Hunting Quantum Gravity with Analogs: The Case of Graphene †
Abstract
:1. Introduction
2. Analog Gravity on Graphene
2.1. First Scale, : From the Tight-Binding to the Dirac Hamiltonian
2.2. Second Scale, : From the Flat Space to Curved Space Dirac Hamiltonian
2.3. The Importance of Weyl Symmetry
2.4. Ramifications
2.4.1. Generalized Uncertainty Principles on DMs
2.4.2. Grain Boundaries on DMs and Two Scenarios: Witten 3D Gravity, and Ususy
2.4.3. Particle–Hole Pairs in Graphene to Spot Spatiotemporal Torsion
2.4.4. Vortex Solutions of Liouville Equation and Quasi-Spherical Surfaces
2.5. Realization in the Labs
3. Graphene-Inspired Quantum Gravity: The Quasiparticle Picture
3.1. The Universal Quasiparticle Picture
- The degrees of freedom are finite, hence fields are necessarily emergent;
- Spacetime is also emergent.
3.2. Effects of the Quasiparticle Picture on Black Hole Evaporation
- The unitary evolution may as well be only formally possible, but physically impossible to measure, for some form of a generalized uncertainty forbidding the necessary Planck scale localization/resolution (see, for example, [80]).
- The emergent description of the evolution is that of the combined system gravity + matter, and hence there is inevitably information loss, due to the relic entanglement of the matter field with the space.
- This description should apply also to standard nonunitary features of QFT, and we evoke here the possibility that the tilde degrees of freedom of TFD could be interpreted as “how the emergent fields see the degrees of freedom of space with which they are entangled”.
3.3. BH Evaporation as Seen from the Xons and the Unification of the Entropies
3.4. Topological Phases and the Emergence of Space from Evaporating BHs
4. Concluding Remarks and Future Perspectives of the Graphene Analog Enterprise
4.1. Hunting for Analog BH (Thermo)Dynamics
4.2. BH Entropy, the Information Paradox and the Xons Model
4.3. Other Hep-Th Scenarios on DMs
4.4. HELIOS
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | |
2 | As the electrons do not participate in the stronger covalent bonds, these electrons are not so attached to the carbon nuclei and are freer to “hop” from an atom to a neighbor one. |
3 | Here our notations: are Einstein indices, responding to diffeomorphisms, are flat indices, responding to local Lorentz transformations, while are spin indices. The covariant derivative is
|
4 | Recall that in three dimensions . |
5 | |
6 | Let us explain why we use the word phase in quotation marks. Given the general vacuum of a QFT, one can identify several vacua that cannot be obtained one from the other through a smooth unitary transformation. Starting from each of these “sub vacua”, and acting with the appropriate creation operators, one builds several (infinite) sectors, sometimes called super-selection sectors. Not all of them correspond to a phase of the system, in the proper statistical mechanical/thermodynamical sense. On the other hand, all such phases need be described by a super-selection sector or by a set of them. On this, see, for example, [88]. |
7 | As it is impossible to distinguish the space corresponding to different topologies of the lattice, the expected value of the entanglement between the fields and the geometrical degrees of freedom is . |
References
- Feynman, R.; Leighton, R.; Sands, M. The Feynman Lectures on Physics; Addison-Wesley World Student Series; Addison-Wesley: Boston, MA, USA, 1963; Volume 2. [Google Scholar]
