- Visser, M. The Quantum physics of chronology protection. arXiv 2002, arXiv:gr-qc/0204022. [Google Scholar]
- Friedman, J.L.; Higuchi, A. Topological censorship and chronology protection. Ann. Phys. 2006, 15, 109–128. [Google Scholar] [CrossRef]
- Liberati, S. Do not mess with time: Probing faster than light travel and chronology protection with superluminal warp drives. arXiv 2016, arXiv:1601.00785. [Google Scholar] [CrossRef]
- Eling, C.; Jacobson, T. Spherical solutions in Einstein-aether theory: Static aether and stars. Class. Quant. Grav. 2006, 23, 5625–5642, Erratum in Class. Quant. Grav. 2010, 27, 049801. [Google Scholar] [CrossRef]
- Olmo, G.J.; Rubiera-Garcia, D. Nonsingular Black Holes in f (R) Theories. Universe 2015, 1, 173–185. [Google Scholar] [CrossRef]
- Hollands, S.; Wald, R.M.; Zahn, J. Quantum instability of the Cauchy horizon in Reissner–Nordström–deSitter spacetime. Class. Quant. Grav. 2020, 37, 115009. [Google Scholar] [CrossRef]
- Bejarano, C.; Olmo, G.J.; Rubiera-Garcia, D. What is a singular black hole beyond General Relativity? Phys. Rev. D 2017, 95, 064043. [Google Scholar] [CrossRef]
- Ashtekar, A.; Pretorius, F.; Ramazanoglu, F.M. Evaporation of 2-Dimensional Black Holes. Phys. Rev. D 2011, 83, 044040. [Google Scholar] [CrossRef]
- Menchon, C.; Olmo, G.J.; Rubiera-Garcia, D. Nonsingular black holes, wormholes, and de Sitter cores from anisotropic fluids. Phys. Rev. D 2017, 96, 104028. [Google Scholar] [CrossRef]
- Flanagan, É.É.; Grant, A.M.; Harte, A.I.; Nichols, D.A. Persistent gravitational wave observables: General framework. Phys. Rev. D 2019, 99, 084044. [Google Scholar] [CrossRef]
- Maeda, K.i.; Nozawa, M. Black Hole in the Expanding Universe with Arbitrary Power-Law Expansion. Phys. Rev. D 2010, 81, 124038. [Google Scholar] [CrossRef]
- Yang, X.; Wang, J. YNOGK: A new public code for calculating null geodesics in the Kerr spacetime. Astrophys. J. Suppl. 2013, 207, 6. [Google Scholar] [CrossRef]
- Sanghai, V.A.A.; Fleury, P.; Clifton, T. Ray tracing and Hubble diagrams in post-Newtonian cosmology. J. Cosmol. Astropart. Phys. 2017, 7, 028. [Google Scholar] [CrossRef]
- Arrechea, J.; Barceló, C.; Carballo-Rubio, R.; Garay, L.J. Semiclassical constant-density spheres in a regularized Polyakov approximation. Phys. Rev. D 2021, 104, 084071. [Google Scholar] [CrossRef]
- Fuentes, J.L.; Hidalgo, J.C.; Malik, K.A. Galaxy number counts at second order: An independent approach. Class. Quant. Grav. 2021, 38, 065014. [Google Scholar] [CrossRef]
- Anastopoulos, C.; Savvidou, N. Classification theorem and properties of singular solutions to the Tolman–Oppenheimer–Volkoff equation. Class. Quant. Grav. 2021, 38, 075024. [Google Scholar] [CrossRef]
- White, C.J. Blacklight: A General-relativistic Ray-tracing and Analysis Tool. Astrophys. J. Supp. 2022, 262, 28. [Google Scholar] [CrossRef]
- Boyanov, V. Vacuum polarisation and regular gravitational collapse. arXiv 2023, arXiv:2306.07169. [Google Scholar]
- Arrechea, J.; Barceló, C.; Boyanov, V. After collapse: On how a physical vacuum can change the black hole paradigm. arXiv 2023, arXiv:2307.13416. [Google Scholar]
- Dexter, J.; Agol, E. A Fast New Public Code for Computing Photon Orbits in a Kerr Spacetime. Astrophys. J. 2009, 696, 1616–1629. [Google Scholar] [CrossRef]
- Jacobson, T. When is g(tt) g(rr) = −1? Class. Quant. Grav. 2007, 24, 5717–5719. [Google Scholar] [CrossRef]
