Polarimetric Reverberation Mapping in Medium-Band Filters
Abstract
:1. Introduction
2. Observational Technique and Sample
3. First Results
3.1. Mrk 335
3.2. Mrk 509
3.3. Mrk 817
4. Discussion
5. Future Perspectives
6. Conclusions
- For Mrk 335, the measured dusty region size is 150–180 lt days. This result coincides with the values predicted concerning the several estimations of the dusty structure in the IR band and measurements of via optical reverberation mapping campaigns. However, due to the irregular observations, the monitoring is going on to check whether our result is a cross-correlation artefact.
- For Mrk 509, we obtained 114 lt days, or ∼0.1 pc. This is 2 times smaller than the radius of the dusty structure in the IR band.
- For Mrk 817, no result is obtained due to the low variability of the object during the monitoring period. However, observations of the polarized flux in the two line profile wings demonstrate a sharp variability between epochs as well as a significant difference in the polarized flux in the two wings during one epoch. This shows the potential possibility of recording the delay of a polarized signal of a broad line in different parts of its profile.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Date | JD | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
Mrk 335 (MAGIC) | ||||||||
20 September 2020 | 9112 | 92.6 ± 0.1 | 0.0 ± 0.1 | −0.4 ± 0.4 | 157.1 ± 0.2 | 0.8 ± 0.2 | −0.7 ± 0.1 | 2.0 ± 0.2 |
21 October 2020 | 9143 | 88.1 ± 0.1 | −0.4 ± 0.1 | 0.5 ± 0.2 | 147.9 ± 0.1 | −0.8 ± 0.1 | 0.1 ± 0.1 | 1.5 ± 0.1 |
25 October 2020 | 9147 | 84.6 ± 0.1 | −0.5 ± 0.3 | 0.9 ± 0.4 | 151.8 ± 0.3 | −0.3 ± 0.1 | −0.2 ± 0.1 | 0.4 ± 0.1 |
19 November 2020 | 9172 | 88.6 ± 0.1 | −0.5 ± 0.1 | −0.5 ± 0.2 | 149.8 ± 0.1 | 0.1 ± 0.1 | −0.1 ± 0.1 | 0.7 ± 0.2 |
14 December 2020 | 9197 | 96.2 ± 0.2 | 0.1 ± 0.2 | −0.5 ± 0.4 | 150.1 ± 0.6 | 1.3 ± 0.2 | −0.1 ± 0.4 | 2.3 ± 0.1 |
18 December 2020 | 9201 | 97.4 ± 0.1 | −0.1 ± 0.1 | −0.8 ± 0.6 | 149.0 ± 0.1 | 0.2 ± 0.3 | 0.1 ± 0.3 | 1.4 ± 0.4 |
29 August 2021 | 9455 | 79.3 ± 0.1 | 0.7 ± 0.1 | 0.6 ± 0.2 | 146.8 ± 0.1 | 0.8 ± 0.1 | 1.1 ± 0.1 | 2.3 ± 0.1 |
7 September 2021 | 9464 | 77.7 ± 1.1 | 0.2 ± 0.2 | 0.3 ± 2.1 | 145.4 ± 0.1 | 0.4 ± 0.5 | −0.4 ± 0.1 | 0.9 ± 0.1 |
29 October 2022 | 9881 | 75.8 ± 0.1 | 0.8 ± 0.1 | −0.2 ± 0.6 | 117.8 ± 0.6 | 0.4 ± 0.1 | −0.7 ± 0.2 | 1.5 ± 0.2 |
1 November 2022 | 9884 | 77.9 ± 0.1 | 0.7 ± 0.1 | −1.1 ± 0.4 | 118.0 ± 0.6 | 1.0 ± 0.1 | −0.6 ± 0.1 | 1.4 ± 0.1 |
Mrk 335 (AFOSC) | ||||||||
9 September 2020 | 9101 | 102.3 ± 0.1 | 0.7 ± 0.1 | −0.4 ± 0.2 | 153.7 ± 0.2 | 0.0 ± 0.1 | 0.5 ± 0.1 | 0.8 ± 0.1 |
7 October 2020 | 9129 | 104.6 ± 0.1 | −0.2 ± 0.2 | 0.0 ± 0.5 | 148.7 ± 0.1 | 0.6 ± 0.3 | −0.5 ± 0.4 | 1.0 ± 0.1 |
24 November 2020 | 9177 | 102.8 ± 0.2 | 0.2 ± 0.3 | 0.0 ± 0.6 | 143.7 ± 0.1 | 0.6 ± 0.2 | 0.2 ± 0.1 | 0.9 ± 0.1 |
25 November 2020 | 9178 | 104.1 ± 0.1 | −0.2 ± 0.8 | −0.3 ± 0.8 | 145.4 ± 0.2 | 0.8 ± 0.1 | 0.3 ± 0.4 | 1.6 ± 0.1 |
26 November 2020 | 9179 | 103.8 ± 0.1 | 0.1 ± 0.4 | −0.2 ± 0.7 | 144.6 ± 0.2 | 0.6 ± 0.1 | 0.2 ± 0.2 | 2.8 ± 0.1 |
28 September 2021 | 9485 | 93.9 ± 0.1 | 0.6 ± 0.4 | −0.1 ± 0.5 | 140.9 ± 0.1 | 0.7 ± 0.2 | 0.2 ± 0.3 | 1.2 ± 0.2 |
12 October 2021 | 9499 | 92.2 ± 0.1 | 0.3 ± 0.1 | −0.3 ± 0.5 | 137.2 ± 0.1 | −0.3 ± 0.1 | 0.6 ± 0.1 | 0.8 ± 0.1 |
