Conventionalism, Cosmology and Teleparallel Gravity
Abstract
:1. Introduction
2. Conventionalism in Physics and Cosmology
2.1. Merritt on Conventions in the CDM Model
2.2. A Peculiar Feature of Cosmological Science
2.3. Empirical Equivalence and Theoretical Equivalence
3. Friedmann Cosmology in Different Formulations of General Relativity
3.1. Geometric Preliminaries
3.2. General Relativity
3.3. Teleparallel Equivalent of General Relativity
3.4. Symmetric Teleparallel Equivalent of General Relativity
3.5. General Teleparallel Equivalent of General Relativity (GTEGR)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FLRW | Friedmann–Lemaître–Robertson–Walker |
GR | general relativity |
GTEGR | general teleparallel equivalent of general relativity |
STEGR | symmetric teleparallel equivalent of general relativity |
TEGR | teleparallel equivalent of general relativity |
1 | |
2 | Modification of the matter sector with added couplings to the non-Riemannian part of the connection typically introduces new terms in the continuity equation and particle motion equation [52], breaking the equivalence with GR. |
3 | |
4 | For simple scalar, spinor and vector fields, we may actually replace the Levi-Civita connection with the symmetric teleparallel connection [55]. |
5 | In these coordinates, the metric typically becomes more complicated though, which can considerably curb the benefits in calculational economy [62]. |
References
- Perivolaropoulos, L.; Skara, F. Challenges for ΛCDM: An update. New Astron. Rev. 2022, 95, 101659. [Google Scholar] [CrossRef]
- Heisenberg, L. A systematic approach to generalisations of General Relativity and their cosmological implications. Phys. Rep. 2019, 796, 1–113. [Google Scholar] [CrossRef]
- Saridakis, E.N.; Lazkoz, R.; Salzano, V.; Vargas Moniz, P.; Capozziello, S.; Beltrán Jiménez, J.; De Laurentis, M.; Olmo, G.J. Modified Gravity and Cosmology: An Update by the CANTATA Network; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Merritt, D. Cosmology and convention. Stud. Hist. Philos. Mod. Phys. 2017, 57, 41–52. [Google Scholar] [CrossRef]
- Duhem, P. La Thèorie Physique: Son Objet et sa Structure; M. Rivière: Paris, France, 1914. [Google Scholar]
- Poincaré, H. La Science et l’Hypothèse; Flammarion: Paris, France, 1902. [Google Scholar]
- Popper, K.R. The Logic of Scientific Discovery; Basic Books: New York, NY, USA, 1959. [Google Scholar]
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity; Springer: Dordrecht, The Netherlands, 2013; Volume 173. [Google Scholar] [CrossRef]
- Krššák, M.; van den Hoogen, R.J.; Pereira, J.G.; Böhmer, C.G.; Coley, A.A. Teleparallel theories of gravity: Illuminating a fully invariant approach. Class. Quant. Grav. 2019, 36, 183001. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T. Coincident General Relativity. Phys. Rev. D 2018, 98, 044048. [Google Scholar] [CrossRef]
- Järv, L.; Rünkla, M.; Saal, M.; Vilson, O. Nonmetricity formulation of general relativity and its scalar-tensor extension. Phys. Rev. D 2018, 97, 124025. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T.S. The Geometrical Trinity of Gravity. Universe 2019, 5, 173. [Google Scholar] [CrossRef]
- Capozziello, S.; De Falco, V.; Ferrara, C. Comparing equivalent gravities: Common features and differences. Eur. Phys. J. C 2022, 82, 865. [Google Scholar] [CrossRef]
- Heisenberg, L. Review on f(Q) Gravity. arXiv 2023, arXiv:2309.15958. [Google Scholar]
- Wolf, W.J.; Read, J. The Non-Relativistic Geometric Trinity of Gravity. arXiv 2023, arXiv:2308.07100. [Google Scholar]
- Wolf, W.J.; Sanchioni, M.; Read, J. Underdetermination in Classic and Modern Tests of General Relativity. arXiv 2023, arXiv:2307.10074. [Google Scholar]
- Capozziello, S.; De Falco, V.; Ferrara, C. The role of the boundary term in f(Q, B) symmetric teleparallel gravity. Eur. Phys. J. C 2023, 83, 915. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Heisenberg, L.; Iosifidis, D.; Jiménez-Cano, A.; Koivisto, T.S. General teleparallel quadratic gravity. Phys. Lett. B 2020, 805, 135422. [Google Scholar] [CrossRef]
- Weatherall, J.O. Part 2: Theoretical equivalence in physics. Philos. Compass 2018, 14, e12591. [Google Scholar] [CrossRef]
