Advances in Mass Spectrometers for Flyby Space Missions for the Analysis of Biosignatures and Other Complex Molecules
Abstract
:1. Introduction
2. Current State of the Art
2.1. Gas Sampling Mass Spectrometers
2.2. Instrument Features: The Open and the Closed Source
2.3. Fragmentation Due to Hypervelocity Impacts
3. The OpenTOF Instrument
3.1. Ion-Optical System
3.2. Detector System and Data Processing Unit
- On-board computer (FPGA) with associated read-out electronics;
- Low and high voltage power supplies;
- An electron ionization source;
- A high voltage pulser.
3.3. Mechanical and Electrical Realization
4. Results
4.1. Sensitivity and Dynamic Range
4.2. Mass Resolution
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vorburger, A.; Wurz, P. Europa’s ice-related atmosphere: The sputter contribution. Icarus 2018, 311, 135–145. [Google Scholar] [CrossRef]
- Plainaki, C.; Milillo, A.; Mura, A.; Orsini, S.; Massetti, S.; Cassidy, T. The role of sputtering and radiolysis in the generation of Europa exosphere. Icarus 2012, 218, 956–966. [Google Scholar] [CrossRef]
- Lopes-Gautier, R.; McEwen, A.S.; Smythe, W.B.; Geissler, P.E.; Kamp, L.; Davies, A.G.; Spencer, J.R.; Keszthelyi, L.; Carlson, R.; Leader, F.E.; et al. Active Volcanism on Io: Global Distribution and Variations in Activity. Icarus 1999, 140, 243–264. [Google Scholar] [CrossRef] [Green Version]
- Spencer, J.R.; Stern, S.A.; Cheng, A.F.; Weaver, H.A.; Reuter, D.C.; Retherford, K.; Lunsford, A.; Moore, J.M.; Abramov, O.; Lopes, R.M.C.; et al. Io Volcanism Seen by New Horizons: A Major Eruption of the Tvashtar Volcano. Science (80) 2007, 318, 240–243. [Google Scholar] [CrossRef] [Green Version]
- Waite, J.H.; Combi, M.R.; Ip, W.-H.; Cravens, T.E.; McNutt, R.L.; Kasprzak, W.; Yelle, R.; Luhmann, J.; Niemann, H.; Gell, D.; et al. Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure. Science (80) 2006, 311, 1419–1422. [Google Scholar] [CrossRef] [Green Version]
- Roth, L.; Saur, J.; Retherford, K.D.; Strobel, D.F.; Feldman, P.D.; McGrath, M.A.; Nimmo, F. Transient Water Vapor at Europa’s South Pole. Science (80) 2014, 343, 171–174. [Google Scholar] [CrossRef]
- Krüger, H.; Krivov, A.; Grün, E. A dust cloud of Ganymede maintained by hypervelocity impacts of interplanetary micrometeoroids. Planet. Space Sci. 2000, 48, 1457–1471. [Google Scholar] [CrossRef] [Green Version]
- Sremčević, M.; Krivov, A.V.; Krüger, H.; Spahn, F. Impact-generated dust clouds around planetary satellites: Model Versus Galileo Data. Planet. Space Sci. 2005, 53, 625–641. [Google Scholar] [CrossRef]
- Miljković, K.; Hillier, J.K.; Mason, N.J.; Zarnecki, J.C. Models of dust around Europa and Ganymede. Planet. Space Sci. 2012, 70, 20–27. [Google Scholar] [CrossRef] [Green Version]
- De Pater, I.; Lissauer, J.J. Planetary Sciences, 2nd ed.; Cambridge University Press: Cambridge, UK, 2015; ISBN 9781107091610. [Google Scholar]
- Vorburger, A.; Wurz, P.; Waite, H. Chemical and Isotopic Composition Measurements on Atmospheric Probes Exploring Uranus and Neptune. Space Sci. Rev. 2020, 216, 1–31. [Google Scholar] [CrossRef]
