The Effective Fluid Approach for Modified Gravity and Its Applications
Abstract
1. Introduction
2. Theoretical Framework
2.1. Models
The Quasi-Static and Sub-Horizon Approximations
2.2. Horndeski Models
- f(R) theories: These are equivalent to a non-minimally coupled scalar field written as [101]
- Brans–Dicke theories: These are the archetype of a scalar–tensor theory, with
- Kinetic gravity braiding: These models contain a mixing of the scalar and tensor kinetic terms [103] and are given by
- In the case of inflation, the Higgs-like inflation model is given by and .
2.2.1. Background Expansion
2.2.2. Linear Perturbations
2.2.3. The Effective Fluid Approach for Horndeski Models
2.3. Scalar–Vector–Tensor Models
The Effective Fluid Approach for SVT Theories with Non-Vanishing Anisotropic Stress
3. The Effective Fluid Approach and the Boltzmann Codes
3.1. Designer Horndeski
3.2. Numerical Solutions of the Perturbation Equations
- Third, we consider the numerical solution of the growth factor Equation (39) using the appropriate expression for , which we call “ODE-Geff”.
- Finally, we also consider the CDM model.
3.3. Modifications to CLASS and the ISW Effect
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BBKS | Bardeen, Bond, Kaiser and Szalay (transfer function) |
CAMB | Code for Anisotropies in the Microwave Background |
CDM | Cold Dark Matter |
CLASS | Cosmic Linear Anisotropy Solving System |
CMB | Cosmic Microwave Background |
DE | Dark Energy |
DM | Dark Matter |
EFCLASS | Effective Fluid CLASS |
EOS | Equation of State |
FLRW | Friedmann–Lemaître–Robertson–Walker metric |
GC | Galaxy Counts |
GR | General Relativity |
GW | Gravitational Wave |
ISW | Integrated Sachs-Wolfe effect |
HDES | Horndeski Designer model |
HS | Hu–Sawicki model |
KGB | Kinetic Gravity Braiding model |
CDM | The cosmological constant () and cold dark matter (CDM) model |
LSS | Large-Scale Structure |
MG | Modified Gravity |
SVT | Scalar–Vector–Tensor |
1 | In this review, our conventions are: (-+++) for the metric signature, the Riemann and Ricci tensors are given by and . The Einstein equations are for and is the bare Newton’s constant, while in what follows, we set the speed of light . |
2 | For the sake of brevity, we now set in what follows , and where . |
References
- Riess, A.G. et al. [The American Astronomical Society] Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Perlmutter, S. et al. [The American Astronomical Society] Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Kofman, L.; Starobinsky, A.A. Effect of the cosmological constant on large scale anisotropies in the microwave backbround. Sov. Astron. Lett. 1985, 11, 271–274. [Google Scholar]
- Aghanim, N. et al. [Planck Collaboration] Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar]
- Abbott, T.M.C. et al. [Dark Energy Survey Collaboration] Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D 2018, D98, 043526. [Google Scholar] [CrossRef]
- Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 569. [Google Scholar] [CrossRef]
- Carroll, S.M. The Cosmological constant. Living Rev. Rel. 2001, 4, 1. [Google Scholar] [CrossRef]
- Hinshaw, G. et al. [The American Astronomical Society] Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. Astrophys. J. Suppl. 2013, 208, 19. [Google Scholar] [CrossRef]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753–1936. [Google Scholar] [CrossRef]