13 October 2021 | 9500 | 91.7 ± 0.4 | 0.5 ± 0.1 | 0.2 ± 0.3 | 138.1 ± 0.1 | 0.4 ± 0.1 | 0.7 ± 0.1 | 1.2 ± 0.1 |
14 October 2021 | 9501 | 92.5 ± 0.1 | 0.4 ± 0.1 | 0.1 ± 0.6 | 137.0 ± 0.1 | 0.3 ± 0.1 | 0.3 ± 0.4 | 0.9 ± 0.1 |
13 December 2021 | 9561 | 87.5 ± 0.1 | 0.4 ± 0.1 | 0.2 ± 0.9 | 134.8 ± 0.3 | 0.4 ± 0.2 | 0.3 ± 0.4 | 1.2 ± 0.3 |
11 January 2022 | 9590 | 85.2 ± 0.1 | 0.5 ± 0.5 | −0.3 ± 0.9 | 128.5 ± 0.1 | 0.0 ± 0.1 | 0.7 ± 0.1 | 1.4 ± 0.1 |
20 August 2022 | 9811 | 77.6 ± 0.1 | 0.9 ± 0.4 | 0.2 ± 0.6 | 119.3 ± 0.2 | 0.4 ± 0.1 | 0.3 ± 0.2 | 0.8 ± 0.1 |
31 October 2022 | 9883 | 79.0 ± 0.1 | 0.4 ± 0.2 | −0.3 ± 0.8 | 116.3 ± 0.1 | 0.9 ± 0.1 | 0.3 ± 0.4 | 1.1 ± 0.1 |
Mrk 509 | ||||||||
26 May 2020 | 8995 | 11.1 ± 0.1 | 0.2 ± 0.1 | −0.4 ± 0.1 | 18.9 ± 0.1 | 2.3 ± 0.1 | 0.4 ± 0.1 | 0.4 ± 0.1 |
21 June 2020 | 9021 | 12.0 ± 0.1 | 0.2 ± 0.1 | −0.1 ± 0.1 | 18.5 ± 0.1 | 3.1 ± 0.1 | 1.3 ± 0.1 | 0.6 ± 0.1 |
1 July 2020 | 9031 | 12.2 ± 0.1 | 0.4 ± 0.1 | 0.1 ± 0.3 | 18.1 ± 0.1 | 2.6 ± 0.1 | 1.0 ± 0.1 | 0.5 ± 0.1 |
23 July 2020 | 9053 | 10.7 ± 0.9 | 0.4 ± 0.1 | 0.6 ± 0.2 | 19.8 ± 0.8 | 2.6 ± 0.1 | 0.4 ± 0.1 | 0.5 ± 0.1 |
23 August 2020 | 9084 | 12.3 ± 0.1 | 0.9 ± 0.1 | −0.6 ± 0.2 | 19.1 ± 0.1 | 2.9 ± 0.2 | 0.0 ± 0.1 | 0.5 ± 0.1 |
27 August 2020 | 9088 | 12.2 ± 0.1 | 0.5 ± 0.2 | −0.3 ± 0.1 | 19.2 ± 0.1 | 1.9 ± 0.2 | −0.7 ± 0.1 | 0.4 ± 0.1 |
20 September 2020 | 9112 | 13.0 ± 0.1 | −0.7 ± 0.1 | −0.4 ± 0.2 | 23.6 ± 0.1 | 0.1 ± 0.1 | −0.5 ± 0.1 | 0.1 ± 0.1 |
22 September 2020 | 9114 | 12.3 ± 0.1 | −0.3 ± 0.1 | −1.4 ± 0.1 | 23.0 ± 0.1 | −0.5 ± 0.1 | −1.0 ± 0.1 | 0.2 ± 0.1 |
21 October 2020 | 9143 | 13.3 ± 0.1 | 1.7 ± 0.1 | −0.3 ± 0.2 | 22.4 ± 0.1 | 1.8 ± 0.1 | −0.9 ± 0.1 | 0.4 ± 0.1 |
4 August 2021 | 9430 | 12.4 ± 0.1 | −0.1 ± 0.1 | −1.0 ± 0.2 | 23.7 ± 0.1 | 0.0 ± 0.1 | −1.4 ± 0.1 | 0.3 ± 0.1 |
29 August 2021 | 9455 | 12.6 ± 0.1 | 1.0 ± 0.1 | −0.9 ± 0.2 | 24.6 ± 0.1 | 0.8 ± 0.1 | −0.7 ± 0.1 | 0.2 ± 0.1 |
Mrk 817 | ||||||||
14 December 2020 | 9197 | 24.0 ± 0.1 | 0.0 ± 0.1 | −0.6 ± 0.2 | 34.7 ± 0.1 | −0.1 ± 0.1 | −1.5 ± 0.4 | 0.7 ± 0.2 |
24.2 ± 0.1 | −1.0 ± 0.5 | −0.7 ± 0.7 | 0.4 ± 0.1 | |||||
18 December 2020 | 9201 | 25.0 ± 0.1 | 1.2 ± 0.1 | 0.2 ± 0.1 | 36.5 ± 0.1 | −1.1 ± 0.3 | −0.9 ± 0.5 | 0.7 ± 0.1 |
24.9 ± 0.1 | −2.1 ± 0.1 | −0.2 ± 0.1 | 0.6 ± 0.1 | |||||
7 March 2021 | 9280 | 25.3 ± 0.1 | −1.7 ± 0.1 | −1.0 ± 0.1 | 38.9 ± 0.2 | −2.1 ± 0.3 | −0.1 ± 0.2 | 0.9 ± 0.2 |
25.5 ± 0.1 | −2.9 ± 0.1 | −0.6 ± 0.1 | 0.8 ± 0.1 | |||||
8 March 2021 | 9281 | 24.9 ± 0.1 | −1.9 ± 0.2 | −1.1 ± 0.1 | 38.7 ± 0.1 | −1.9 ± 0.1 | −0.5 ± 0.1 | 0.9 ± 0.1 |
22.4 ± 2.5 | −1.7 ± 0.2 | −0.6 ± 0.6 | 0.4 ± 0.1 | |||||
5 May 2021 | 9339 | 23.6 ± 0.1 | −2.6 ± 0.2 | −0.8 ± 0.1 | 38.2 ± 0.1 | −1.1 ± 0.1 | −0.5 ± 0.3 | 0.4 ± 0.1 |
23.5 ± 0.1 | −1.6 ± 0.6 | −2.1 ± 0.1 | 0.3 ± 0.1 | |||||
2 July 2021 | 9397 | 22.2 ± 0.1 | −2.4 ± 0.4 | 1.4 ± 0.1 | 36.7 ± 0.8 | −1.0 ± 0.3 | 1.7 ± 0.4 | 0.8 ± 0.1 |
23.3 ± 0.2 | −2.8 ± 1.6 | 2.7 ± 0.1 | 0.7 ± 0.1 | |||||
7 July 2021 | 9402 | 21.6 ± 0.1 | −1.4 ± 0.1 | −0.7 ± 0.1 | 36.2 ± 1.3 | −1.0 ± 0.1 | −0.3 ± 0.1 | 0.5 ± 0.1 |
20.3 ± 2.0 | −1.6 ± 0.1 | −1.1 ± 0.1 | 0.3 ± 0.1 | |||||
28 August 2021 | 9454 | 23.2 ± 0.1 | −1.6 ± 0.8 | −0.6 ± 0.1 | 35.4 ± 0.1 | 0.1 ± 0.1 | −0.2 ± 0.3 | 0.6 ± 0.1 |
22.6 ± 0.1 | −2.0 ± 0.1 | −3.9 ± 0.1 | 0.8 ± 0.2 |
