Goldstone States as Non-Local Hidden Variables
Abstract
:1. Introduction
2. Physical Fields in Polar Form
2.1. Kinematic Quantities
2.1.1. Transformation Laws and Fundamental Fields
2.1.2. Polar Decompositions
2.1.3. Covariant Derivatives
2.1.4. Tensorial Connections
2.1.5. Curvatures
2.2. Dynamical Coupling
2.2.1. Field Equations
2.2.2. Polar Form
3. Goldstone States
3.1. Entangled Observables
3.2. Quantum Potentials
4. Comments
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 1935, 47, 777. [Google Scholar] [CrossRef] [Green Version]
- Bohm, D.; Aharonov, Y. Discussion of Experimental Proof for the Paradox of Einstein, Rosen, and Podolsky. Phys. Rev. 1957, 108, 1070. [Google Scholar] [CrossRef]
- Bell, J.S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1964, 1, 195. [Google Scholar] [CrossRef] [Green Version]
- Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 1969, 23, 880. [Google Scholar] [CrossRef] [Green Version]
- Kochen, S.; Specker, E.P. The problem of hidden variables in quantum mechanics. J. Math. Mech. 1968, 17, 59. [Google Scholar]
- Conway, J.; Kochen, S. The Free Will Theorem. Found. Phys. 2006, 36, 1441. [Google Scholar] [CrossRef] [Green Version]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of ’Hidden’ Variables. Phys. Rev. 1952, 85, 166. [Google Scholar] [CrossRef]
- Bohm, D. Comments on an Article of Takabayasi conserning the Formulation of Quantum Mechanics with Classical Pictures. Prog. Theor. Phys. 1953, 9, 273. [Google Scholar] [CrossRef]
- Dürr, D.; Munch-Berndl, K. A Hypersurface Bohm-Dirac theory. Phys. Rev. A 1999, 60, 2729. [Google Scholar] [CrossRef] [Green Version]
- Dürr, D.; Goldstein, S.; Norsen, T.; Struyve, W.; Zanghì, N. Can Bohmian mechanics be made relativistic? Proc. R. Soc. Lond. A 2013, 470, 20130699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gondran, M.; Gondran, A. Replacing the Singlet Spinor of the EPR-B Experiment in the Configuration Space with Two Single-Particle Spinors in Physical Space. Found. Phys. 2016, 46, 1109. [Google Scholar] [CrossRef] [Green Version]
- Gasperini, M. Theory of Gravitational Interactions; Springer Nature: Berlin, Switzerland, 2017. [Google Scholar]
- Yvon, J. Équations de Dirac-Madelung. J. Phys. Radium 1940, 1, 18. [Google Scholar] [CrossRef]
- Takabayasi, T. Relativistic Hydrodynamics of the Dirac Matter. Prog. Theor. Phys. Suppl. 1957, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, L. Spinors in Polar Form. Eur. Phys. J. Plus 2021, 136, 354. [Google Scholar] [CrossRef]
- Fabbri, L. The Tensorial Connections. Eur. Phys. J. C 2020, 80, 385. [Google Scholar] [CrossRef]
- Goldstone, J. Field Theories with Superconductor Solutions. Nuovo Cim. 1961, 19, 154. [Google Scholar] [CrossRef]
- Goldstone, J.; Salam, A.; Weinberg, S. Broken Symmetries. Phys. Rev. 1962, 127, 965. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabbri, L. Goldstone States as Non-Local Hidden Variables. Universe 2022, 8, 277. https://doi.org/10.3390/universe8050277
Fabbri L. Goldstone States as Non-Local Hidden Variables. Universe. 2022; 8(5):277. https://doi.org/10.3390/universe8050277
Chicago/Turabian StyleFabbri, Luca. 2022. "Goldstone States as Non-Local Hidden Variables" Universe 8, no. 5: 277. https://doi.org/10.3390/universe8050277