- Atreya, S.K.; Crida, A.; Guillot, T.; Lunine, J.I.; Madhusudhan, N.; Mousis, O. The Origin and Evolution of Saturn, with Exoplanet Perspective. In Saturn in the 21st Century; Cambridge University Press: Cambridge, UK, 2018; pp. 5–43. ISBN 9781316227220. [Google Scholar]
- Atreya, S.K.; Hofstadter, M.H.; In, J.H.; Mousis, O.; Reh, K.; Wong, M.H. Deep Atmosphere Composition, Structure, Origin, and Exploration, with Particular Focus on Critical in situ Science at the Icy Giants. Space Sci. Rev. 2020, 216, 1–31. [Google Scholar] [CrossRef]
- Cavalié, T.; Venot, O.; Miguel, Y.; Fletcher, L.N.; Wurz, P.; Mousis, O.; Bounaceur, R.; Hue, V.; Leconte, J.; Dobrijevic, M. The Deep Composition of Uranus and Neptune from In Situ Exploration and Thermochemical Modeling. Space Sci. Rev. 2020, 216, 58. [Google Scholar] [CrossRef]
- Mousis, O.; Fletcher, L.N.; Lebreton, J.-P.; Wurz, P.; Cavalié, T.; Coustenis, A.; Courtin, R.; Gautier, D.; Helled, R.; Irwin, P.G.J.; et al. Scientific rationale for Saturn’s in situ exploration. Planet. Space Sci. 2014, 104, 29–47. [Google Scholar] [CrossRef] [Green Version]
- Lopes, R.M.C.; Kamp, L.W.; Smythe, W.D.; Mouginis-Mark, P.; Kargel, J.; Radebaugh, J.; Turtle, E.P.; Perry, J.; Williams, D.A.; Carlson, R. Lava lakes on Io: Observations of Io’s Volcanic Activity from Galileo NIMS during the 2001 Fly-Bys. Icarus 2004, 169, 140–174. [Google Scholar] [CrossRef]
- Thomas, N.; Bagenal, F.; Hill, T.W.; Wilson, J.K. The Io neutral clouds and plasma torus. In Jupiter. The Planet, Satellites and Magnetosphere; Cambridge University Press: Cambridge, UK, 2004; Volume 1, pp. 561–591. ISBN 0-521-81808-7. [Google Scholar]
- Postberg, F.; Kempf, S.; Schmidt, J.; Brilliantov, N.; Beinsen, A.; Abel, B.; Buck, U.; Srama, R. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 2009, 459, 1098–1101. [Google Scholar] [CrossRef]
- Vorburger, A.; Wurz, P. Modeling of Possible Plume Mechanisms on Europa. J. Geophys. Res. Sp. Phys. 2021, 126, 1–20. [Google Scholar] [CrossRef]
- Postberg, F.; Khawaja, N.; Abel, B.; Choblet, G.; Glein, C.R.; Gudipati, M.S.; Henderson, B.L.; Hsu, H.-W.W.; Kempf, S.; Klenner, F.; et al. Macromolecular organic compounds from the depths of Enceladus. Nature 2018, 558, 564–568. [Google Scholar] [CrossRef]
- Khawaja, N.; Postberg, F.; Hillier, J.; Klenner, F.; Kempf, S.; Nölle, L.; Reviol, R.; Zou, Z.; Srama, R. Low-mass nitrogen-, oxygen-bearing, and aromatic compounds in Enceladean ice grains. Mon. Not. R. Astron. Soc. 2019, 489, 5231–5243. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, S.M.; Neveu, M.; Davila, A.F.; Lunine, J.I.; Cable, M.L.; Phillips-Lander, C.M.; Eigenbrode, J.L.; Waite, J.H.; Craft, K.L.; Hofgartner, J.D.; et al. Science Objectives for Flagship-Class Mission Concepts for the Search for Evidence of Life at Enceladus. Astrobiology 2022, 22, 685–712. [Google Scholar] [CrossRef]
- Roth, L.; Retherford, K.D.; Saur, J.; Strobel, D.F.; Feldman, P.D.; McGrath, M.A.; Nimmo, F. Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa’s water vapor aurora. Proc. Natl. Acad. Sci. USA 2014, 111, E5123–E5132. [Google Scholar] [CrossRef] [Green Version]