- Iorio, A. Two arguments for more fundamental building blocks. J. Phys. Conf. Ser. 2019, 1275, 012013. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys. Rev. D 1981, 23, 287–298. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Optimizing entropy bounds for macroscopic systems. Phys. Rev. E 2014, 89, 052137. [Google Scholar] [CrossRef] [PubMed]
- Bekenstein, J.D. Information in the holographic universe. Sci. Am. 2003, 289, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Acquaviva, G.; Iorio, A.; Scholtz, M. On the implications of the Bekenstein bound for black hole evaporation. Ann. Phys. 2017, 387, 317–333. [Google Scholar] [CrossRef]
- Bao, N.; Carroll, S.M.; Singh, A. The Hilbert space of quantum gravity is locally finite-dimensional. Int. J. Mod. Phys. D 2017, 26, 1743013. [Google Scholar] [CrossRef]
- Barceló, C.; Liberati, S.; Visser, M. Analogue Gravity. Living Rev. Relativ. 2005, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Unruh, W.G. Experimental Black-Hole Evaporation? Phys. Rev. Lett. 1981, 46, 1351–1353. [Google Scholar] [CrossRef]
- Unruh, W.G. Notes on black-hole evaporation. Phys. Rev. D 1976, 14, 870–892. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Muñoz de Nova, J.R.; Golubkov, K.; Kolobov, V.I.; Steinhauer, J. Observation of thermal Hawking radiation and its temperature in an analogue black hole. Nature 2019, 569, 688–691. [Google Scholar] [CrossRef]
- Iorio, A. Weyl-gauge symmetry of graphene. Ann. Phys. 2011, 326, 1334–1353. [Google Scholar] [CrossRef]
- Iorio, A. Using Weyl symmetry to make graphene a real lab for fundamental physics. Eur. Phys. J. Plus 2012, 127, 156. [Google Scholar] [CrossRef]
- Iorio, A.; Lambiase, G. The Hawking–Unruh phenomenon on graphene. Phys. Lett. B 2012, 716, 334–337. [Google Scholar] [CrossRef]
- Iorio, A.; Lambiase, G. Quantum field theory in curved graphene spacetimes, Lobachevsky geometry, Weyl symmetry, Hawking effect, and all that. Phys. Rev. D 2014, 90, 025006. [Google Scholar] [CrossRef]
- Iorio, A. Curved spacetimes and curved graphene: A status report of the Weyl symmetry approach. Int. J. Mod. Phys. D 2015, 24, 1530013. [Google Scholar] [CrossRef]
- Lloyd, S.; Gooth, J.; Niemann, A.C.; Meng, T.; Grushin, A.G.; Landsteiner, K.; Gotsmann, B.; Menges, F.; Schmidt, M.; Shekhar, C.; et al. Ultimate physical limits to computation. Nature 2000, 406, 1047–1054. [Google Scholar] [CrossRef]
- Parhizkar, A.; Galitski, V. Strained bilayer graphene, emergent energy scales, and moiré gravity. Phys. Rev. Res. 2022, 4, L022027. [Google Scholar] [CrossRef]
- Parhizkar, A.; Galitski, V. Moiré Gravity and Cosmology. arXiv 2022, arXiv:2204.06574. [Google Scholar]
- O’Raifeartaigh, L.; Sreedhar, V. The Maximal Kinematical Invariance Group of Fluid Dynamics and Explosion–Implosion Duality. Ann. Phys. 2001, 293, 215–227. [Google Scholar] [CrossRef]
- Sreedhar, V.V.; Virmani, A. Maximal Kinematical Invariance Group of Fluid Dynamics and Applications. Universe 2022, 8, 319. [Google Scholar] [CrossRef]
- Castorina, P.; Kharzeev, D.; Satz, H. Thermal hadronization and Hawking–Unruh radiation in QCD. Eur. Phys. J. C 2007, 52, 187. [Google Scholar] [CrossRef]
- Castorina, P.; Iorio, A.; Satz, H. Hadron freeze-out and Unruh radiation. Int. J. Mod. Phys. E 2015, 24, 1550056. [Google Scholar] [CrossRef]
- Castorina, P.; Iorio, A. Confinement horizon and QCD entropy. Int. J. Mod. Phys. A 2018, 33, 1850211. [Google Scholar] [CrossRef]
- Castorina, P.; Iorio, A.; Satz, H. Hunting Quantum Gravity with Analogs: The case of High Energy Particle Physics. arXiv 2022, arXiv:2207.11935. [Google Scholar]
- Iorio, A.; Pais, P. Revisiting the gauge fields of strained graphene. Phys. Rev. D 2015, 92, 125005. [Google Scholar] [CrossRef]