- Ratra, B.; Peebles, P.J.E. Cosmological Consequences of a Rolling Homogeneous Scalar Field. Phys. Rev. D 1988, 37, 3406. [Google Scholar] [CrossRef]
- Armendariz-Picon, C.; Mukhanov, V.F.; Steinhardt, P.J. A Dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration. Phys. Rev. Lett. 2000, 85, 4438–4441. [Google Scholar] [CrossRef] [PubMed]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar] [CrossRef]
- Collett, T.E.; Oldham, L.J.; Smith, R.J.; Auger, M.W.; Westfall, K.B.; Bacon, D.; Nichol, R.C.; Masters, K.L.; Koyama, K.; van den Bosch, R. A precise extragalactic test of General Relativity. Science 2018, 360, 1342. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P. et al. [LIGO Scientific and Virgo Collaborations] Tests of general relativity with GW150914. Phys. Rev. Lett. 2016, 116, 221101, Erratum in Phys. Rev. Lett. 2018, 121, 129902.. [Google Scholar] [CrossRef] [PubMed]
- Nesseris, S.; Shafieloo, A. A model independent null test on the cosmological constant. Mon. Not. Roy. Astron. Soc. 2010, 408, 1879–1885. [Google Scholar] [CrossRef]
- Nesseris, S.; Garcia-Bellido, J. A new perspective on Dark Energy modeling via Genetic Algorithms. JCAP 2012, 1211, 033. [Google Scholar] [CrossRef]
- Abbott, B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration] GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Phys. Rev. Lett. 2017, 119, 141101. [Google Scholar] [CrossRef]
- Creminelli, P.; Vernizzi, F. Dark Energy after GW170817 and GRB170817A. Phys. Rev. Lett. 2017, 119, 251302. [Google Scholar] [CrossRef]
- Sakstein, J.; Jain, B. Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories. Phys. Rev. Lett. 2017, 119, 251303. [Google Scholar] [CrossRef]
- Ezquiaga, J.M.; Zumalacarregui, M. Dark Energy After GW170817: Dead Ends and the Road Ahead. Phys. Rev. Lett. 2017, 119, 251304. [Google Scholar] [CrossRef]
- Baker, T.; Bellini, E.; Ferreira, P.G.; Lagos, M.; Noller, J.; Sawicki, I. Strong constraints on cosmological gravity from GW170817 and GRB 170817A. Phys. Rev. Lett. 2017, 119, 251301. [Google Scholar] [CrossRef] [PubMed]
- Amendola, L.; Kunz, M.; Saltas, I.D.; Sawicki, I. Fate of Large-Scale Structure in Modified Gravity After GW170817 and GRB170817A. Phys. Rev. Lett. 2018, 120, 131101. [Google Scholar] [CrossRef] [PubMed]
- Crisostomi, M.; Koyama, K. Self-accelerating universe in scalar-tensor theories after GW170817. Phys. Rev. D 2018, 97, 084004. [Google Scholar] [CrossRef]
- Frusciante, N.; Peirone, S.; Casas, S.; Lima, N.A. Cosmology of surviving Horndeski theory: The road ahead. Phys. Rev. D 2019, 99, 063538. [Google Scholar] [CrossRef]
- Kase, R.; Tsujikawa, S. Dark energy in Horndeski theories after GW170817: A review. Int. J. Mod. Phys. D 2019, 28, 1942005. [Google Scholar] [CrossRef]
- McManus, R.; Lombriser, L.; Peñarrubia, J. Finding Horndeski theories with Einstein gravity limits. JCAP 2016, 1611, 006. [Google Scholar] [CrossRef]
- Lombriser, L.; Taylor, A. Breaking a Dark Degeneracy with Gravitational Waves. JCAP 2016, 1603, 031. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) Theories Of Gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Rel. 2010, 13, 3. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Multamaki, T.; Vilja, I. Cosmological expansion and the uniqueness of gravitational action. Phys. Rev. D 2006, 73, 024018. [Google Scholar] [CrossRef]
- De la Cruz-Dombriz, A.; Dobado, A. A f(R) gravity without cosmological constant. Phys. Rev. D 2006, 74, 087501. [Google Scholar] [CrossRef]