1 | It is worth remembering that it was the approach using narrow spectral bands in the photometric observations of Seyfert galaxies that was used in the pioneering work Cherepashchuk and Lyutyi [29]. |
2 | Details about the characteristics of medium-band filters can be found on the https://www.sao.ru/hq/lsfvo/devices/scorpio-2/filters_eng.html (accessed on 31 December 2022). |
3 | Details describing the instrument can be found on the https://www.oapd.inaf.it/sede-di-asiago/telescopes-and-instrumentations/copernico-182cm-telescope/afosc (accessed on 31 December 2022). |
4 | The multiplication of SED by the filter response function is usually called “convolution” in literature yet is not equal to the real mathematical convolution. |
References
- Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 1993, 31, 473–521. [Google Scholar] [CrossRef]
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef] [Green Version]
- Ramos Almeida, C.; Ricci, C. Nuclear obscuration in active galactic nuclei. Nat. Astron. 2017, 1, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Kishimoto, M.; Hönig, S.F.; Antonucci, R.; Kotani, T.; Barvainis, R.; Tristram, K.R.W.; Weigelt, G. Exploring the inner region of type 1 AGNs with the Keck interferometer. Astron. Astrophys. 2009, 507, L57–L60. [Google Scholar] [CrossRef]
- Kishimoto, M.; Hönig, S.F.; Antonucci, R.; Barvainis, R.; Kotani, T.; Tristram, K.R.W.; Weigelt, G.; Levin, K. The innermost dusty structure in active galactic nuclei as probed by the Keck interferometer. Astron. Astrophys. 2011, 527, A121. [Google Scholar] [CrossRef] [Green Version]
- Weigelt, G.; Hofmann, K.H.; Kishimoto, M.; Hönig, S.; Schertl, D.; Marconi, A.; Millour, F.; Petrov, R.; Fraix-Burnet, D.; Malbet, F.; et al. VLTI/AMBER observations of the Seyfert nucleus of NGC 3783. Astron. Astrophys. 2012, 541, L9. [Google Scholar] [CrossRef] [Green Version]
- Pfuhl, O. et al. [GRAVITY Collaboration] An image of the dust sublimation region in the nucleus of NGC 1068. Astron. Astrophys. 2020, 634, A1. [Google Scholar] [CrossRef]
- Kishimoto, M.; Anderson, M.; Ten Brummelaar, T.; Farrington, C.; Antonucci, R.; Hönig, S.; Millour, F.; Tristram, K.R.W.; Weigelt, G.; Sturmann, L.; et al. The Dust Sublimation Region of the Type 1 AGN NGC 4151 at a Hundred Microarcsecond Scale as Resolved by the CHARA Array Interferometer. Astrophys. J. 2022, 940, 28. [Google Scholar] [CrossRef]
- Gallimore, J.F.; Elitzur, M.; Maiolino, R.; Marconi, A.; O’Dea, C.P.; Lutz, D.; Baum, S.A.; Nikutta, R.; Impellizzeri, C.M.V.; Davies, R.; et al. High-velocity Bipolar Molecular Emission from an AGN Torus. Astrophys. J. Lett. 2016, 829, L7. [Google Scholar] [CrossRef]
- Combes, F.; García-Burillo, S.; Audibert, A.; Hunt, L.; Eckart, A.; Aalto, S.; Casasola, V.; Boone, F.; Krips, M.; Viti, S.; et al. ALMA observations of molecular tori around massive black holes. Astron. Astrophys. 2019, 623, A79. [Google Scholar] [CrossRef]
- Hönig, S.F. Redefining the Torus: A Unifying View of AGNs in the Infrared and Submillimeter. Astrophys. J. 2019, 884, 171. [Google Scholar] [CrossRef] [Green Version]
- Krolik, J.H.; Begelman, M.C. Molecular Tori in Seyfert Galaxies: Feeding the Monster and Hiding It. Astrophys. J. 1988, 329, 702. [Google Scholar] [CrossRef]
- Pier, E.A.; Krolik, J.H. Infrared Spectra of Obscuring Dust Tori around Active Galactic Nuclei. I. Calculational Method and Basic Trends. Astrophys. J. 1992, 401, 99. [Google Scholar] [CrossRef]