- Iorio, A.; Pais, P. (Anti-)de Sitter, Poincaré, Super symmetries, and the two Dirac points of graphene. Ann. Phys. 2018, 398, 265–286. [Google Scholar] [CrossRef]
- Iorio, A. Graphene and Black Holes: Novel Materials to Reach the Unreachable. Front. Mater. 2015, 1, 36. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef]
- Wehling, T.; Black-Schaffer, A.; Balatsky, A. Dirac materials. Adv. Phys. 2014, 63, 1–76. [Google Scholar] [CrossRef]
- Dardashti, R.; Thébault, K.P.Y.; Winsberg, E. Confirmation via Analogue Simulation: What Dumb Holes Could Tell Us about Gravity. Br. J. Philos. Sci. 2017, 68, 55–89. [Google Scholar] [CrossRef]
- Penrose, R. On Gravity’s role in Quantum State Reduction. Gen. Relativ. Gravit. 1996, 28, 581–600. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S. Black holes and the information paradox. In General Relativity and Gravitation; World Scientific Publishing: Singapore, 2005; pp. 56–62. [Google Scholar]
- Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J. Black holes: Complementarity or firewalls? J. High Energy Phys. 2013, 2013, 62. [Google Scholar] [CrossRef]
- ’t Hooft, G. The Firewall Transformation for Black Holes and Some of Its Implications. Found. Phys. 2017, 47, 1503–1542. [Google Scholar] [CrossRef]
- Mann, R. Black Holes: Thermodynamics, Information, and Firewalls; SpringerBriefs in Physics; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Singh, T.P. Relativistic weak quantum gravity and its significance for the standard model of particle physics. arXiv 2021, arXiv:2110.02062. [Google Scholar]
- Kaushik, P.; Vatsalya, V.; Singh, T.P. An E8⊗E8 unification of the standard model with pre-gravitation, on an octonion-valued twistor space. arXiv 2022, arXiv:2206.06911. [Google Scholar]
- Acquaviva, G.; Iorio, A.; Smaldone, L. Bekenstein bound from the Pauli principle. Phys. Rev. D 2020, 102, 106002. [Google Scholar] [CrossRef]
- Wallace, P.R. The Band Theory of Graphite. Phys. Rev. 1947, 71, 622–634. [Google Scholar] [CrossRef]
- Semenoff, G.W. Condensed-Matter Simulation of a Three-Dimensional Anomaly. Phys. Rev. Lett. 1984, 53, 2449–2452. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Ciappina, M.F.; Iorio, A.; Pais, P.; Zampeli, A. Torsion in quantum field theory through time-loops on Dirac materials. Phys. Rev. D 2020, 101, 036021. [Google Scholar] [CrossRef]
- Iorio, A.; Pais, P.; Elmashad, I.A.; Ali, A.F.; Faizal, M.; Abou-Salem, L.I. Generalized Dirac structure beyond the linear regime in graphene. Int. J. Mod. Phys. D 2018, 27, 1850080. [Google Scholar] [CrossRef]
- Iorio, A.; Lambiase, G.; Pais, P.; Scardigli, F. Generalized uncertainty principle in three-dimensional gravity and the BTZ black hole. Phys. Rev. D 2020, 101, 105002. [Google Scholar] [CrossRef]
- Gusynin, V.P.; Sharapov, S.G.; Carbotte, J.P. AC conductivity of graphene: From light-binding model to 2 + 1-dimensional quantum electrodynamics. Int. J. Mod. Phys. B 2007, 21, 4611–4658. [Google Scholar] [CrossRef] [Green Version]
- Hands, S. Towards critical physics in 2+1d with U(2N )-invariant fermions. J. High Energy Phys. 2016, 2016, 15. [Google Scholar] [CrossRef]
- Iorio, A.; Ivetic, B.; Mignemi, S.; Pais, P. The three “layers” of monolayer graphene and their generalized uncertainty principles. arXiv 2022, arXiv:2208.02237. [Google Scholar]
- Kleinert, H. Gauge Fields in Condensed Matter; World Scientific Publishing: Singapore, 1989; Available online: https://www.worldscientific.com/worldscibooks/10.1142/0356#t=aboutBook (accessed on 15 January 2020).