- Wurz, P.; Vorburger, A.; McEwen, A.S.; Mandt, K.; Davies, A.G.; Hörst, S.; Thomas, N. Measurement of Io’s atmosphere during the IVO mission. In Proceedings of the 52nd Lunar and Planetary Science Conference 2021, Virtual, 15–19 March 2021; pp. 1–2. [Google Scholar]
- Wurz, P.; Vorburger, A.; Galli, A.; Tulej, M.; Thomas, N.; Alibert, Y.; Barabash, S.; Wieser, M.; Lammer, H. Measurement of the Atmospheres of Europa, Ganymede, and Callisto. In Proceedings of the European Planetary Science Congress 2014, Cascais, Portugal, 7–12 September 2014; Volume 9, pp. 1–2. [Google Scholar]
- Cable, M.L.; Porco, C.; Glein, C.R.; German, C.R.; MacKenzie, S.M.; Neveu, M.; Hoehler, T.M.; Hofmann, A.E.; Hendrix, A.R.; Eigenbrode, J.; et al. The Science Case for a Return to Enceladus. Planet. Sci. J. 2021, 2, 132. [Google Scholar] [CrossRef]
- Howell, S.M.; Pappalardo, R.T. NASA’s Europa Clipper—A Mission to a Potentially Habitable Ocean World. Nat. Commun. 2020, 11, 1311. [Google Scholar] [CrossRef]
- Grasset, O.; Dougherty, M.K.; Coustenis, A.; Bunce, E.J.; Erd, C.; Titov, D.; Blanc, M.; Coates, A.; Drossart, P.; Fletcher, L.N.; et al. JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci. 2013, 78, 1–21. [Google Scholar] [CrossRef]
- McEwen, A.S.; Keszthelyi, L.P.; Mandt, K.E.; IVO-Team. The IO Volcano Observer (IVO). In Proceedings of the 52nd Lunar and Planetary Science Conference 2021, Virtual, 15–19 March 2021; pp. 1–2. [Google Scholar]
- Srama, R.; Ahrens, T.J.; Altobelli, N.; Auer, S.; Bradley, J.G.; Burton, M.; Dikarev, V.V.; Economou, T.; Fechtig, H.; Görlich, M.; et al. The Cassini Cosmic Dust Analyzer. Space Sci. Rev. 2004, 114, 465–518. [Google Scholar] [CrossRef]
- Waite, J.H.; Lewis, W.S.; Kasprzak, W.T.; Anicich, V.G.; Block, B.P.; Cravens, T.E.; Fletcher, G.G.; Ip, W.-H.; Luhmann, J.G.; Mcnutt, R.L.; et al. The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation. Space Sci. Rev. 2004, 114, 113–231. [Google Scholar] [CrossRef] [Green Version]
- Reh, K.; Spilker, L.; Lunine, J.I.; Waite, J.H.; Cable, M.L.; Postberg, F.; Clark, K. Enceladus Life Finder: The Search for Life in a Habitable Moon. In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016; pp. 1–8. [Google Scholar]
- Elson, L.S.; Acton, C.H.; Conner, D.L.; Semenov, B.V. Cassini SPICE Kernels V1.0, CO-S/J/E/V-SPICE-6-V1.0. In NASA Planetary Data System; NASA: Washington, DC, USA, 2005. [Google Scholar] [CrossRef]
- Adams, E.; Hibbard, K.; Turtle, E.; Reynolds, E.; Anderson, B.; Paranicas, C.; Rogers, G.; McAdams, J.; Roth, D.; McEwen, A.; et al. Io Volcano Observer’s (IVO) integrated approach to optimizing system design for radiation challenges. In Proceedings of the 2012 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2012; pp. 1–13. [Google Scholar]
- Ren, Z.; Guo, M.; Cheng, Y.; Wang, Y.; Sun, W.; Zhang, H.; Dong, M.; Li, G. A review of the development and application of space miniature mass spectrometers. Vacuum 2018, 155, 108–117. [Google Scholar] [CrossRef]
- Arevalo, R.; Ni, Z.; Danell, R.M. Mass spectrometry and planetary exploration: A brief review and future projection. J. Mass Spectrom. 2020, 55, e4454. [Google Scholar] [CrossRef] [Green Version]