- Chandrasekaran, V.; Prabhu, K. Symmetries, charges and conservation laws at causal diamonds in general relativity. J. High Energ. Phys. 2019, 10, 229. [Google Scholar] [CrossRef]
- Chan, C.k.; Medeiros, L.; Ozel, F.; Psaltis, D. GRay2: A General Purpose Geodesic Integrator for Kerr Spacetimes. Astrophys. J. 2018, 867, 59. [Google Scholar] [CrossRef]
- Preston, B.; Poisson, E. Light-cone coordinates based at a geodesic world line. Phys. Rev. D 2006, 74, 064009. [Google Scholar] [CrossRef]
- Arnowitt, R.L.; Deser, S.; Misner, C.W. The Dynamics of general relativity. Gen. Relativ. Grav. 2008, 40, 1997–2027. [Google Scholar] [CrossRef]
- Gourgoulhon, E. 3+1 formalism and bases of numerical relativity. arXiv 2007, arXiv:gr-qc/0703035. [Google Scholar]
- Hawking, S.W.; Horowitz, G.T. The Gravitational Hamiltonian, action, entropy and surface terms. Class. Quant. Grav. 1996, 13, 1487–1498. [Google Scholar] [CrossRef]
- Boersma, S.; Dray, T. Slicing, threading & parametric manifolds. Gen. Relativ. Grav. 1995, 27, 319–339. [Google Scholar] [CrossRef]
- van Elst, H.; Uggla, C. General relativistic (1+3) orthonormal frame approach revisited. Class. Quant. Grav. 1997, 14, 2673–2695. [Google Scholar] [CrossRef]
- Ellis, G.F.R.; van Elst, H. Cosmological models: Cargese lectures 1998. NATO Sci. Ser. C 1999, 541, 1–116. [Google Scholar] [CrossRef]
- Bekenstein, J.D. The Relation between physical and gravitational geometry. Phys. Rev. D 1993, 48, 3641–3647. [Google Scholar] [CrossRef]
- Perlick, V. Fermat principle in Finsler spacetimes. Gen. Relativ. Grav. 2006, 38, 365–380. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Gomis, J.; Pope, C.N. General very special relativity is Finsler geometry. Phys. Rev. D 2007, 76, 081701. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Herdeiro, C.A.R.; Warnick, C.M.; Werner, M.C. Stationary Metrics and Optical Zermelo-Randers-Finsler Geometry. Phys. Rev. D 2009, 79, 044022. [Google Scholar] [CrossRef]
- Skakala, J.; Visser, M. The causal structure of spacetime is a parameterized Randers geometry. Class. Quant. Grav. 2011, 28, 065007. [Google Scholar] [CrossRef]
- Lammerzahl, C.; Perlick, V.; Hasse, W. Observable effects in a class of spherically symmetric static Finsler spacetimes. Phys. Rev. D 2012, 86, 104042. [Google Scholar] [CrossRef]
- Lämmerzahl, C.; Perlick, V. Finsler geometry as a model for relativistic gravity. Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850166. [Google Scholar] [CrossRef]
- Pfeifer, C. Finsler spacetime geometry in Physics. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1941004. [Google Scholar] [CrossRef]
- Page, D.N. Thermal Stress Tensors in Static Einstein Spaces. Phys. Rev. D 1982, 25, 1499. [Google Scholar] [CrossRef]
- Blau, S.; Visser, M.; Wipf, A. Zeta Functions and the Casimir Energy. Nucl. Phys. B 1988, 310, 163. [Google Scholar] [CrossRef]
- Gusev, Y.; Zelnikov, A. Nonlocal effective action at finite temperature in ultrastatic space-times. Class. Quant. Grav. 1998, 15, L13–L19. [Google Scholar] [CrossRef]
- Furlani, E.P. Quantization of massive vector fields on ultrastatic space-times. Class. Quant. Grav. 1997, 14, 1665–1677. [Google Scholar] [CrossRef]
- Popov, A.A. Analytical approximation for <ϕ2> of a quantized scalar field in ultrastatic asymptotically flat spacetimes. Phys. Rev. D 2004, 70, 084047. [Google Scholar] [CrossRef]
- Fewster, C.J.; Pfenning, M.J. A Quantum weak energy inequality for spin one fields in curved space-time. J. Math. Phys. 2003, 44, 4480–4513. [Google Scholar] [CrossRef]
