Highly Dispersive Optical Solitons with Four Forms of Self-Phase Modulation
Abstract
:1. Introduction
Governing Model
2. Enhanced Kudryashov’s Method
- Step–1: By applying the following traveling wave hypothesis:
- Step–2: Presuming that the solution to Equation (4) may be written as
- Step–4: Utilizing (5) in (4) in addition to (6) and (5). When we do this substitution, we obtain a polynomial in the bases and . By collecting all terms of the same power in this polynomial and setting them equal to zero, we have a system of overdetermined algebraic equations which can be solved using software such as Maple or Mathematica to find the values of and for every . Finally, as a consequence of all of the above, we will obtain several exact solution families of (2).
3. Mathematical Analysis
3.1. Power Law
3.2. Generalized Quadratic-Cubic Law
3.3. Triple-Power Law
3.4. Generalized Non-Local Law
- Result-1:
- Result-2:
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kudryashov, N.A. Method for finding highly dispersive optical solitons of nonlinear differential equations. Optik 2020, 206, 163550. [Google Scholar] [CrossRef]
- Arnous, A.H. Optical solitons with Biswas-Milovic equation in magneto-optic waveguide having Kudryashov’s law of refractive index. Optik 2021, 247, 167987. [Google Scholar] [CrossRef]
- Arnous, A.H.; Zhou, Q.; Biswas, A.; Guggilla, P.; Khan, S.; Yıldırım, Y.; Alshomrani, A.S.; Alshehri, H.M. Optical solitons in fiber Bragg gratings with cubic-Quartic dispersive reflectivity by enhanced Kudryashov’s approach. Phys. Lett. A 2022, 422, 127797. [Google Scholar] [CrossRef]
- Arnous, A.H.; Mirzazadeh, M.; Akinyemi, L.; Akbulut, A. New solitary waves and exact solutions for the fifth-order nonlinear wave equation using two integration techniques. J. Ocean Eng. Sci. 2022. [Google Scholar] [CrossRef]
- Arnous, A.H.; Biswas, A.; Yıldırım, Y.; Zhou, Q.; Liu, W.; Alshomrani, A.S.; Alshehri, H.M. Cubic–quartic optical soliton perturbation with complex Ginzburg–Landau equation by the enhanced Kudryashov’s method. Chaos Solitons Fractals 2022, 155, 111748. [Google Scholar] [CrossRef]
- Arnous, A.H.; Biswas, A.; Kara, A.H.; Yıldırım, Y.; Alshehri, H.M.; Belic, M.R. Highly dispersive optical solitons and conservation laws in absence of self-phase modulation with new Kudryashov’s approach. Phys. Lett. A 2022, 431, 128001. [Google Scholar] [CrossRef]
- Aljohani, A.F.; Kara, A.H. On the invariance and conservation laws of the Biswas–Arshed equation in fiber–optic transmissions. Optik 2019, 190, 50–53. [Google Scholar] [CrossRef]
- Hussain, Q.; Zaman, F.D.; Kara, A.H. Invariant analysis and conservation laws of time fractional Schrödinger equations. Optik 2020, 206, 164356. [Google Scholar] [CrossRef]
- Hussain, Q.; Zaman, F.D.; Bokhari, A.H.; Kara, A.H. On a study of symmetries and conservation laws of a class of time fractional Schrödinger equations with nonlocal nonlinearities. Optik 2020, 224, 165619. [Google Scholar] [CrossRef]
- Khan, S. Conservation laws of Biswas–Arshed equation in optical fibers (filling in the gap). Optik 2019, 194, 163037. [Google Scholar] [CrossRef]
- Khan, S. Stochastic perturbation of optical solitons with quadratic–cubic nonlinear refractive index. Optik 2020, 212, 164706. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Highly dispersive optical solitons of the sixth-order differential equation with arbitrary refractive index. Optik 2022, 259, 168975. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Highly dispersive optical solitons of an equation with arbitrary refractive index. Regul. Chaotic Dyn. 2020, 25, 537–543. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Highly dispersive optical solitons of equation with various polynomial nonlinearity law. Chaos Solitons Fractals 2020, 140, 110202. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations. Appl. Math. Comput. 2020, 371, 124972. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrödinger equation. Optik 2020, 206, 164335. [Google Scholar] [CrossRef]
- Wang, M.-Y. Highly dispersive optical solitons of perturbed nonlinear Schrödinger equation with Kudryashov’s sextic–power law nonlinear. Optik 2022, 267, 169631. [Google Scholar] [CrossRef]
- Wang, M.-Y. Optical solitons of the perturbed nonlinear Schrödinger equation in Kerr media. Optik 2021, 243, 167382. [Google Scholar] [CrossRef]
- Wang, M.-Y. Optical solitons with perturbed complex Ginzburg–Landau equation in Kerr and cubic–quintic–septic nonlinearity. Results Phys. 2022, 33, 105077. [Google Scholar] [CrossRef]
- Wang, T.Y.; Zhou, Q.; Liu, W.J. Soliton fusion and fission for the high–order coupled nonlinear Schrödinger system in fiber lasers. Chin. Phys. B 2022, 31, 020501. [Google Scholar] [CrossRef]
- Zhou, Q. Influence of parameters of optical fibers on optical soliton interactions. Chin. Phys. Lett. 2022, 39, 010501. [Google Scholar] [CrossRef]
- Zhou, Q.; Xu, M.; Sun, Y.; Zhong, Y.; Mirzazadeh, M. Generation and transformation of dark solitons, anti–dark solitons and dark double–hump solitons. Nonlinear Dyn. 2022, 11, 1747–1752. [Google Scholar] [CrossRef]
- Zhou, Q.; Luan, Z.; Zeng, Z.; Zhong, Y. Effective amplification of optical solitons in high power transmission systems. Nonlinear Dyn. 2022, 109, 3083–3089. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, J.; Li, J.; Hu, L.; Zhou, Q. Interaction properties of double-hump solitons in the dispersion decreasing fiber. Nonlinear Dyn. 2022, 109, 1047–1052. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsherbeny, A.M.; Arnous, A.H.; Biswas, A.; González-Gaxiola, O.; Moraru, L.; Moldovanu, S.; Iticescu, C.; Alshehri, H.M. Highly Dispersive Optical Solitons with Four Forms of Self-Phase Modulation. Universe 2023, 9, 51. https://doi.org/10.3390/universe9010051
Elsherbeny AM, Arnous AH, Biswas A, González-Gaxiola O, Moraru L, Moldovanu S, Iticescu C, Alshehri HM. Highly Dispersive Optical Solitons with Four Forms of Self-Phase Modulation. Universe. 2023; 9(1):51. https://doi.org/10.3390/universe9010051
Chicago/Turabian StyleElsherbeny, Ahmed M., Ahmed H. Arnous, Anjan Biswas, Oswaldo González-Gaxiola, Luminita Moraru, Simona Moldovanu, Catalina Iticescu, and Hashim M. Alshehri. 2023. "Highly Dispersive Optical Solitons with Four Forms of Self-Phase Modulation" Universe 9, no. 1: 51. https://doi.org/10.3390/universe9010051
APA StyleElsherbeny, A. M., Arnous, A. H., Biswas, A., González-Gaxiola, O., Moraru, L., Moldovanu, S., Iticescu, C., & Alshehri, H. M. (2023). Highly Dispersive Optical Solitons with Four Forms of Self-Phase Modulation. Universe, 9(1), 51. https://doi.org/10.3390/universe9010051