Path Integral Action for a Resonant Detector of Gravitational Waves in the Generalized Uncertainty Principle Framework
Abstract
:1. Introduction
2. The Gravitational Wave Resonant Detector Interaction Model
3. Path Integral and the Propagation Kernel
4. Obtaining the Classical Solution for a Periodic Circularly Polarized Gravitational Wave
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Einstein, A. Die feldgleichungen der gravitation. Sitzungsber Preuss Akad Wiss 1915, 25, 844–847. [Google Scholar]
- Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie. Ann. Physik 1916, 49, 769. [Google Scholar] [CrossRef]
- Rovelli, C. Loop Quantum Gravity. Living Rev. Relativ. 1998, 1, 1–69. [Google Scholar]
- Carlip, S. Quantum Gravity: A progress report. Rep. Prog. Phys. 2001, 64, 885. [Google Scholar] [CrossRef]
- Amati, D.; Ciafaloni, M.; Veneziano, G. Can spacetime be probed below the string size? Phys. Lett. B 1989, 216, 41–47. [Google Scholar] [CrossRef]
- Konishi, K.; Paffuti, G.; Provero, P. Minimum physical length and the generalized uncertainty principle in string theory. Phys. Lett. B 1990, 234, 276–284. [Google Scholar] [CrossRef]
- Girelli, F.; Livine, E.R.; Oriti, D. Deformed special relativity as an effective flat limit of quantum gravity. Nucl. Phys. B 2005, 708, 411–433. [Google Scholar] [CrossRef]
- Bronstein, M.P. Kvantovanie gravitatsionnykh voln (Quantization of gravitational waves). Zh. Eksp. Teor. Fiz. 1936, 6, 195. [Google Scholar]
- Bronstein, M.P. Quantentheorie schwacher gravitationsfelder. Phys. Z. Sowjetunion 1936, 9, 140–157. [Google Scholar]
- Mead, C.A. Possible Connection Between Gravitation and Fundamental Length. Phys. Rev. B 1964, 135, B849. [Google Scholar] [CrossRef]
- Maggiore, M. The algebraic structure of the generalized uncertainty principle. Phys. Lett. B 1993, 319, 83–86. [Google Scholar] [CrossRef]
- Scardigli, F. Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experiment. Phys. Lett. B 1999, 452, 39–44. [Google Scholar] [CrossRef]
- Adler, R.J.; Santiago, D.I. On gravity and the uncertainty principle. Mod. Phys. Lett. A 1999, 14, 1371–1381. [Google Scholar] [CrossRef]
- Adler, R.J.; Chen, P.; Santiago, D.I. The Generalized Uncertainty Principle and Black Hole Remnants. Gen. Relativ. Gravit. 2001, 33, 2101–2108. [Google Scholar] [CrossRef]
- Banerjee, R.; Ghosh, S. Generalised uncertainty principle, remnant mass and singularity problem in black hole thermodynamics. Phys. Lett. B 2010, 688, 224–229. [Google Scholar] [CrossRef]
- Gangopadhyay, S.; Dutta, A.; Saha, A. Generalized uncertainty principle and black hole thermodynamics. Gen. Relativ. Gravit. 2014, 46, 1661. [Google Scholar] [CrossRef]
- Scardigli, F.; Casadio, R. Gravitational tests of the generalized uncertainty principle. Eur. Phys. J. C 2015, 75, 425. [Google Scholar] [CrossRef]
- Mandal, R.; Bhattacharyya, S.; Gangopadhyay, S. Rainbow black hole thermodynamics and the generalized uncertainty principle. Gen. Relativ. Gravit. 2018, 50, 143. [Google Scholar] [CrossRef]
- Ong, Y.C. Generalized uncertainty principle, black holes, and white dwarfs: A tale of two infinities. J. Cosmol. Astropart. Phys. 2018, 2018, 015. [Google Scholar] [CrossRef]
- Buoninfante, L.; Luciano, G.G.; Petruzzeillo, L. Generalized uncertainty principle and corpuscular gravity. Eur. Phys. J. C 2019, 79, 663. [Google Scholar] [CrossRef]
- Majumder, B. Quantum black hole and the modified uncertainty principle. Phys. Lett. B 2011, 701, 384–387. [Google Scholar] [CrossRef]
- Das, S.; Vagenas, E.C. Universality of Quantum Gravity Corrections. Phys. Rev. Lett. 2008, 101, 221301. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Vagenas, E.C. Phenomenological implications of the generalized uncertainty principle. Can. J. Phys. 2009, 87, 233–240. [Google Scholar] [CrossRef]