- Stalevski, M.; Fritz, J.; Baes, M.; Nakos, T.; Popović, L.Č. 3D radiative transfer modelling of the dusty tori around active galactic nuclei as a clumpy two-phase medium. Mon. Not. R. Astron. Soc. 2012, 420, 2756–2772. [Google Scholar] [CrossRef] [Green Version]
- Siebenmorgen, R.; Heymann, F.; Efstathiou, A. Self-consistent two-phase AGN torus models⋆. SED library for observers. Astron. Astrophys. 2015, 583, A120. [Google Scholar] [CrossRef]
- Smith, J.E.; Robinson, A.; Alexander, D.M.; Young, S.; Axon, D.J.; Corbett, E.A. Seyferts on the edge: Polar scattering and orientation-dependent polarization in Seyfert 1 nuclei. Mon. Not. R. Astron. Soc. 2004, 350, 140–160. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.E.; Robinson, A.; Young, S.; Axon, D.J.; Corbett, E.A. Equatorial scattering and the structure of the broad-line region in Seyfert nuclei: Evidence for a rotating disc. Mon. Not. R. Astron. Soc. 2005, 359, 846–864. [Google Scholar] [CrossRef]
- Goosmann, R.W.; Gaskell, C.M. Modeling optical and UV polarization of AGNs. I. Imprints of individual scattering regions. Astron. Astrophys. 2007, 465, 129–145. [Google Scholar] [CrossRef]
- Goodrich, R.W.; Miller, J.S. Spectropolarimetry of high-polarization Seyfert 1 galaxies: Geometry and kinematics of the scattering regions. Astrophys. J. 1994, 434, 82–93. [Google Scholar] [CrossRef]
- Marin, F.; Goosmann, R.W.; Gaskell, C.M.; Porquet, D.; Dovčiak, M. Modeling optical and UV polarization of AGNs. II. Polarization imaging and complex reprocessing. Astron. Astrophys. 2012, 548, A121. [Google Scholar] [CrossRef]
- Afanasiev, V.L.; Popović, L.Č. Polarization in Lines—A New Method for Measuring Black Hole Masses in Active Galaxies. Astrophys. J. Lett. 2015, 800, L35. [Google Scholar] [CrossRef] [Green Version]
- Afanasiev, V.L.; Popović, L.Č.; Shapovalova, A.I. Spectropolarimetry of Seyfert 1 galaxies with equatorial scattering: Black hole masses and broad-line region characteristics. Mon. Not. R. Astron. Soc. 2019, 482, 4985–4999. [Google Scholar] [CrossRef]
- Savić, Đ.V.; Popović, L.Č.; Shablovinskaya, E. The First Supermassive Black Hole Mass Measurement in Active Galactic Nuclei Using the Polarization of Broad Emission Line Mg II. Astrophys. J. Lett. 2021, 921, L21. [Google Scholar] [CrossRef]
- Goosmann, R.W.; Gaskell, C.M.; Shoji, M. How Polarization and Scattering can reveal Geometries, Dynamics, and Feeding of Active Galactic Nuclei. In Proceedings of the SF2A-2008, Paris, France, 30 June–4 July 2008; p. 231. [Google Scholar]
- Gaskell, C.M.; Goosmann, R.W.; Merkulova, N.I.; Shakhovskoy, N.M.; Shoji, M. Discovery of Polarization Reverberation in NGC 4151. Astrophys. J. 2012, 749, 148. [Google Scholar] [CrossRef]
- Shablovinskaya, E.S.; Afanasiev, V.L.; Popović, L.č. Measuring the AGN Sublimation Radius with a New Approach: Reverberation Mapping of Broad Line Polarization. Astrophys. J. 2020, 892, 118. [Google Scholar] [CrossRef] [Green Version]
- Suganuma, M.; Yoshii, Y.; Kobayashi, Y.; Minezaki, T.; Enya, K.; Tomita, H.; Aoki, T.; Koshida, S.; Peterson, B.A. Reverberation Measurements of the Inner Radius of the Dust Torus in Nearby Seyfert 1 Galaxies. Astrophys. J. 2006, 639, 46–63. [Google Scholar] [CrossRef] [Green Version]