- Duerr, P.M. Theory (In-)Equivalence and conventionalism in f(R) gravity. Stud. Hist. Philos. Sci. 2021, 88, 10–29. [Google Scholar] [CrossRef] [PubMed]
- Coffey, K. Theoretical equivalence as interpretational equivalence. Br. J. Philos. Sci. 2014, 65, 821–844. [Google Scholar] [CrossRef]
- Koberinski, A.; Falck, B.; Smeenk, C. Contemporary Philosophical Perspectives on the Cosmological Constant. Universe 2023, 9, 134. [Google Scholar] [CrossRef]
- Quine, W.V.O. On empirically equivalent systems of the world. Erkenntnis 1975, 9, 313–328. [Google Scholar] [CrossRef]
- Feynman, R.P. Feynman Lectures on Gravitation; Addison–Wesley Publishing Company: Boston, MA, USA, 1995. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1972. [Google Scholar]
- Knox, E. Newton–Cartan theory and teleparallel gravity: The force of a formulation. Stud. Hist. Philos. Mod. Phys. 2011, 42, 264–275. [Google Scholar] [CrossRef]
- Read, J.; Menon, T. The limitations of inertial frame spacetime functionalism. Synthese 2021, 199 (Suppl. S2), S229–S251. [Google Scholar] [CrossRef]
- Wolf, W.J.; Read, J. Respecting Boundaries: Theoretical equivalence and structure beyond dynamics. Eur. J. Philos. Sci. 2023, 13, 1–28. [Google Scholar] [CrossRef]
- Hohmann, M.; Järv, L.; Krššák, M.; Pfeifer, C. Modified teleparallel theories of gravity in symmetric spacetimes. Phys. Rev. D 2019, 100, 084002. [Google Scholar] [CrossRef]
- Einstein, A. Riemann-Geometrie mit Aufrechthaltung des Begriffes des Fernparallelismus. In Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse; Verlag der Akademie der Wissenschaften: Berlin, Germany, 1928; pp. 217–221. [Google Scholar]
- Einstein, A. Neue Möglichkeit für eine einheitliche Feldtheorievon Gravitation und Elektrizität. In Sitzungsberichte der Preussische Akademie der Wissenschaften, Physikalisch-Mathematische Klasse; Verlag der Akademie der Wissenschaften: Berlin, Germany, 1928; pp. 224–227. [Google Scholar]
- Weitzenböck, R. Invariantentheorie; Noordhoff: Groningen, The Netherlands, 1928. [Google Scholar]
- Møller, C. Conservation laws and absolute parallelism in general relativity. In Volume 1: Det Kongelige Danske Videnskabernes Selskab, Matematisk-Fysiske Skrifter; Munksgaard: Copenhagen, Denmark, 1961. [Google Scholar]
- Pellegrini, C.; Plebański, J. Tetrad fields and gravitational fields. In Volume 2: Det Kongelige Danske Videnskabernes Selskab, Matematisk-Fysiske Skrifter; Munksgaard: Copenhagen, Denmark, 1963. [Google Scholar] [CrossRef]
- Hayashi, K.; Nakano, T. Extended translation invariance and associated gauge fields. Prog. Theor. Phys. 1967, 38, 491–507. [Google Scholar] [CrossRef]
- Bahamonde, S.; Dialektopoulos, K.F.; Escamilla-Rivera, C.; Farrugia, G.; Gakis, V.; Hendry, M.; Hohmann, M.; Levi Said, J.; Mifsud, J.; Di Valentino, E. Teleparallel gravity: From theory to cosmology. Rept. Prog. Phys. 2023, 86, 026901. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, M.; Järv, L.; Ualikhanova, U. Covariant formulation of scalar-torsion gravity. Phys. Rev. D 2018, 97, 104011. [Google Scholar] [CrossRef]
- de Andrade, V.C.; Guillen, L.C.T.; Pereira, J.G. Gravitational energy momentum density in teleparallel gravity. Phys. Rev. Lett. 2000, 84, 4533–4536. [Google Scholar] [CrossRef] [PubMed]
- Vargas, T. The Energy of the universe in teleparallel gravity. Gen. Rel. Grav. 2004, 36, 1255. [Google Scholar] [CrossRef]
- Maluf, J.W.; da Rocha-Neto, J.F.; Toribio, T.M.L.; Castello-Branco, K.H. Energy and angular momentum of the gravitational field in the teleparallel geometry. Phys. Rev. D 2002, 65, 124001. [Google Scholar] [CrossRef]
- Obukhov, Y.N.; Rubilar, G.F.; Pereira, J.G. Conserved currents in gravitational models with quasi-invariant Lagrangians: Application to teleparallel gravity. Phys. Rev. D 2006, 74, 104007. [Google Scholar] [CrossRef]
- Ulhoa, S.C.; da Rocha Neto, J.F.; Maluf, J.W. The Gravitational Energy Problem for Cosmological Models in Teleparallel Gravity. Int. J. Mod. Phys. D 2010, 19, 1925–1935. [Google Scholar] [CrossRef]
- Krššák, M.; Pereira, J.G. Spin Connection and Renormalization of Teleparallel Action. Eur. Phys. J. C 2015, 75, 519. [Google Scholar] [CrossRef]