- Brockwell, T.G.; Meech, K.J.; Pickens, K.; Waite, J.H.; Miller, G.; Roberts, J.; Lunine, J.I.; Wilson, P. The mass spectrometer for planetary exploration (MASPEX). In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016; pp. 1–17. [Google Scholar]
- Föhn, M.; Galli, A.; Vorburger, A.; Tulej, M.; Lasi, D.; Riedo, A.; Fausch, R.G.; Althaus, M.; Brungger, S.; Fahrer, P.; et al. Description of the Mass Spectrometer for the Jupiter Icy Moons Explorer Mission. In Proceedings of the 2021 IEEE Aerospace Conference, Big Sky, MT, USA, 6–13 March 2021; pp. 1–14. [Google Scholar]
- Balsiger, H.; Altwegg, K.; Bochsler, P.; Eberhardt, P.; Fischer, J.; Graf, S.; Jäckel, A.; Kopp, E.; Langer, U.; Mildner, M.; et al. Rosina—Rosetta Orbiter Spectrometer for Ion and Neutral Analysis. Space Sci. Rev. 2007, 128, 745–801. [Google Scholar] [CrossRef]
- Porco, C.C.; Helfenstein, P.; Thomas, P.C.; Ingersoll, A.P.; Wisdom, J.; West, R.; Neukum, G.; Denk, T.; Wagner, R.; Roatsch, T.; et al. Cassini Observes the Active South Pole of Enceladus. Science (80) 2006, 311, 1393–1401. [Google Scholar] [CrossRef] [Green Version]
- Waite, J.H., Jr.; Lewis, W.S.; Magee, B.A.; Lunine, J.I.; McKinnon, W.B.; Glein, C.R.; Mousis, O.; Young, D.T.; Brockwell, T.; Westlake, J.; et al. Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 2009, 460, 487–490. [Google Scholar] [CrossRef]
- Hamzeloui, S.; Smith, J.A.; Fink, D.J.; Myers, E.G. Precision mass ratio of 3He+ to HD+. Phys. Rev. A 2017, 96, 060501. [Google Scholar] [CrossRef] [Green Version]
- Wallace, W.E. Mass Spectra. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69; 2022. Available online: https://webbook.nist.gov/chemistry/ (accessed on 26 May 2022).
- Dawson, P.H. Quadrupole Mass Spectrometry and Its Applications, 1st ed.; Dawson, P.H., Ed.; Elsevier: Amsterdam, The Netherlands, 1976; ISBN 9781483165042. [Google Scholar]
- Teolis, B.D.; Wyrick, D.Y.; Bouquet, A.; Magee, B.A.; Waite, J.H. Plume and surface feature structure and compositional effects on Europa’s global exosphere: Preliminary Europa mission predictions. Icarus 2017, 284, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Wurz, P.; Balogh, A.; Coffey, V.; Dichter, B.K.; Kasprzak, W.T.; Lazarus, A.J.; Lennartsson, W.; McFadden, J.P. Calibration Techniques. In Calibration of Particle Instruments in Space Physics; ESA Communications, ISSI Scientific Report; Wüest, M., Evans, D.S., von Steiger, R., Eds.; ESA Communications; Keplerlaan 1: Noordwijk, The Netherlands, 2007; pp. 117–276. [Google Scholar]
- Berg, J.J.; Goldstein, D.B.; Varghese, P.L.; Trafton, L.M. DSMC simulation of Europa water vapor plumes. Icarus 2016, 277, 370–380. [Google Scholar] [CrossRef]
- Schläppi, B.; Altwegg, K.; Balsiger, H.; Hässig, M.; Jäckel, A.; Wurz, P.; Fiethe, B.; Rubin, M.; Fuselier, S.A.; Berthelier, J.J.; et al. Influence of spacecraft outgassing on the exploration of tenuous atmospheres with in situ mass spectrometry. J. Geophys. Res. Sp. Phys. 2010, 115, 1–14. [Google Scholar] [CrossRef]