- Pikovski, I.; Vanner, M.R.; Aspelmeyer, M.; Kim, M.S.; Brukner, Č. Probing Planck-scale physics with quantum optics. Nat. Phys. 2012, 8, 393–397. [Google Scholar] [CrossRef]
- Bosso, P.; Das, S.; Pikovski, I.; Vanner, M.R. Amplified transduction of Planck-scale effects using quantum optics. Phys. Rev. A 2017, 96, 023849. [Google Scholar] [CrossRef]
- Kumar, S.P.; Plenio, M.B. Quantum-optical tests of Planck-scale physics. Phys. Rev. A 2018, 97, 063855. [Google Scholar] [CrossRef]
- Gangopadhyay, S.; Bhattacharyya, S. Path-integral action of a particle with the generalized uncertainty principle and correspondence with noncommutativity. Phys. Rev. D 2019, 99, 104010. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Gangopadhyay, S.; Saha, A. Generalized uncertainty principle in resonant detectors of gravitational waves. Class. Quant. Grav. 2020, 37, 195006. [Google Scholar] [CrossRef]
- Das, S.; Pramanik, S. Path integral for nonrelativistic generalized uncertainty principle corrected Hamiltonian. Phys. Rev. D 2012, 86, 085004. [Google Scholar] [CrossRef]
- Gangopadhyay, S.; Bhattacharyya, S. Path integral action in the generalized uncertainty principle framework. Phys. Rev. D 2021, 104, 026003. [Google Scholar]
- Kempf, A.; Mangano, G.; Mann, R.B. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 1995, 52, 1108. [Google Scholar] [CrossRef] [PubMed]
- Bawaj, M.; Biancofiore, C.; Bonaldi, M.; Bonfigli, F.; Borrielli, A.; Di Giuseppe, G.; Marin, F. Probing deformed commutators with macroscopic harmonic oscillators. Nat. Commun. 2015, 6, 7503. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.W.; Yang, S.Z.; Li, H.L.; Zu, X.T. Constraining the generalized uncertainty principle with the gravitational wave event GW150914. Phys. Rev. B 2017, 768, 81–85. [Google Scholar] [CrossRef]
- Bushev, P.A.; Bourhill, J.; Goryachev, M.; Kukharchyk, N.; Ivanov, E.; Galliou, S.; Tobar, M.E.; Danilishin, S. Testing the generalized uncertainty principle with macroscopic mechanical oscillator and pendulums. Phys. Rev. D 2019, 100, 066020. [Google Scholar] [CrossRef]
- Scardigli, F. The deformation parameter of the generalized uncertainty principle. J. Phys. Conf. Ser. 2019, 1275, 012004. [Google Scholar] [CrossRef]
- Girdhar, P.; Doherty, A.C. Testing generalized uncertainty principles through quantum noise. New J. Phys. 2020, 22, 093073. [Google Scholar] [CrossRef]
- Chatterjee, R.; Gangopadhyay, S. Violation of equivalence in an accelerating atom-mirror system in the generalized uncertainty principle framework. Phys. Rev. D 2021, 104, 124001. [Google Scholar] [CrossRef]
- Sen, S.; Bhattacharyya, S.; Gangopadhyay, S. Probing the generalized uncertainty principle through quantum noises in optomechanical systems. Class. Quant. Grav. 2022, 39, 075020. [Google Scholar] [CrossRef]
- Weber, J. Evidence for Discovery of Gravitational Radiation. Phys. Rev. Lett. 1969, 22, 1320. [Google Scholar] [CrossRef]
- Ferrari, V.; Pizzella, G.; Lee, M.; Weber, J. Search for correlations between the University of Maryland and the University of Rome gravitational radiation antennas. Phys. Rev. D 1982, 24, 2471. [Google Scholar] [CrossRef]
- Giazotto, A. Status of Gravitational Wave Detection. In General Relativity and John Archibald Wheeler; Astrophysics and Space Science Library 367; Ciufolini, I., Matzner, R.A., Eds.; Springer: Berlin/Heielberg, Germany, 2010. [Google Scholar]
- Aguiar, O.D. Past, present and future of the Resonant-Mass gravitational wave detectors. Res. Astron. Astrophys. 2010, 11, 1. [Google Scholar] [CrossRef]