- Hohmann, M.; Järv, L.; Krššák, M.; Pfeifer, C. Teleparallel theories of gravity as analogue of nonlinear electrodynamics. Phys. Rev. D 2018, 97, 104042. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Koivisto, T.S. Noether charges in the geometrical trinity of gravity. Phys. Rev. D 2022, 105, L021502. [Google Scholar] [CrossRef]
- Gomes, D.A.; Beltrán Jiménez, J.; Koivisto, T.S. Energy and entropy in the geometrical trinity of gravity. Phys. Rev. D 2023, 107, 024044. [Google Scholar] [CrossRef]
- Emtsova, E.D.; Petrov, A.N.; Toporensky, A.V. Conserved currents and superpotentials in teleparallel equivalent of GR. Class. Quant. Grav. 2020, 37, 095006. [Google Scholar] [CrossRef]
- Emtsova, E.D.; Petrov, A.N.; Toporensky, A.V. Conserved quantities in STEGR and applications. Eur. Phys. J. C 2023, 83, 366. [Google Scholar] [CrossRef]
- Formiga, J.B.; Gonçalves, V.R. Generalization of the ADM gravitational energy momentum. Phys. Rev. D 2022, 106, 044021. [Google Scholar] [CrossRef]
- Maluf, J.W.; Carneiro, F.L.; Ulhoa, S.C.; da Rocha-Neto, J.F. Tetrad Fields, Reference Frames, and the Gravitational Energy-Momentum in the Teleparallel Equivalent of General Relativity. arXiv 2023, arXiv:2306.03676. [Google Scholar] [CrossRef]
- Golovnev, A. A Pamphlet against The Energy. arXiv 2023, arXiv:2306.12895. [Google Scholar]
- Iosifidis, D.; Hehl, F.W. Motion of Test Particles in Spacetimes with Torsion and Nonmetricity. arXiv 2023, arXiv:2310.15595. [Google Scholar]
- Nester, J.M.; Yo, H.J. Symmetric teleparallel general relativity. Chin. J. Phys. 1999, 37, 113. [Google Scholar] [CrossRef]
- Bahamonde, S.; Gigante Valcarcel, J.; Järv, L.; Lember, J. Black hole solutions in scalar-tensor symmetric teleparallel gravity. J. Cosmol. Astropart. Phys. 2022, 8, 082. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T. The coupling of matter and spacetime geometry. Class. Quant. Grav. 2020, 37, 195013. [Google Scholar] [CrossRef]
- Hohmann, M. General covariant symmetric teleparallel cosmology. Phys. Rev. D 2021, 104, 124077. [Google Scholar] [CrossRef]
- D’Ambrosio, F.; Heisenberg, L.; Kuhn, S. Revisiting cosmologies in teleparallelism. Class. Quant. Grav. 2022, 39, 025013. [Google Scholar] [CrossRef]
- Dimakis, N.; Paliathanasis, A.; Roumeliotis, M.; Christodoulakis, T. FLRW solutions in f(Q) theory: The effect of using different connections. Phys. Rev. D 2022, 106, 043509. [Google Scholar] [CrossRef]
- Jarv, L.; Pati, L. Stability of symmetric teleparallel scalar-tensor cosmologies with alternative connections. arXiv 2023, arXiv:2309.04262. [Google Scholar]
- Heisenberg, L.; Hohmann, M.; Kuhn, S. Homogeneous and isotropic cosmology in general teleparallel gravity. Eur. Phys. J. C 2023, 83, 315. [Google Scholar] [CrossRef]
- Gomes, D.A.; Jiménez, J.B.; Koivisto, T.S. General Parallel Cosmology. arXiv 2023, arXiv:2309.08554. [Google Scholar]
- Bahamonde, S.; Järv, L. Coincident gauge for static spherical field configurations in symmetric teleparallel gravity. Eur. Phys. J. C 2022, 82, 963. [Google Scholar] [CrossRef]
- Hammad, F.; Dijamco, D.; Torres-Rivas, A.; Bérubé, D. Noether charge and black hole entropy in teleparallel gravity. Phys. Rev. D 2019, 100, 124040. [Google Scholar] [CrossRef]
- Fiorini, F.; González, P.A.; Vásquez, Y. Reference Frames and Black Hole Thermodynamics. arXiv 2023, arXiv:2309.06293. [Google Scholar] [CrossRef]
- Duerr, P.M. Fantastic Beasts and where (not) to find them: Local gravitational energy and energy conservation in general relativity. Stud. Hist. Phil. Sci. B 2019, 65, 1–14. [Google Scholar] [CrossRef]
- Luminet, J.P. The Status of Cosmic Topology after Planck Data. Universe 2016, 2, 1. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Järv, L.; Kuusk, P. Conventionalism, Cosmology and Teleparallel Gravity. Universe 2024, 10, 1. https://doi.org/10.3390/universe10010001
Järv L, Kuusk P. Conventionalism, Cosmology and Teleparallel Gravity. Universe. 2024; 10(1):1. https://doi.org/10.3390/universe10010001
Chicago/Turabian StyleJärv, Laur, and Piret Kuusk. 2024. "Conventionalism, Cosmology and Teleparallel Gravity" Universe 10, no. 1: 1. https://doi.org/10.3390/universe10010001
APA StyleJärv, L., & Kuusk, P. (2024). Conventionalism, Cosmology and Teleparallel Gravity. Universe, 10(1), 1. https://doi.org/10.3390/universe10010001