- Sonego, S. Ultrastatic spacetimes. J. Math. Phys. 2010, 51, 092502. [Google Scholar] [CrossRef]
- Fewster, C.J.; Verch, R. The Necessity of the Hadamard Condition. Class. Quant. Grav. 2013, 30, 235027. [Google Scholar] [CrossRef]
- Padmanabhan, T. Gravitational entropy of static space-times and microscopic density of states. Class. Quant. Grav. 2004, 21, 4485–4494. [Google Scholar] [CrossRef]
- Perlick, V. On the Exact gravitational lens equation in spherically symmetric and static space-times. Phys. Rev. D 2004, 69, 064017. [Google Scholar] [CrossRef]
- Visser, M. Dirty black holes: Thermodynamics and horizon structure. Phys. Rev. D 1992, 46, 2445–2451. [Google Scholar] [CrossRef]
- Hochberg, D.; Visser, M. Geometric structure of the generic static traversable wormhole throat. Phys. Rev. D 1997, 56, 4745–4755. [Google Scholar] [CrossRef]
- Rahman, S.; Visser, M. Space-time geometry of static fluid spheres. Class. Quant. Grav. 2002, 19, 935–952. [Google Scholar] [CrossRef]
- Martin, D.; Visser, M. Bounds on the interior geometry and pressure profile of static fluid spheres. Class. Quant. Grav. 2003, 20, 3699–3716. [Google Scholar] [CrossRef]
- Boonserm, P.; Visser, M. Buchdahl-like transformations for perfect fluid spheres. Int. J. Mod. Phys. D 2008, 17, 135–163. [Google Scholar] [CrossRef]
- Boonserm, P.; Visser, M. Buchdahl-like transformations in general relativity. Thai J. Math. 2007, 5, 209–223. [Google Scholar]
- Lobo, F.S.N.; Rodrigues, M.E.; Silva, M.V.d.; Simpson, A.; Visser, M. Novel black-bounce spacetimes: Wormholes, regularity, energy conditions, and causal structure. Phys. Rev. D 2021, 103, 084052. [Google Scholar] [CrossRef]
- Boonserm, P.; Ngampitipan, T.; Simpson, A.; Visser, M. Exponential metric represents a traversable wormhole. Phys. Rev. D 2018, 98, 084048. [Google Scholar] [CrossRef]
- Simpson, A.; Visser, M. Black-bounce to traversable wormhole. J. Cosmol. Astropart. Phys. 2019, 2, 042. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Walia, R.K. Field sources for Simpson-Visser spacetimes. Phys. Rev. D 2022, 105, 044039. [Google Scholar] [CrossRef]
- Synge, J.L. Relativity: The General Theory; North Holland: Amsterdam, The Netherlands, 1960. [Google Scholar]
- Kerr, R.P. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 1963, 11, 237–238, Reprinted in Cambridge, UK, 2009; pp. 347–348. [Google Scholar] [CrossRef]
- Kerr, R.P. Gravitational collapse and rotation. In Quasi-Stellar Sources and Gravitational Collapse: Proceedings of the First Texas Symposium; Robinson, I., Schild, A., Schücking, E.L., Eds.; University of Chicago Press: Chicago, IL, USA, 1965; Reprinted in Cambridge, UK, 2009; pp. 349–353. [Google Scholar]
- Kerr, R.P. Discovering the Kerr and Kerr-Schild Metrics; Cambridge University Press: Cambridge, UK, 2009; pp. 38–72. [Google Scholar]
- Wiltshire, D.L.; Visser, M.; Scott, S.M. The Kerr Spacetime: Rotating Black Holes in General Relativity; Cambridge University Press: Cambridge, UK, 2009; ISBN 13 978-0-521-88512-6. [Google Scholar]
- Visser, M. The Kerr Spacetime: A Brief Introduction; Cambridge University Press: Cambridge, UK, 2009; pp. 3–37. [Google Scholar]
- O’Niel, B. The Geometry of Kerr Black Holes; Dover: New York, NY, USA, 1995; ISBN 13 978-0-486-49342-8. [Google Scholar]
- Newman, E.T.; Couch, R.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R. Metric of a Rotating, Charged Mass. J. Math. Phys. 1965, 6, 918–919. [Google Scholar] [CrossRef]