- Pogosian, L.; Silvestri, A. The pattern of growth in viable f(R) cosmologies. Phys. Rev. D 2008, 77, 023503, Erratum in Phys. Rev. D 2010, 81, 049901.. [Google Scholar] [CrossRef]
- Nesseris, S. Can the degeneracies in the gravity sector be broken? Phys. Rev. D 2013, 88, 123003. [Google Scholar] [CrossRef]
- Tsujikawa, S. Matter density perturbations and effective gravitational constant in modified gravity models of dark energy. Phys. Rev. D 2007, 76, 023514. [Google Scholar] [CrossRef]
- Nesseris, S.; Sapone, D. Accuracy of the growth index in the presence of dark energy perturbations. Phys. Rev. D 2015, 92, 023013. [Google Scholar] [CrossRef]
- Luna, C.A.; Basilakos, S.; Nesseris, S. Cosmological constraints on γ-gravity models. Phys. Rev. D 2018, 98, 023516. [Google Scholar] [CrossRef]
- Perez-Romero, J.; Nesseris, S. Cosmological constraints and comparison of viable f(R) models. Phys. Rev. D 2018, 97, 023525. [Google Scholar] [CrossRef]
- Hu, W.; Sawicki, I. Models of f(R) Cosmic Acceleration that Evade Solar-System Tests. Phys. Rev. D 2007, 76, 064004. [Google Scholar] [CrossRef]
- Hu, W.; Sawicki, I. A Parameterized Post-Friedmann Framework for Modified Gravity. Phys. Rev. D 2007, 76, 104043. [Google Scholar] [CrossRef]
- Kunz, M.; Sapone, D. Dark Energy versus Modified Gravity. Phys. Rev. Lett. 2007, 98, 121301. [Google Scholar] [CrossRef] [PubMed]
- Koivisto, T.; Mota, D.F. Cosmology and Astrophysical Constraints of Gauss-Bonnet Dark Energy. Phys. Lett. B 2007, 644, 104–108. [Google Scholar] [CrossRef]
- Koivisto, T.; Mota, D.F. Gauss-Bonnet Quintessence: Background Evolution, Large Scale Structure and Cosmological Constraints. Phys. Rev. D 2007, 75, 023518. [Google Scholar] [CrossRef]
- De la Cruz-Dombriz, A.; Dobado, A.; Maroto, A.L. On the evolution of density perturbations in f(R) theories of gravity. Phys. Rev. D 2008, 77, 123515. [Google Scholar] [CrossRef]
- Starobinsky, A.A. Disappearing cosmological constant in f(R) gravity. JETP Lett. 2007, 86, 157–163. [Google Scholar] [CrossRef]
- Bean, R.; Bernat, D.; Pogosian, L.; Silvestri, A.; Trodden, M. Dynamics of Linear Perturbations in f(R) Gravity. Phys. Rev. D 2007, 75, 064020. [Google Scholar] [CrossRef]
- Song, Y.S.; Hollenstein, L.; Caldera-Cabral, G.; Koyama, K. Theoretical Priors On Modified Growth Parametrisations. JCAP 2010, 1004, 018. [Google Scholar] [CrossRef][Green Version]
- Pogosian, L.; Silvestri, A.; Koyama, K.; Zhao, G.B. How to optimally parametrize deviations from General Relativity in the evolution of cosmological perturbations? Phys. Rev. D 2010, 81, 104023. [Google Scholar] [CrossRef]
- Bean, R.; Tangmatitham, M. Current constraints on the cosmic growth history. Phys. Rev. D 2010, 81, 083534. [Google Scholar] [CrossRef]
- Caldwell, R.; Cooray, A.; Melchiorri, A. Constraints on a New Post-General Relativity Cosmological Parameter. Phys. Rev. D 2007, 76, 023507. [Google Scholar] [CrossRef]
- Bertschinger, E.; Zukin, P. Distinguishing Modified Gravity from Dark Energy. Phys. Rev. D 2008, 78, 024015. [Google Scholar] [CrossRef]
- Baker, T.; Ferreira, P.G.; Skordis, C.; Zuntz, J. Towards a fully consistent parameterization of modified gravity. Phys. Rev. D 2011, 84, 124018. [Google Scholar] [CrossRef]
- Silvestri, A.; Pogosian, L.; Buniy, R.V. Practical approach to cosmological perturbations in modified gravity. Phys. Rev. D 2013, 87, 104015. [Google Scholar] [CrossRef]