- Hassig, M.; Altwegg, K.; Balsiger, H.; Calmonte, U.; Jackel, A.; Schlappi, B.; Semon, T.; Wurz, P.; Berthelier, J.J.; De Keyser, J.; et al. Spacecraft outgassing, a largely underestimated phenomenon. In Proceedings of the 2011 2nd International Conference on Space Technology, Athens, Greece, 15–17 September 2011; pp. 1–4. [Google Scholar]
- Scherer, S.; Altwegg, K.; Balsiger, H.; Fischer, J.; Jäckel, A.; Korth, A.; Mildner, M.; Piazza, D.; Reme, H.; Wurz, P. A novel principle for an ion mirror design in time-of-flight mass spectrometry. Int. J. Mass Spectrom. 2006, 251, 73–81. [Google Scholar] [CrossRef]
- Wurz, P.; Abplanalp, D.; Tulej, M.; Lammer, H. A neutral gas mass spectrometer for the investigation of lunar volatiles. Planet. Space Sci. 2012, 74, 264–269. [Google Scholar] [CrossRef]
- Fausch, R.G.; Wurz, P.; Tulej, M.; Jost, J.; Gubler, P.; Gruber, M.; Lasi, D.; Zimmermann, C.; Gerber, T. Flight electronics of GC-mass spectrometer for investigation of volatiles in the lunar regolith. In Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2018; pp. 1–13. [Google Scholar] [CrossRef]
- Hässig, M.; Libardoni, M.; Mandt, K.; Miller, G.; Blase, R. Performance evaluation of a prototype multi-bounce time-of-flight mass spectrometer in linear mode and applications in space science. Planet. Space Sci. 2015, 117, 436–443. [Google Scholar] [CrossRef]
- Miller, K.E.; Miller, G.P.; Franke, K.; Hoeper, P.; Waite, J.H.; Brockwell, T.; Perryman, R.S.; Dunn, G.; Hanley, J.; Magee, B.; et al. An Update on the MASPEX Instrument: New Capabilities for Planetary Chemistry and Habitability. In Proceedings of the 53rd Lunar and Planetary Science Conference, Woodlands, TX, USA, 7–11 March 2022; pp. 1–2. [Google Scholar]
- Nier, A.O.; Potter, W.E.; Hickman, D.R.; Mauersberger, K. The open-source neutral-mass spectrometer on Atmosphere Explorer-C, -D, and -E. Radio Sci. 1973, 8, 271–276. [Google Scholar] [CrossRef]
- Meyer, S.; Tulej, M.; Wurz, P. Mass spectrometry of planetary exospheres at high relative velocity: Direct Comparison of Open- and Closed-Source Measurements. Geosci. Instrum. Methods Data Syst. 2017, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bouquet, A.; Blase, R.; Brockwell, T.; Waite, J.H. Expected effect of atomic oxygen of Europa’s exosphere on the MAss Spectrometer for Planetary EXploration. Planet. Space Sci. 2020, 188, 104918. [Google Scholar] [CrossRef]
- Cheng, J.-P. Bond Dissociation Energies. In CRC Handbook of Chemistry and Physics; Rumble, J.R., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2021. [Google Scholar]
- Martins, Z.; Price, M.C.; Goldman, N.; Sephton, M.A.; Burchell, M.J. Shock synthesis of amino acids from impacting cometary and icy planet surface analogues. Nat. Geosci. 2013, 6, 1045–1049. [Google Scholar] [CrossRef]
- Sugahara, H.; Mimura, K. Peptide synthesis triggered by comet impacts: A possible method for peptide delivery to the early Earth and icy satellites. Icarus 2015, 257, 103–112. [Google Scholar] [CrossRef]