- Witten, E. 2 + 1 dimensional gravity as an exactly soluble system. Nucl. Phys. B 1988, 311, 46–78. [Google Scholar] [CrossRef]
- Alvarez, P.D.; Valenzuela, M.; Zanelli, J. Supersymmetry of a different kind. J. High Energy Phys. 2012, 2012, 58. [Google Scholar] [CrossRef]
- Alvarez, P.D.; Pais, P.; Zanelli, J. Unconventional supersymmetry and its breaking. Phys. Lett. 2014, B735, 314. [Google Scholar] [CrossRef]
- Andrianopoli, L.; Cerchiai, B.L.; D’Auria, R.; Gallerati, A.; Noris, R.; Trigiante, M.; Zanelli, J. N-extended D=4 supergravity, unconventional SUSY and graphene. J. High Energy Phys. 2020, 2020, 84. [Google Scholar] [CrossRef]
- Alvarez, P.D.; Delage, L.; Valenzuela, M.; Zanelli, J. Unconventional SUSY and Conventional Physics: A Pedagogical Review. Symmetry 2021, 13, 628. [Google Scholar] [CrossRef]
- Iorio, A.; O’Raifeartaigh, L.; Sachs, I.; Wiesendanger, C. Weyl gauging and conformal invariance. Nucl. Phys. B 1997, 495, 433–450. [Google Scholar] [CrossRef]
- Iorio, A.; Kus, P. Vortex solutions of Liouville equation and quasi spherical surfaces. Int. J. Geom. Methods Mod. Phys. 2020, 17, 2050106. [Google Scholar] [CrossRef]
- Taioli, S.; Gabbrielli, R.; Simonucci, S.; Pugno, N.M.; Iorio, A. Lobachevsky crystallography made real through carbon pseudospheres. J. Phys. Condens. Matter 2016, 28, 13LT01. [Google Scholar] [CrossRef] [PubMed]
- Bañados, M.; Teitelboim, C.; Zanelli, J. Black hole in three-dimensional spacetime. Phys. Rev. Lett. 1992, 69, 1849–1851. [Google Scholar] [CrossRef] [Green Version]
- Maggiore, M. A Generalized uncertainty principle in quantum gravity. Phys. Lett. B 1993, 304, 65–69. [Google Scholar] [CrossRef]
- Kempf, A. Uncertainty relation in quantum mechanics with quantum group symmetry. J. Math. Phys. 1994, 35, 4483–4496. [Google Scholar] [CrossRef]
- Scardigli, F. Generalized uncertainty principle in quantum gravity from micro - black hole Gedanken experiment. Phys. Lett. B 1999, 452, 39–44. [Google Scholar] [CrossRef]
- Das, S.; Vagenas, E.C. Universality of Quantum Gravity Corrections. Phys. Rev. Lett. 2008, 101, 221301. [Google Scholar] [CrossRef]
- Ali, A.F.; Das, S.; Vagenas, E.C. Discreteness of space from the generalized uncertainty principle. Phys. Lett. B 2009, 678, 497–499. [Google Scholar] [CrossRef]
- Ali, A.F.; Das, S.; Vagenas, E.C. Proposal for testing quantum gravity in the lab. Phys. Rev. D 2011, 84, 044013. [Google Scholar] [CrossRef]
- Buoninfante, L.; Luciano, G.G.; Petruzziello, L. Generalized Uncertainty Principle and Corpuscular Gravity. Eur. Phys. J. C 2019, 79, 663. [Google Scholar] [CrossRef]
- Petruzziello, L.; Illuminati, F. Quantum gravitational decoherence from fluctuating minimal length and deformation parameter at the Planck scale. Nat. Commun. 2021, 12, 4449. [Google Scholar] [CrossRef] [PubMed]
- Bosso, P.; Luciano, G.G. Generalized uncertainty principle: From the harmonic oscillator to a QFT toy model. Eur. Phys. J. C 2021, 81, 982. [Google Scholar] [CrossRef]
- Shah, N.A.; Contreras-Astorga, A.; Fillion-Gourdeau, F.m.c.; Ahsan, M.A.H.; MacLean, S.; Faizal, M. Effects of discrete topology on quantum transport across a graphene n-p-n junction: A quantum gravity analog. Phys. Rev. B 2022, 105, L161401. [Google Scholar] [CrossRef]