- Clifton, T.; Sanghai, V.A.A. Parameterizing theories of gravity on large and small scales in cosmology. Phys. Rev. Lett. 2019, 122, 011301. [Google Scholar] [CrossRef]
- Ishak, M. Testing General Relativity in Cosmology. Living Rev. Relativ. 2019, 22, 1. [Google Scholar] [CrossRef]
- Zhao, G.B.; Pogosian, L.; Silvestri, A.; Zylberberg, J. Searching for modified growth patterns with tomographic surveys. Phys. Rev. D 2009, 79, 083513. [Google Scholar] [CrossRef]
- Lewis, A.; Challinor, A.; Lasenby, A. Efficient computation of CMB anisotropies in closed FRW models. Astrophys. J 2000, 538, 473–476. [Google Scholar] [CrossRef]
- Hojjati, A.; Pogosian, L.; Zhao, G.B. Testing gravity with CAMB and CosmoMC. JCAP 2011, 1108, 005. [Google Scholar] [CrossRef]
- He, J.h. Testing f(R) dark energy model with the large scale structure. Phys. Rev. D 2012, 86, 103505. [Google Scholar] [CrossRef]
- Xu, L. FRCAMB: An f(R) Code for Anisotropies in the Microwave Background. arXiv 2015, arXiv:1506.03232. [Google Scholar]
- Gubitosi, G.; Piazza, F.; Vernizzi, F. The Effective Field Theory of Dark Energy. JCAP 2013, 1302, 032. [Google Scholar] [CrossRef]
- Hu, B.; Raveri, M.; Frusciante, N.; Silvestri, A. Effective Field Theory of Cosmic Acceleration: An implementation in CAMB. Phys. Rev. D 2014, 89, 103530. [Google Scholar] [CrossRef]
- Ade, P.A.R. et al. [Planck Collaboration] Planck 2015 results. XIV. Dark energy and modified gravity. Astron. Astrophys. 2016, 594, A14. [Google Scholar] [CrossRef]
- Battye, R.A.; Bolliet, B.; Pearson, J.A. f(R) gravity as a dark energy fluid. Phys. Rev. D 2016, 93, 044026. [Google Scholar] [CrossRef]
- Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy: The Equation of state description versus scalar-tensor or modified gravity. Phys. Lett. B 2006, 634, 93–100. [Google Scholar] [CrossRef]
- Capozziello, S.; Nojiri, S.; Odintsov, S.D.; Troisi, A. Cosmological viability of f(R)-gravity as an ideal fluid and its compatibility with a matter dominated phase. Phys. Lett. B 2006, 639, 135–143. [Google Scholar] [CrossRef]
- Capozziello, S.; Mantica, C.A.; Molinari, L.G. Cosmological perfect-fluids in f(R) gravity. Int. J. Geom. Meth. Mod. Phys. 2019, 16, 1950008. [Google Scholar] [CrossRef]
- Blas, D.; Lesgourgues, J.; Tram, T. The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes. JCAP 2011, 1107, 034. [Google Scholar] [CrossRef]
- Battye, R.A.; Bolliet, B.; Pace, F. Do cosmological data rule out f(R) with w≠-1? Phys. Rev. D 2018, 97, 104070. [Google Scholar] [CrossRef]
- Kunz, M. The phenomenological approach to modeling the dark energy. C. R. Phys. 2012, 13, 539–565. [Google Scholar] [CrossRef]
- Saltas, I.D.; Kunz, M. Anisotropic stress and stability in modified gravity models. Phys. Rev. D 2011, 83, 064042. [Google Scholar] [CrossRef]
- Sawicki, I.; Bellini, E. Limits of quasistatic approximation in modified-gravity cosmologies. Phys. Rev. D 2015, 92, 084061. [Google Scholar] [CrossRef]
- Cardona, W.; Hollenstein, L.; Kunz, M. The traces of anisotropic dark energy in light of Planck. JCAP 2014, 1407, 032. [Google Scholar] [CrossRef]
- Koivisto, T.; Mota, D.F. Dark energy anisotropic stress and large scale structure formation. Phys. Rev. D 2006, 73, 083502. [Google Scholar] [CrossRef]
- Mota, D.F.; Kristiansen, J.R.; Koivisto, T.; Groeneboom, N.E. Constraining Dark Energy Anisotropic Stress. Mon. Not. R. Astron. Soc. 2007, 382, 793–800. [Google Scholar] [CrossRef]