- Managadze, G.G.; Engel, M.H.; Getty, S.; Wurz, P.; Brinckerhoff, W.B.; Shokolov, A.G.; Sholin, G.V.; Terent’ev, S.A.; Chumikov, A.E.; Skalkin, A.S.; et al. Excess of l-alanine in amino acids synthesized in a plasma torch generated by a hypervelocity meteorite impact reproduced in the laboratory. Planet. Space Sci. 2016, 131, 70–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaramillo-Botero, A.; An, Q.; Theofanis, P.L.; Goddard, W.A. Large-scale molecular simulations of hypervelocity impact of materials. Procedia Eng. 2013, 58, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, Y.; Nakazawa, H.; Sekine, T.; Kobayashi, T.; Kakegawa, T. Nucleobase and amino acid formation through impacts of meteorites on the early ocean. Earth Planet. Sci. Lett. 2015, 429, 216–222. [Google Scholar] [CrossRef]
- Jaramillo-Botero, A.; Cable, M.L.; Hofmann, A.E.; Malaska, M.; Hodyss, R.; Lunine, J. Understanding Hypervelocity Sampling of Biosignatures in Space Missions. Astrobiology 2021, 21, 421–442. [Google Scholar] [CrossRef]
- Graf, S.; Altwegg, K.; Balsiger, H.; Jäckel, A.; Kopp, E.; Langer, U.; Luithardt, W.; Westermann, C.; Wurz, P. A cometary neutral gas simulator for gas dynamic sensor and mass spectrometer calibration. J. Geophys. Res. E Planets 2004, 109, E07S08. [Google Scholar] [CrossRef]
- Zhang, H.; Li, D.; Wurz, P.; Etter, A.; Cheng, Y.; Dong, C.; Huang, W. Performance of a low energy ion source with carbon nanotube electron emitters under the influence of various operating gases. Nanomaterials 2020, 10, 354. [Google Scholar] [CrossRef] [Green Version]
- Fausch, R.; Wurz, P.; Rohner, U.; Tulej, M. CubeSatTOF: Planetary Atmospheres Analyzed with a 1U High-Performance Time-Of-Flight Mass Spectrometer. In Proceedings of the 34th Small Satellite Conference, Logan, UT, USA, 1–6 August 2020; pp. 1–10. [Google Scholar]
- Fausch, R.G.; Wurz, P.; Cotting, B.; Rohner, U.; Tulej, M. Direct Measurement of Neutral Gas during Hypervelocity Planetary Flybys. IEEE Aerosp. Conf. 2022; in press. [Google Scholar]
- Bieler, A.; Altwegg, K.; Hofer, L.; Jäckel, A.; Riedo, A.; Sémon, T.; Wahlström, P.; Wurz, P. Optimization of mass spectrometers using the adaptive particle swarm algorithm. J. Mass Spectrom. 2011, 46, 1143–1151. [Google Scholar] [CrossRef]
- Wiesendanger, R.; Grimaudo, V.; Tulej, M.; Riedo, A.; Lukmanov, R.; Ligterink, N.; Fausch, R.; Shea, H.; Wurz, P. The LMS-GT instrument—A new perspective for quantification with the LIMS-TOF measurement technique. J. Anal. At. Spectrom. 2019, 34, 2061–2073. [Google Scholar] [CrossRef]
- Urban, J.; Afseth, N.K.; Štys, D. Fundamental definitions and confusions in mass spectrometry about mass assignment, centroiding and resolution. TrAC Trends Anal. Chem. 2014, 53, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Wiley, W.C.; McLaren, I.H. Time-of-Flight Mass Spectrometer with Improved Resolution. Rev. Sci. Instrum. 1955, 26, 1150–1157. [Google Scholar] [CrossRef]
- Wieser, M.; Kalla, L.; Barabash, S.; Hedqvist, T.; Kemi, S.; Widell, O.; Abplanalp, D.; Wurz, P. The Mars Environment Analogue Platform long duration balloon flight. Adv. Space Res. 2009, 44, 308–312. [Google Scholar] [CrossRef]
- Abplanalp, D.; Wurz, P.; Huber, L.; Leya, I. An optimised compact electron impact ion storage source for a time-of-flight mass spectrometer. Int. J. Mass Spectrom. 2010, 294, 33–39. [Google Scholar] [CrossRef]