- Deser, S.; Jackiw, R.; ’t Hooft, G. Three-dimensional Einstein gravity: Dynamics of flat space. Ann. Phys. 1984, 152, 220–235. [Google Scholar] [CrossRef]
- Bañados, M.; Henneaux, M.; Teitelboim, C.; Zanelli, J. Geometry of the 2+1 black hole. Phys. Rev. D 1993, 48, 1506–1525. [Google Scholar] [CrossRef]
- Donnay, L. Asymptotic dynamics of three-dimensional gravity. PoS Proc. Sci. 2016, 271, 1. [Google Scholar] [CrossRef]
- Schlenker, J.M.; Witten, E. No Ensemble Averaging Below the Black Hole Threshold. arXiv 2022, arXiv:2202.01372. [Google Scholar] [CrossRef]
- Katanaev, M.; Volovich, I. Theory of defects in solids and three-dimensional gravity. Ann. Phys. 1992, 216, 1–28. [Google Scholar] [CrossRef]
- Guevara, A.; Pais, P.; Zanelli, J. Dynamical Contents of Unconventional Supersymmetry. J. High Energy Phys. 2016, 2016, 85. [Google Scholar] [CrossRef]
- Pais, P.; Iorio, A. Time-loops in Dirac materials, torsion and unconventional Supersymmetry. PoS Proc. Sci. 2021, 390, 669. [Google Scholar] [CrossRef]
- Jackiw, R.; Pi, S.Y. Soliton solutions to the gauged nonlinear Schrödinger equation on the plane. Phys. Rev. Lett. 1990, 64, 2969–2972. [Google Scholar] [CrossRef]
- Jackiw, R.; Pi, S.Y. Classical and quantal nonrelativistic Chern-Simons theory. Phys. Rev. D 1990, 42, 3500–3513. [Google Scholar] [CrossRef]
- Horváthy, P.A.; Yéra, J.C. Vortex Solutions of the Liouville Equation. Lett. Math. Phys. 1998, 46, 111–120. [Google Scholar] [CrossRef]
- Doplicher, S.; Fredenhagen, K.; Roberts, J.E. The quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys. 1995, 172, 187–220. [Google Scholar] [CrossRef]
- Page, D.N. Average entropy of a subsystem. Phys. Rev. Lett. 1993, 71, 1291–1294. [Google Scholar] [CrossRef] [PubMed]
- Page, D.N. Information in black hole radiation. Phys. Rev. Lett. 1993, 71, 3743–3746. [Google Scholar] [CrossRef]
- Harlow, D. Jerusalem lectures on black holes and quantum information. Rev. Mod. Phys. 2016, 88, 015002. [Google Scholar] [CrossRef]
- Iorio, A.; Lambiase, G.; Vitiello, G. Entangled quantum fields near the event horizon and entropy. Ann. Phys. 2004, 309, 151–165. [Google Scholar] [CrossRef]
- Takahashi, Y.; Umezawa, H. Thermo field dynamics. Int. J. Mod. Phys. B 1996, 10, 1755–1805. [Google Scholar] [CrossRef]
- Umezawa, H.; Matsumoto, H.; Tachiki, M. Thermo Field Dynamics and Condensed States; North-Holland: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Dirac, P. Lectures on Quantum Field Theory; Monographs Series; Belfer Graduate School of Science, Yeshiva University: New York, NY, USA, 1966. [Google Scholar]
- Umezawa, H. Advanced Field Theory: Micro, Macro, and Thermal Physics; American Institute of Physics: College Park, MA, USA, 1993. [Google Scholar]
- Mukhanov, V.F. Are black holes quantized? Sov. J. Exp. Theor. Phys. Lett. 1986, 44, 63–66. [Google Scholar]
- Bekenstein, J.D.; Mukhanov, V. Spectroscopy of the quantum black hole. Phys. Lett. B 1995, 360, 7–12. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Quantum Black Holes as Atoms. Available online: https://arxiv.org/abs/gr-qc/9710076 (accessed on 6 July 2022).