- Haas, M.; Chini, R.; Ramolla, M.; Pozo Nuñez, F.; Westhues, C.; Watermann, R.; Hoffmeister, V.; Murphy, M. Photometric AGN reverberation mapping - an efficient tool for BLR sizes, black hole masses, and host-subtracted AGN luminosities. Astron. Astrophys. 2011, 535, A73. [Google Scholar] [CrossRef] [Green Version]
- Cherepashchuk, A.M.; Lyutyi, V.M. Rapid Variations of Hα Intensity in the Nuclei of Seyfert Galaxies NGC 4151, 3516, 1068. Astrophys. Lett. 1973, 13, 165. [Google Scholar]
- Komarov, V.V.; Moskvitin, A.S.; Bychkov, V.D.; Burenkov, A.N.; Drabek, S.V.; Shergin, V.S.; Emelyanov, E.V.; Komarova, V.N.; Romanenko, V.P.; Aitov, V.N. Zeiss-1000 SAO RAS: Instruments and Methods of Observation. Astrophys. Bull. 2020, 75, 486–500. [Google Scholar] [CrossRef]
- Afanasiev, V.L.; Shablovinskaya, E.S.; Uklein, R.I.; Malygin, E.A. Stokes-Polarimeter for 1-m Telescope. Astrophys. Bull. 2021, 76, 102–108. [Google Scholar] [CrossRef]
- Oliva, E. Wedged double Wollaston, a device for single shot polarimetric measurements. Astron. Astrophys. Suppl. Ser. 1997, 123, 589–592. [Google Scholar] [CrossRef]
- Afanasiev, V.L.; Amirkhanyan, V.R. Technique of polarimetric observations of faint objects at the 6-m BTA telescope. Astrophys. Bull. 2012, 67, 438–452. [Google Scholar] [CrossRef]
- Afanasiev, V.L.; Malygin, E.A.; Shablovinskaya, E.S.; Uklein, R.I.; Amirkhanyan, V.R.; Perepelitsyn, A.E.; Afanasieva, I.V. Small telescopes being effective: MAGIC or not? Exp. Astron. 2022. in print. [Google Scholar]
- Afanasiev, V.L.; Amirkhanyan, V.R.; Uklein, R.I.; Perepelitsyn, A.E.; Malygin, E.A.; Shablovinskaya, E.S.; Afanasieva, I.V. Universal focal reducer for small telescopes. Astron. Nachr. 2022, 343, e210104. [Google Scholar] [CrossRef]
- Geyer, E.H.; Kiselev, N.N.; Chernova, G.P.; Jockers, K. Surface Polarimetry of Comet Tanaka-Machholz 1992d Using a Novel Double Wollaston Prism. In Proceedings of the Asteroids, Comets, Meteors 1993, Belgirate, Italy, 14–18 June 1993; Volume 810, p. 116. [Google Scholar]
- Jockers, K.; Credner, T.; Bonev, T.; Kisele, V.N.; Korsun, P.; Kulyk, I.; Rosenbush, V.; Andrienko, A.; Karpov, N.; Sergeev, A.; et al. Exploration of the solar system with the Two-Channel Focal Reducer at the 2m-RCC telescope of Pik Terskol Observatory. Kinemat. Fiz. Nebesnykh Tel Suppl. 2000, 3, 13–18. [Google Scholar]
- Simmons, J.F.L.; Stewart, B.G. Point and interval estimation of the true unbiased degree of linear polarization in the presence of low signal-to-noise ratios. Astron. Astrophys. 1985, 142, 100–106. [Google Scholar]
- Rodríguez-Pascual, P.M.; Alloin, D.; Clavel, J.; Crenshaw, D.M.; Horne, K.; Kriss, G.A.; Krolik, J.H.; Malkan, M.A.; Netzer, H.; O’Brien, P.T.; et al. Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. IX. Ultraviolet Observations of Fairall 9. Astrophys. J. Suppl. Ser. 1997, 110, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.E.; Young, S.; Robinson, A.; Corbett, E.A.; Giannuzzo, M.E.; Axon, D.J.; Hough, J.H. A spectropolarimetric atlas of Seyfert 1 galaxies. Mon. Not. R. Astron. Soc. 2002, 335, 773–798. [Google Scholar] [CrossRef] [Green Version]
- Mudd, D.; Martini, P.; Zu, Y.; Kochanek, C.; Peterson, B.M.; Kessler, R.; Davis, T.M.; Hoormann, J.K.; King, A.; Lidman, C.; et al. Quasar Accretion Disk Sizes from Continuum Reverberation Mapping from the Dark Energy Survey. Astrophys. J. 2018, 862, 123. [Google Scholar] [CrossRef]