- Föhn, M.; Tulej, M.; Galli, A.; Vorburger, A.H.; Lasi, D.; Wurz, P.; Brandt, P.; Barabash, S. Development of the NIM Mass spectrometer for Exploration of Jupiter’s Icy Moons Exospheres. In Proceedings of the EGU General Assembly 2020, Online, 4–8 May 2020; p. EGU2020-2955. [Google Scholar]
- Abplanalp, D.; Wurz, P.; Huber, L.; Leya, I.; Kopp, E.; Rohner, U.; Wieser, M.; Kalla, L.; Barabash, S. A neutral gas mass spectrometer to measure the chemical composition of the stratosphere. Adv. Space Res. 2009, 44, 870–878. [Google Scholar] [CrossRef]
- Wurz, P.; Gubler, L. Impedance-matching anode for fast timing signals. Rev. Sci. Instrum. 1994, 65, 871–876. [Google Scholar] [CrossRef]
- Wheeler, F.W.; Pearlman, W.A. SPIHT image compression without lists. In Proceedings of the 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), Istanbul, Turkey, 6 August 2000; Volume 4, pp. 2047–2050. [Google Scholar]
- Hofer, L.; Wurz, P.; Buch, A.; Cabane, M.; Coll, P.; Coscia, D.; Gerasimov, M.; Lasi, D.; Sapgir, A.; Szopa, C.; et al. Prototype of the gas chromatograph–mass spectrometer to investigate volatile species in the lunar soil for the Luna-Resurs mission. Planet. Space Sci. 2015, 111, 126–133. [Google Scholar] [CrossRef]
- Perry, M.E.; Teolis, B.D.; Hurley, D.M.; Magee, B.A.; Waite, J.H.; Brockwell, T.G.; Perryman, R.S.; McNutt, R.L. Cassini INMS measurements of Enceladus plume density. Icarus 2015, 257, 139–162. [Google Scholar] [CrossRef]
- Teolis, B.D.; Perry, M.E.; Hansen, C.J.; Waite, J.H.; Porco, C.C.; Spencer, J.R.; Howett, C.J.A. Enceladus Plume Structure and Time Variability: Comparison of Cassini Observations. Astrobiology 2017, 17, 926–940. [Google Scholar] [CrossRef] [Green Version]
- Fausch, R.G.; Moeller, G.; Rothacher, M.; Martinod, N.; Trébaol, T.; Villegas, A.; Kneib, J.-P.; Corthay, F.; Joss, M.; Tièche, F.; et al. CHESS: Measuring the Dynamics of Composition and Density of Earth’s Upper Atmosphere with CubeSats. IEEE Aerosp. Conf. 2022; in press. [Google Scholar]
- Lasi, D.; Meyer, S.; Piazza, D.; Luthi, M.; Nentwig, A.; Gruber, M.; Brungger, S.; Gerber, M.; Braccini, S.; Tulej, M.; et al. Decisions and Trade-Offs in the Design of a Mass Spectrometer for Jupiter’s Icy Moons. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–20. [Google Scholar]
- Lasi, D.; Tulej, M.; Meyer, S.; Luthi, M.; Galli, A.; Piazza, D.; Wurz, P.; Reggiani, D.; Xiao, H.; Marcinkowski, R.; et al. Shielding an MCP Detector for a Space-Borne Mass Spectrometer Against the Harsh Radiation Environment in Jupiter’s Magnetosphere. IEEE Trans. Nucl. Sci. 2017, 64, 605–613. [Google Scholar] [CrossRef]
- Tulej, M.; Meyer, S.; Lüthi, M.; Lasi, D.; Galli, A.; Desorgher, L.; Hajdas, W.; Karlsson, S.; Kalla, L.; Wurz, P.; et al. Detection efficiency of microchannel plates for e− and π− in the momentum range from 17.5 to 345 MeV/c. Rev. Sci. Instrum. 2015, 86, 083310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tulej, M.; Meyer, S.; Lüthi, M.; Lasi, D.; Galli, A.; Piazza, D.; Desorgher, L.; Reggiani, D.; Hajdas, W.; Karlsson, S.; et al. Experimental investigation of the radiation shielding efficiency of a MCP detector in the radiation environment near Jupiter’s moon Europa. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2016, 383, 21–37. [Google Scholar] [CrossRef]