- Castorina, P.; Iorio, A.; Smaldone, L. Quantum black holes, partition of integers and self-similarity. Mod. Phys. Lett. A 2022, accepted. [Google Scholar] [CrossRef]
- Maggiore, M. Physical Interpretation of the Spectrum of Black Hole Quasinormal Modes. Phys. Rev. Lett. 2008, 100, 141301. [Google Scholar] [CrossRef]
- Stone, M.H. Linear Transformations in Hilbert Space. III. Operational Methods and Group Theory. Proc. Natl. Acad. Sci. USA 1930, 16, 172–175. [Google Scholar] [CrossRef] [Green Version]
- Neumann, J.V. Die Eindeutigkeit der Schrödingerschen Operatoren. Math. Ann. 1931, 104, 570–578. [Google Scholar] [CrossRef]
- Umezawa, H.; Vitiello, G. Quantum Mechanics; Bibliopolis: Napoli, Italy, 1985. [Google Scholar]
- Friedrichs, K. Mathematical Aspects of the Quantum Theory of Fields; Interscience Publishers: Geneva, Switzerland, 1953. [Google Scholar]
- Barton, G. Introduction to Advanced Field Theory; Interscience Tracts on Physics and Astronomy; Wiley: Hoboken, NJ, USA, 1963. [Google Scholar]
- Itzykson, C.; Zuber, J. Quantum Field Theory; Dover Books on Physics; Dover Publications: Mineola, NY, USA, 2012. [Google Scholar]
- Blasone, M.; Jizba, P.; Smaldone, L. Functional integrals and inequivalent representations in Quantum Field Theory. Ann. Phys. 2017, 383, 207–238. [Google Scholar] [CrossRef]
- Acerbi, F.; Morchio, G.; Strocchi, F. Nonregular representations of CCR algebras and algebraic fermion bosonization. Rep. Math. Phys. 1993, 33, 7–19. [Google Scholar] [CrossRef]
- Schulman, L. A Path Integral for Spin. Phys. Rev. 1968, 176, 1558–1569. [Google Scholar] [CrossRef]
- Schulman, L. Techniques and Applications of Path Integration; Dover Books on Physics; Dover Publications: Mineola, NY, USA, 2012. [Google Scholar]
- Kastrup, H.A. Quantization of the canonically conjugate pair angle and orbital angular momentum. Phys. Rev. A 2006, 73, 052104. [Google Scholar] [CrossRef]
- Ashtekar, A.; Fairhurst, S.; Willis, J.L. Quantum gravity, shadow states and quantum mechanics. Class. Quant. Grav. 2003, 20, 1031–1061. [Google Scholar] [CrossRef]
- Corichi, A.; Vukašinac, T.; Zapata, J.A. Polymer quantum mechanics and its continuum limit. Phys. Rev. D 2007, 76, 044016. [Google Scholar] [CrossRef]
- Acquaviva, G.; Iorio, A.; Smaldone, L. Quantum groups and polymer quantum mechanics. Mod. Phys. Lett. A 2021, 36, 2150229. [Google Scholar] [CrossRef]
- Acquaviva, G.; Iorio, A.; Smaldone, L. Topologically inequivalent quantizations. Ann. Phys. 2021, 434, 168641. [Google Scholar] [CrossRef]
- Matsumoto, H.; Papastamatiou, N.; Umezawa, H. The boson transformation and the vortex solutions. Nucl. Phys. B 1975, 97, 90–124. [Google Scholar] [CrossRef]
- Matsumoto, H.; Umezawa, H.; Umezawa, M. Extended Objects in Field Theory with Non-Abelian Group Symmetry. Fortschritte Phys. 1981, 29, 441–462. [Google Scholar] [CrossRef]
- Blasone, M.; Jizba, P. Topological Defects as Inhomogeneous Condensates in Quantum Field Theory. Ann. Phys. 2002, 295, 230–260. [Google Scholar] [CrossRef]
- Iorio, A.; Smaldone, L. Quantum Black Holes as Classical Space Factories. Available online: https://www.researchgate.net/publication/362175062_Quantum_black_holes_as_classical_space_factories?channel=doi&linkId=62da79a1aa5823729ed68b24&showFulltext=true (accessed on 6 July 2022).