- Zu, Y.; Kochanek, C.S.; Kozłowski, S.; Peterson, B.M. Application of Stochastic Modeling to Analysis of Photometric Reverberation Mapping Data. Astrophys. J. 2016, 819, 122. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Kochanek, C.S.; Peterson, B.M.; Zu, Y.; Brandt, W.N.; Cackett, E.M.; Fausnaugh, M.M.; McHardy, I.M. On reverberation mapping lag uncertainties. Mon. Not. R. Astron. Soc. 2019, 491, 6045–6064. [Google Scholar] [CrossRef]
- Alexander, T. Is AGN Variability Correlated with Other AGN Properties? ZDCF Analysis of Small Samples of Sparse Light Curves. In Proceedings of the Astronomical Time Series; Maoz, D., Sternberg, A., Leibowitz, E.M., Eds.; Astrophysics and Space Science Library; Springer: Dordrecht, The Netherlands, 1997; Volume 218, p. 163. [Google Scholar] [CrossRef]
- Alexander, T. Improved AGN light curve analysis with the z-transformed discrete correlation function. arXiv 2013, arXiv:1302.1508. [Google Scholar]
- Wandel, A.; Peterson, B.M.; Malkan, M.A. Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. I. Comparing the Photoionization and Reverberation Techniques. Astrophys. J. 1999, 526, 579–591. [Google Scholar] [CrossRef] [Green Version]
- Kaspi, S.; Smith, P.S.; Netzer, H.; Maoz, D.; Jannuzi, B.T.; Giveon, U. Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei. Astrophys. J. 2000, 533, 631–649. [Google Scholar] [CrossRef]
- Peterson, B.M.; Ferrarese, L.; Gilbert, K.M.; Kaspi, S.; Malkan, M.A.; Maoz, D.; Merritt, D.; Netzer, H.; Onken, C.A.; Pogge, R.W.; et al. Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database. Astrophys. J. 2004, 613, 682–699. [Google Scholar] [CrossRef] [Green Version]
- Bentz, M.C.; Peterson, B.M.; Netzer, H.; Pogge, R.W.; Vestergaard, M. The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements. II. The Full Sample of Reverberation-Mapped AGNs. Astrophys. J. 2009, 697, 160–181. [Google Scholar] [CrossRef]
- Grier, C.J.; Peterson, B.M.; Pogge, R.W.; Denney, K.D.; Bentz, M.C.; Martini, P.; Sergeev, S.G.; Kaspi, S.; Minezaki, T.; Zu, Y.; et al. Reverberation Mapping Results for Five Seyfert 1 Galaxies. Astrophys. J. 2012, 755, 60. [Google Scholar] [CrossRef] [Green Version]
- Grier, C.J.; Peterson, B.M.; Pogge, R.W.; Denney, K.D.; Bentz, M.C.; Martini, P.; Sergeev, S.G.; Kaspi, S.; Zu, Y.; Kochanek, C.S.; et al. A Reverberation Lag for the High-ionization Component of the Broad-line Region in the Narrow-line Seyfert 1 Mrk 335. Astrophys. J. Lett. 2012, 744, L4. [Google Scholar] [CrossRef]
- Du, P.; Hu, C.; Lu, K.X.; Wang, F.; Qiu, J.; Li, Y.R.; Bai, J.M.; Kaspi, S.; Netzer, H.; Wang, J.M.; et al. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. I. First Results from a New Reverberation Mapping Campaign. Astrophys. J. 2014, 782, 45. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Li, S.S.; Yang, S.; Yang, Z.X.; Guo, W.J.; Bao, D.W.; Jiang, B.W.; Du, P.; Li, Y.R.; Xiao, M.; et al. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. XII. Reverberation Mapping Results for 15 PG Quasars from a Long-duration High-cadence Campaign. Astrophys. J. Suppl. Ser. 2021, 253, 20. [Google Scholar] [CrossRef]