- Aasi, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Ackley, K.; DeSalvo, R. Advanced LIGO. Class. Quant. Grav. 2015, 32, 074001. [Google Scholar]
- Abott, B.P. LIGO Scientific Collaboration and Virgo Collaboration. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar]
- Acernese, F.A.; Agathos, M.; Agatsuma, K.; Aisa, D.; Allemandou, N.; Allocca, A.; Meidam, J. Advanced Virgo: A second-generation interferometric gravitational wave detector. Class. Quant. Grav. 2015, 32, 024001. [Google Scholar] [CrossRef]
- Saha, A.; Gangopadhyay, S. Noncommutative quantum mechanics of a test particle under linearized gravitational waves. Phys. Lett. B 2009, 681, 96–99. [Google Scholar] [CrossRef]
- Saha, A.; Gangopadhyay, S.; Saha, S. Noncommutative quantum mechanics of a harmonic oscillator under linearized gravitational waves. Phys. Rev. D 2011, 83, 025004. [Google Scholar] [CrossRef]
- Saha, A.; Gangopadhyay, S. Resonant detectors of gravitational wave as a possible probe of the noncommutative structure of space. Class. Quant. Grav. 2016, 33, 205006. [Google Scholar] [CrossRef] [Green Version]
- Saha, A.; Gangopadhyay, S.; Saha, S. Quantum mechanical systems interacting with different polarizations of gravitational waves in noncommutative phase space. Phys. Rev. D 2018, 97, 044015. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Gangopadhyay, S.; Saha, A. Footprint of spatial noncommutativity in resonant detectors of gravitational wave. Class. Quant. Grav. 2018, 36, 055006. [Google Scholar] [CrossRef]
- Gangopadhyay, S.; Bhattacharyya, S.; Saha, A. Signatures of Noncommutativity in Bar Detectors of Gravitational Waves. Ukr. J. Phys. 2019, 64, 1029. [Google Scholar] [CrossRef]
- Bosso, P.; Das, S.; Mann, R.B. Potential tests of the generalized uncertainty principle in the advanced LIGO experiment. Phys. Rev. B 2018, 785, 498–505. [Google Scholar] [CrossRef]
- Pizzella, G. Search for Gravitational Waves with Resonant Detectors. In General Relativity and John Archibald Wheeler; Astrophysics and Space Science Library, vol 367; Ciufolini, I., Matzner, R.A., Eds.; Springer: Dordrecht, Germany, 2010. [Google Scholar]
- Thorne, K.S. 300 Years of Gravitation; Hawking, S.W., Israel, W., Eds.; Cambridge University Press: Cambridge, UK, 1987; p. 330. [Google Scholar]
- Gangopadhyay, S.; Scholtz, F.G. Path-Integral Action of a Particle in the Noncommutative Plane. Phys. Rev. Lett. 2009, 102, 241602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggiore, M. Gravitational Waves. Vol. 1: Theory and Experiments; Oxford Master Series in Physics; Oxford University Press: London, UK, 2007. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sen, S.; Bhattacharyya, S.; Gangopadhyay, S. Path Integral Action for a Resonant Detector of Gravitational Waves in the Generalized Uncertainty Principle Framework. Universe 2022, 8, 450. https://doi.org/10.3390/universe8090450
Sen S, Bhattacharyya S, Gangopadhyay S. Path Integral Action for a Resonant Detector of Gravitational Waves in the Generalized Uncertainty Principle Framework. Universe. 2022; 8(9):450. https://doi.org/10.3390/universe8090450
Chicago/Turabian StyleSen, Soham, Sukanta Bhattacharyya, and Sunandan Gangopadhyay. 2022. "Path Integral Action for a Resonant Detector of Gravitational Waves in the Generalized Uncertainty Principle Framework" Universe 8, no. 9: 450. https://doi.org/10.3390/universe8090450
APA StyleSen, S., Bhattacharyya, S., & Gangopadhyay, S. (2022). Path Integral Action for a Resonant Detector of Gravitational Waves in the Generalized Uncertainty Principle Framework. Universe, 8(9), 450. https://doi.org/10.3390/universe8090450