- Hu, W. Structure formation with generalized dark matter. Astrophys. J. 1998, 506, 485–494. [Google Scholar] [CrossRef]
- De Putter, R.; Huterer, D.; Linder, E.V. Measuring the Speed of Dark: Detecting Dark Energy Perturbations. Phys. Rev. D 2010, 81, 103513. [Google Scholar] [CrossRef]
- Batista, R.C.; Marra, V. Clustering dark energy and halo abundances. JCAP 2017, 1711, 048. [Google Scholar] [CrossRef]
- Lewis, A.; Bridle, S. Cosmological parameters from CMB and other data: A Monte Carlo approach. Phys. Rev. D 2002, 66, 103511. [Google Scholar] [CrossRef]
- Tegmark, M. et al. [the SDSS collaboration] Cosmological parameters from SDSS and WMAP. Phys. Rev. D 2004, 69, 103501. [Google Scholar] [CrossRef]
- Ade, P.A.R. et al. [Planck Collaboration] Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar] [CrossRef]
- Zhao, G.B.; Raveri, M.; Pogosian, P.; Wang, Y.; Crittenden, R.G.; Handley, W.J.; Percival, W.J.; Beutler, F.; Brinkmann, J.; Chuang, C.; et al. Dynamical dark energy in light of the latest observations. Nat. Astron. 2017, 1, 627–632. [Google Scholar] [CrossRef]
- Heavens, A.; Fantaye, Y.; Sellentin, E.; Eggers, H.; Hosenie, Z.; Kroon, S.; Mootoovaloo, A. No evidence for extensions to the standard cosmological model. Phys. Rev. Lett. 2017, 119, 101301. [Google Scholar] [CrossRef] [PubMed]
- Freedman, W.L. Cosmology at a Crossroads. Nat. Astron. 2017, 1, 0121. [Google Scholar] [CrossRef]
- Renk, J.; Zumalacarregui, M.; Montanari, F.; Barreira, A. Galileon gravity in light of ISW, CMB, BAO and H0 data. JCAP 2017, 1710, 020. [Google Scholar] [CrossRef]
- Nunes, R.C. Structure formation in f(T) gravity and a solution for H0 tension. JCAP 2018, 1805, 052. [Google Scholar] [CrossRef]
- Lin, M.X.; Raveri, M.; Hu, W. Phenomenology of Modified Gravity at Recombination. Phys. Rev. D 2019, 99, 043514. [Google Scholar] [CrossRef]
- Benetti, M.; Santos da Costa, S.; Capozziello, S.; Alcaniz, J.S.; De Laurentis, M. Observational constraints on Gauss? Bonnet cosmology. Int. J. Mod. Phys. D 2018, 27, 1850084. [Google Scholar] [CrossRef]
- Sakr, Z.; Ilic, S.; Blanchard, A. Cluster counts: Calibration issue or new physics? Astron. Astrophys. 2018, 620, A78. [Google Scholar] [CrossRef]
- Ma, C.P.; Bertschinger, E. Cosmological perturbation theory in the synchronous and conformal Newtonian gauges. Astrophys. J. 1995, 455, 7–25. [Google Scholar] [CrossRef]
- Amendola, L.; Tsujikawa, S. Dark Energy; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Mukhanov, V.F.; Feldman, H.A.; Brandenberger, R.H. Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rept. 1992, 215, 203–333. [Google Scholar] [CrossRef]
- Sapone, D.; Kunz, M. Fingerprinting Dark Energy. Phys. Rev. D 2009, 80, 083519. [Google Scholar] [CrossRef]
- Nesseris, S.; Perivolaropoulos, L. Crossing the Phantom Divide: Theoretical Implications and Observational Status. JCAP 2007, 0701, 018. [Google Scholar] [CrossRef]
- Wald, R.M. General Relativity; Chicago Univ. Pr.: Chicago, IL, USA, 1984. [Google Scholar] [CrossRef]
- Arjona, R.; Cardona, W.; Nesseris, S. Unraveling the effective fluid approach for f(R) models in the subhorizon approximation. Phys. Rev. D 2019, 99, 043516. [Google Scholar] [CrossRef]
- Horndeski, G.W. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 1974, 10, 363–384. [Google Scholar] [CrossRef]