- Newman, E.T.; Janis, A.I. Note on the Kerr spinning particle metric. J. Math. Phys. 1965, 6, 915–917. [Google Scholar] [CrossRef]
- Doran, C. A New form of the Kerr solution. Phys. Rev. D 2000, 61, 067503. [Google Scholar] [CrossRef]
- Medved, A.J.M.; Martin, D.; Visser, M. Dirty black holes: Symmetries at stationary nonstatic horizons. Phys. Rev. D 2004, 70, 024009. [Google Scholar] [CrossRef]
- Liberati, S.; Tricella, G.; Visser, M. Towards a Gordon form of the Kerr spacetime. Class. Quant. Grav. 2018, 35, 155004. [Google Scholar] [CrossRef]
- Baines, J.; Visser, M. Physically motivated ansatz for the Kerr spacetime. Class. Quant. Grav. 2022, 39, 235004. [Google Scholar] [CrossRef]
- Teukolsky, S.A. The Kerr Metric. Class. Quant. Grav. 2015, 32, 124006. [Google Scholar] [CrossRef]
- Adamo, T.; Newman, E.T. The Kerr-Newman metric: A Review. Scholarpedia 2014, 9, 31791. [Google Scholar] [CrossRef]
- Kaluza, T. Zum Unitätsproblem der Physik. Sitzungsber. Preuss. Akad. Wiss. Berl. (Math. Phys.) 1921, 1921, 966–972. [Google Scholar] [CrossRef]
- Klein, O. Quantum Theory and Five-Dimensional Theory of Relativity. Z. Phys. 1926, 37, 895–906. [Google Scholar] [CrossRef]
- Overduin, J.M.; Wesson, P.S. Kaluza-Klein gravity. Phys. Rept. 1997, 283, 303–380. [Google Scholar] [CrossRef]
- Witten, E. Search for a Realistic Kaluza-Klein Theory. Nucl. Phys. B 1981, 186, 412. [Google Scholar] [CrossRef]
- Salam, A.; Strathdee, J.A. On Kaluza-Klein Theory. Ann. Phys. 1982, 141, 316–352. [Google Scholar] [CrossRef]
- Martel, K.; Poisson, E. Regular coordinate systems for Schwarzschild and other spherical space-times. Am. J. Phys. 2001, 69, 476–480. [Google Scholar] [CrossRef]
- Volovik, G.E. Simulation of Painleve-Gullstrand black hole in thin He-3—A film. JETP Lett. 1999, 69, 705–713. [Google Scholar] [CrossRef]
- Gaur, R.; Visser, M. Cosmology in Painlevé-Gullstrand coordinates. J. Cosmol. Astropart. Phys. 2022, 9, 030. [Google Scholar] [CrossRef]
- Visser, M.; Liberati, S. Painleve-Gullstrand coordinates versus Kerr spacetime geometry. Gen. Relativ. Grav. 2022, 54, 145. [Google Scholar] [CrossRef]
- Boyer, R.H.; Lindquist, R.W. Maximal analytic extension of the Kerr metric. J. Math. Phys. 1967, 8, 265. [Google Scholar] [CrossRef]
- Rajan, D.; Visser, M. Global properties of physically interesting Lorentzian spacetimes. Int. J. Mod. Phys. D 2016, 25, 1650106. [Google Scholar] [CrossRef]
- Baines, J.; Berry, T.; Simpson, A.; Visser, M. Darboux diagonalization of the spatial 3-metric in Kerr spacetime. Gen. Relativ. Grav. 2021, 53, 3. [Google Scholar] [CrossRef]
- Schuster, S.; Visser, M. Boyer-Lindquist space-times and beyond: Meta-material analogues. arXiv 2018, arXiv:1802.09807. [Google Scholar]
- Bambi, C.; Modesto, L. Rotating regular black holes. Phys. Lett. B 2013, 721, 329–334. [Google Scholar] [CrossRef]
- Visser, M. Conformally Friedmann–Lemaître–Robertson–Walker cosmologies. Class. Quant. Grav. 2015, 32, 135007. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visser, M. Efficient Computation of Null Affine Parameters. Universe 2023, 9, 521. https://doi.org/10.3390/universe9120521
Visser M. Efficient Computation of Null Affine Parameters. Universe. 2023; 9(12):521. https://doi.org/10.3390/universe9120521
Chicago/Turabian StyleVisser, Matt. 2023. "Efficient Computation of Null Affine Parameters" Universe 9, no. 12: 521. https://doi.org/10.3390/universe9120521
APA StyleVisser, M. (2023). Efficient Computation of Null Affine Parameters. Universe, 9(12), 521. https://doi.org/10.3390/universe9120521