- Wald, R.M. Black hole entropy is the Noether charge. Phys. Rev. D 1993, 48, R3427–R3431. [Google Scholar] [CrossRef]
- Heide, C.; Higuchi, T.; Weber, H.B.; Hommelhoff, P. Coherent Electron Trajectory Control in Graphene. Phys. Rev. Lett. 2018, 121, 207401. [Google Scholar] [CrossRef]
- Nielsen, M.; Chuang, I. Quantum Computation and Quantum Information; Cambridge Series on Information and the Natural Sciences; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Terashima, H. Entanglement entropy of the black hole horizon. Phys. Rev. D 2000, 61, 104016. [Google Scholar] [CrossRef]
- Maldacena, J.M. Eternal black holes in anti-de Sitter. J. High Energy Phys. 2003, 2003, 21. [Google Scholar] [CrossRef]
- Iorio, A.; Pais, P. Generalized uncertainty principle in graphene. J. Phys. Conf. Ser. 2019, 1275, 012061. [Google Scholar] [CrossRef]
- Cadoni, M.; Melis, M. Holographic Entanglement Entropy of the BTZ Black Hole. Found. Phys. 2010, 40, 638–657. [Google Scholar] [CrossRef]
- Alvarez, P.D.; Pais, P.; Rodríguez, E.; Salgado-Rebolledo, P.; Zanelli, J. The BTZ black hole as a Lorentz-flat geometry. Phys. Lett. B 2014, 738, 134–135. [Google Scholar] [CrossRef]
- Alvarez, P.D.; Pais, P.; Rodríguez, E.; Salgado-Rebolledo, P.; Zanelli, J. Supersymmetric 3D model for gravity with SU(2) gauge symmetry, mass generation and effective cosmological constant. Class. Quant. Grav. 2015, 32, 175014. [Google Scholar] [CrossRef] [Green Version]
- Susskind, L.; Lindesay, J. An Introduction to Black Holes, Information and the String Theory Revolution; World Scientific Publishing: Singapore, 2004; Available online: https://www.worldscientific.com/worldscibooks/10.1142/5689#t=aboutBook (accessed on 20 February 2020).
- Iorio, A. What after CERN? Opportunities from co-responding systems. J. Phys. Conf. Ser. Iop Publ. 2015, 626, 012035. [Google Scholar] [CrossRef]
- Iorio, A. Analog hep-th, on Dirac materials and in general. PoS Proc. Sci. 2020, 376, 203. [Google Scholar] [CrossRef]
- Iorio, A. Making the case for a “CERN for analogs”. PoS Proc. Sci. 2020, 390, 688. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acquaviva, G.; Iorio, A.; Pais, P.; Smaldone, L. Hunting Quantum Gravity with Analogs: The Case of Graphene. Universe 2022, 8, 455. https://doi.org/10.3390/universe8090455
Acquaviva G, Iorio A, Pais P, Smaldone L. Hunting Quantum Gravity with Analogs: The Case of Graphene. Universe. 2022; 8(9):455. https://doi.org/10.3390/universe8090455
Chicago/Turabian StyleAcquaviva, Giovanni, Alfredo Iorio, Pablo Pais, and Luca Smaldone. 2022. "Hunting Quantum Gravity with Analogs: The Case of Graphene" Universe 8, no. 9: 455. https://doi.org/10.3390/universe8090455
APA StyleAcquaviva, G., Iorio, A., Pais, P., & Smaldone, L. (2022). Hunting Quantum Gravity with Analogs: The Case of Graphene. Universe, 8(9), 455. https://doi.org/10.3390/universe8090455