- Hofer, L. Development of the Gas Chromatograph-Mass Spectrometer to Investigate Volatile Species in the Lunar Soil for the Luna-Resurs Mission. Ph.D. Thesis, University of Bern, Bern, Switzerland, 2015. [Google Scholar]
- Sephton, M.A.; Waite, J.H.; Brockwell, T.G. Searching for life with mass spectrometry. Astron. Geophys. 2018, 59, 3.23–3.24. [Google Scholar] [CrossRef]
- Snodgrass, C.; Jones, G.H. The European Space Agency’s Comet Interceptor lies in wait. Nat. Commun. 2019, 10, 5418. [Google Scholar] [CrossRef] [Green Version]
- Thomas, N.; Cremonese, G.; Ziethe, R.; Gerber, M.; Brändli, M.; Bruno, G.; Erismann, M.; Gambicorti, L.; Gerber, T.; Ghose, K.; et al. The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter. Space Sci. Rev. 2017, 212, 1897–1944. [Google Scholar] [CrossRef] [Green Version]
Scenario | JUICE-Type | Enceladus, Europa | Io, Enceladus | Max. Flyby Speed |
---|---|---|---|---|
Orbit analog | JUICE-type | E7-type | E5-type | N/A |
Flyby speed (km/s) | ~5 [56] | 7.7 [81] | 18 [34,81] | 20 |
Vertical resolution ADC | 10-bit | 14-bit | 12-bit | 14-bit |
Spatial resolution low-c.m. (km) | 5 | 7.7 | 18 | 20 |
Spatial resolution high-c.m. (km) | 0.5 | 0.8 | 1.8 | 2 |
Data rates low-c.m. (kB/s) | 28 | 33 | 30 | 33 |
Data rates high-c.m. (kB/s) | 234 | 281 | 257 | 281 |
Parameter | MASPEX | NIM [25,38] | OpenTOF |
---|---|---|---|
Velocity range with acceptable fragmentation, or no fragmentation, due to HVI | 0–~5 km/s [57] | 0–5 km/s | 0–20 km/s |
Velocity range with severe HVI-induced fragmentation | any [57] | any | N/A |
Mass range | 1–1500 [37] | 1–1000 | 1–1000 |
Max. mass resolution m/Δm (FHWM) | up to ~35,000 [54] | up to 1100 | up to 1500 |
Need for scanning to achieve mass resolution | yes [37] | no | no |
Time to assess full mass spectrum | not known | 100 ms | 100 ms |
Sensitivity | ~10−4 A/mbar | ~10−4 A/mbar | ~10−4 A/mbar |
Characteristic length | >400 mm [88] | 250 mm | 250 mm |
Power consumption | unknown | 11 W | 11 W |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fausch, R.G.; Schertenleib, J.A.; Wurz, P. Advances in Mass Spectrometers for Flyby Space Missions for the Analysis of Biosignatures and Other Complex Molecules. Universe 2022, 8, 416. https://doi.org/10.3390/universe8080416
Fausch RG, Schertenleib JA, Wurz P. Advances in Mass Spectrometers for Flyby Space Missions for the Analysis of Biosignatures and Other Complex Molecules. Universe. 2022; 8(8):416. https://doi.org/10.3390/universe8080416
Chicago/Turabian StyleFausch, Rico G., Janis A. Schertenleib, and Peter Wurz. 2022. "Advances in Mass Spectrometers for Flyby Space Missions for the Analysis of Biosignatures and Other Complex Molecules" Universe 8, no. 8: 416. https://doi.org/10.3390/universe8080416
APA StyleFausch, R. G., Schertenleib, J. A., & Wurz, P. (2022). Advances in Mass Spectrometers for Flyby Space Missions for the Analysis of Biosignatures and Other Complex Molecules. Universe, 8(8), 416. https://doi.org/10.3390/universe8080416