- Jha, V.K.; Joshi, R.; Chand, H.; Wu, X.B.; Ho, L.C.; Rastogi, S.; Ma, Q. Accretion disc sizes from continuum reverberation mapping of AGN selected from the ZTF survey. Mon. Not. R. Astron. Soc. 2022, 511, 3005–3016. [Google Scholar] [CrossRef]
- Koshida, S.; Minezaki, T.; Yoshii, Y.; Kobayashi, Y.; Sakata, Y.; Sugawara, S.; Enya, K.; Suganuma, M.; Tomita, H.; Aoki, T.; et al. Reverberation Measurements of the Inner Radius of the Dust Torus in 17 Seyfert Galaxies. Astrophys. J. 2014, 788, 159. [Google Scholar] [CrossRef] [Green Version]
- Lyu, J.; Rieke, G.H.; Smith, P.S. Mid-IR Variability and Dust Reverberation Mapping of Low-z Quasars. I. Data, Methods, and Basic Results. Astrophys. J. 2019, 886, 33. [Google Scholar] [CrossRef] [Green Version]
- Kaastra, J.S.; Petrucci, P.O.; Cappi, M.; Arav, N.; Behar, E.; Bianchi, S.; Bloom, J.; Blustin, A.J.; Branduardi-Raymont, G.; Costantini, E.; et al. Multiwavelength campaign on Mrk 509. I. Variability and spectral energy distribution. Astron. Astrophys. 2011, 534, A36. [Google Scholar] [CrossRef]
- Pozo Nuñez, F.; Gianniotis, N.; Blex, J.; Lisow, T.; Chini, R.; Polsterer, K.L.; Pott, J.U.; Esser, J.; Pietrzyński, G. Optical continuum photometric reverberation mapping of the Seyfert-1 galaxy Mrk509. Mon. Not. R. Astron. Soc. 2019, 490, 3936–3951. [Google Scholar] [CrossRef]
- Edelson, R.; Gelbord, J.; Cackett, E.; Peterson, B.M.; Horne, K.; Barth, A.J.; Starkey, D.A.; Bentz, M.; Brandt, W.N.; Goad, M.; et al. The First Swift Intensive AGN Accretion Disk Reverberation Mapping Survey. Astrophys. J. 2019, 870, 123. [Google Scholar] [CrossRef] [Green Version]
- Dexter, J. et al. [GRAVITY Collaboration] The resolved size and structure of hot dust in the immediate vicinity of AGN. Astron. Astrophys. 2020, 635, A92. [Google Scholar] [CrossRef] [Green Version]
- Zanchettin, M.V.; Feruglio, C.; Bischetti, M.; Malizia, A.; Molina, M.; Bongiorno, A.; Dadina, M.; Gruppioni, C.; Piconcelli, E.; Tombesi, F.; et al. The IBISCO survey. I. Multiphase discs and winds in the Seyfert galaxy Markarian 509. Astron. Astrophys. 2021, 655, A25. [Google Scholar] [CrossRef]
- Kara, E.; Mehdipour, M.; Kriss, G.A.; Cackett, E.M.; Arav, N.; Barth, A.J.; Byun, D.; Brotherton, M.S.; De Rosa, G.; Gelbord, J.; et al. AGN STORM 2. I. First results: A Change in the Weather of Mrk 817. Astrophys. J. 2021, 922, 151. [Google Scholar] [CrossRef]
- Denney, K.D.; Peterson, B.M.; Pogge, R.W.; Adair, A.; Atlee, D.W.; Au-Yong, K.; Bentz, M.C.; Bird, J.C.; Brokofsky, D.J.; Chisholm, E.; et al. Reverberation Mapping Measurements of Black Hole Masses in Six Local Seyfert Galaxies. Astrophys. J. 2010, 721, 715–737. [Google Scholar] [CrossRef]
- Lu, K.X.; Wang, J.G.; Zhang, Z.X.; Huang, Y.K.; Xu, L.; Xin, Y.X.; Yu, X.G.; Ding, X.; Wang, D.Q.; Feng, H.C. Reverberation Mapping Measurements of Black Hole Masses and Broad-line Region Kinematics in Mrk 817 and NGC 7469. Astrophys. J. 2021, 918, 50. [Google Scholar] [CrossRef]
- Uklein, R.I.; Malygin, E.A.; Shablovinskaya, E.S.; Perepelitsyn, A.E.; Grokhovskaya, A.A. Photometric Reverberation Mapping of AGNs at 0.1 < z < 0.8. I. Observational Technique. Astrophys. Bull. 2019, 74, 388–395. [Google Scholar] [CrossRef] [Green Version]
- Malygin, E.A.; Shablovinskaya, E.S.; Uklein, R.I.; Grokhovskaya, A.A. Measurement of the Supermassive Black Hole Masses in Two Active Galactic Nuclei by the Photometric Reverberation Mapping Method. Astron. Lett. 2020, 46, 726–733. [Google Scholar] [CrossRef]