- Abbott, B.P. et al. [The American Astronomical Society] Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 2017, 848, L13. [Google Scholar] [CrossRef]
- Kobayashi, T.; Yamaguchi, M.; Yokoyama, J. Generalized G-inflation: Inflation with the most general second-order field equations. Prog. Theor. Phys. 2011, 126, 511–529. [Google Scholar] [CrossRef]
- Chiba, T. 1/R gravity and scalar-tensor gravity. Phys. Lett. B 2003, 575, 1–3. [Google Scholar] [CrossRef]
- Brans, C.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Deffayet, C.; Pujolas, O.; Sawicki, I.; Vikman, A. Imperfect Dark Energy from Kinetic Gravity Braiding. JCAP 2010, 10, 026. [Google Scholar] [CrossRef]
- Quiros, I. Selected topics in scalar–tensor theories and beyond. Int. J. Mod. Phys. D 2019, 28, 1930012. [Google Scholar] [CrossRef]
- Kimura, R.; Yamamoto, K. Large Scale Structures in Kinetic Gravity Braiding Model That Can Be Unbraided. JCAP 2011, 1104, 025. [Google Scholar] [CrossRef]
- De Felice, A.; Kobayashi, T.; Tsujikawa, S. Effective gravitational couplings for cosmological perturbations in the most general scalar-tensor theories with second-order field equations. Phys. Lett. B 2011, 706, 123–133. [Google Scholar] [CrossRef]
- Matsumoto, J. Oscillating solutions of the matter density contrast in Horndeski’s theory. JCAP 2019, 1901, 054. [Google Scholar] [CrossRef]
- Arjona, R.; Cardona, W.; Nesseris, S. Designing Horndeski and the effective fluid approach. Phys. Rev. D 2019, 100, 063526. [Google Scholar] [CrossRef]
- Heisenberg, L.; Kase, R.; Tsujikawa, S. Cosmology in scalar-vector-tensor theories. Phys. Rev. D 2018, 98, 024038. [Google Scholar] [CrossRef]
- Cardona, W.; Orjuela-Quintana, J.B.; Valenzuela-Toledo, C.A. An effective fluid description of scalar-vector-tensor theories under the sub-horizon and quasi-static approximations. JCAP 2022, 08, 059. [Google Scholar] [CrossRef]
- Linder, E.V. Horndessence: ΛCDM Cosmology from Modified Gravity. arXiv 2021, arXiv:2104.14560. [Google Scholar]
- Sagredo, B.; Nesseris, S.; Sapone, D. Internal Robustness of Growth Rate data. Phys. Rev. D 2018, 98, 083543. [Google Scholar] [CrossRef]
- Zumalacarregui, M.; Bellini, E.; Sawicki, I.; Lesgourgues, J.; Ferreira, P.G. hi_class: Horndeski in the Cosmic Linear Anisotropy Solving System. JCAP 2017, 1708, 019. [Google Scholar] [CrossRef]
- Song, Y.S.; Hu, W.; Sawicki, I. The Large Scale Structure of f(R) Gravity. Phys. Rev. D 2007, 75, 044004. [Google Scholar] [CrossRef]
- Dodelson, S. Modern Cosmology; Academic Press: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Pace, F.; Battye, R.; Bellini, E.; Lombriser, L.; Vernizzi, F.; Bolliet, B. Comparison of different approaches to the quasi-static approximation in Horndeski models. JCAP 2021, 6, 017. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nesseris, S. The Effective Fluid Approach for Modified Gravity and Its Applications. Universe 2023, 9, 13. https://doi.org/10.3390/universe9010013
Nesseris S. The Effective Fluid Approach for Modified Gravity and Its Applications. Universe. 2023; 9(1):13. https://doi.org/10.3390/universe9010013
Chicago/Turabian StyleNesseris, Savvas. 2023. "The Effective Fluid Approach for Modified Gravity and Its Applications" Universe 9, no. 1: 13. https://doi.org/10.3390/universe9010013
APA StyleNesseris, S. (2023). The Effective Fluid Approach for Modified Gravity and Its Applications. Universe, 9(1), 13. https://doi.org/10.3390/universe9010013