- Kovačević, A.B.; Radović, V.; Ilić, D.; Popović, L.Č.; Assef, R.J.; Sánchez-Sáez, P.; Nikutta, R.; Raiteri, C.M.; Yoon, I.; Homayouni, Y.; et al. The LSST Era of Supermassive Black Hole Accretion Disk Reverberation Mapping. Astrophys. J. Suppl. Ser. 2022, 262, 49. [Google Scholar] [CrossRef]
- Woo, J.H.; Son, D.; Gallo, E.; Hodges-Kluck, E.; Jeon, Y.; Shin, J.; Bae, H.J.; Cho, H.; Cho, W.; Kang, D.; et al. Seoul National University AGN Monitoring Project. I. Strategy And Sample. J. Korean Astron. Soc. 2019, 52, 109–119. [Google Scholar] [CrossRef]
- Jiang, B.W.; Marziani, P.; Savić, Đ.; Shablovinskaya, E.; Popović, L.Č.; Afanasiev, V.L.; Czerny, B.; Wang, J.M.; del Olmo, A.; D’Onofrio, M.; et al. Linear spectropolarimetric analysis of fairall 9 with VLT/FORS2. Mon. Not. R. Astron. Soc. 2021, 508, 79–99. [Google Scholar] [CrossRef]
Object | Filters | Q, % | U, % | P, % | , |
---|---|---|---|---|---|
Mrk 335 | SED675 | 0.28 | −0.16 | 0.32 | 165.1 |
SED650 | 0.55 | −0.51 | 0.75 | 158.6 | |
680 | 0.41 | −0.14 | 0.43 | 170.6 | |
671 | 0.12 | −0.13 | 0.18 | 156.4 | |
H | 0.40 | −0.34 | 0.52 | 159.8 | |
Mrk 817 | SED625 | −0.69 | −0.43 | 0.81 | 106.0 |
Sy685 | −0.01 | −0.62 | 0.62 | 134.5 | |
Sy671 | −0.82 | 0.36 | 0.89 | 78.1 | |
Mrk 6 | SED675 | 0.16 | −0.66 | 0.68 | 141.8 |
SED650 | 0.44 | −0.62 | 0.76 | 152.7 | |
SED625 | 0.33 | −0.67 | 0.75 | 148.1 | |
Mrk 79 | SED675 | −0.42 | 0.02 | 0.42 | 88.6 |
SED650 | −0.40 | 0.04 | 0.40 | 87.1 | |
NGC 4151 | SED650 | −0.13 | 0.18 | 0.22 | 62.9 |
SED600 | −0.18 | 0.24 | 0.30 | 63.4 | |
Mrk 509 | SED675 | 0.74 | −0.63 | 0.97 | 159.8 |
SED650 | 0.63 | −0.60 | 0.87 | 158.2 |
Period | N | , mJy | , mJy | , % | |||
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
Mrk 335 | 9 September 2020–1 November 2022 | 23 | 90.2 ± 7.9 | 0.101 | 140.1 ± 9.9 | 0.085 | 0.9 ± 0.3 |
Mrk 509 | 26 May 2020–29 August 2021 | 11 | 12.2 ± 0.5 | 0.018 | 21.0 ± 2.2 | 0.092 | 1.9 ± 0.8 |
Mrk 817 | 14 December 2020–28 August 2021 | 8 | 23.7 ± 1.1 | 0.036 | 36.9 ± 1.3 | 0.044 | 1.9 ± 0.4 |
23.3 ± 1.2 | 0.072 | 2.1 ± 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shablovinskaya, E.; Popović, L.Č.; Uklein, R.; Malygin, E.; Ilić, D.; Ciroi, S.; Oparin, D.; Crepaldi, L.; Slavcheva-Mihova, L.; Mihov, B.; et al. Polarimetric Reverberation Mapping in Medium-Band Filters. Universe 2023, 9, 52. https://doi.org/10.3390/universe9010052
Shablovinskaya E, Popović LČ, Uklein R, Malygin E, Ilić D, Ciroi S, Oparin D, Crepaldi L, Slavcheva-Mihova L, Mihov B, et al. Polarimetric Reverberation Mapping in Medium-Band Filters. Universe. 2023; 9(1):52. https://doi.org/10.3390/universe9010052
Chicago/Turabian StyleShablovinskaya, Elena, Luka Č. Popović, Roman Uklein, Eugene Malygin, Dragana Ilić, Stefano Ciroi, Dmitry Oparin, Luca Crepaldi, Lyuba Slavcheva-Mihova, Boyko Mihov, and et al. 2023. "Polarimetric Reverberation Mapping in Medium-Band Filters" Universe 9, no. 1: 52. https://doi.org/10.3390/universe9010052
APA StyleShablovinskaya, E., Popović, L. Č., Uklein, R., Malygin, E., Ilić, D., Ciroi, S., Oparin, D., Crepaldi, L., Slavcheva-Mihova, L., Mihov, B., & Nikolov, Y. (2023). Polarimetric Reverberation Mapping in Medium-Band Filters. Universe, 9(1), 52. https://doi.org/10.3390/universe9010052