Gauge Gravity Vacuum in Constraintless Clairaut-Type Formalism
Abstract
:1. Introduction
2. A Review of the Covariant Abelian Decomposition of Lorentz Gauge Theory
2.1. The CDG Decomposition in QCD
2.1.1. Formalism
2.1.2. The Degrees of Freedom in the CDG Decomposition
2.2. CDG Decomposition of in Euclidean Space
3. The Vacuum of
4. Application of Clairaut Formalism to the Rotation-Boost Decomposition of the Gravitational Connection
4.1. A Review of the Hamiltonian-Clairaut Formalism
4.2. The Contribution of the Clairaut Formalism
4.2.1. Curvature
4.2.2. Corrections to the Equations of Motion
4.2.3. Corrections to the Commutation Relations
5. Effective Action
5.1. Particle Number and the Monopole Background
5.2. The Hilbert–Einstein Term
6. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Savvidy, G.K. Infrared instability of the vacuum state of gauge theories and asymptotic freedom. Phys. Lett. 1977, B71, 133. [Google Scholar] [CrossRef]
- Nielsen, N.K.; Olesen, P. An unstable Yang-Mills field mode. Nucl. Phys. 1978, B144, 376. [Google Scholar] [CrossRef]
- ’t Hooft, G. Topology of the Gauge Condition and New Confinement Phases in Nonabelian Gauge Theories. Nucl. Phys. 1981, B190, 455. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.M. Colored monopoles. Phys. Rev. Lett. 1980, 44, 1115–1118. [Google Scholar] [CrossRef]
- Duan, Y.S.; Ge, M.L. SU(2) gauge theory and electrodynamics of N moving magnetic monopoles. Sci. Sinica 1979, 11, 1072–1075. [Google Scholar]
- Cho, Y.M.; Pak, D.G. Monopole condensation in SU(2) QCD. Phys. Rev. 2002, D65, 074027. [Google Scholar]
- Cho, Y.M.; Walker, M.L. Stability of monopole condensation in SU(2) QCD. Mod. Phys. Lett. 2004, A19, 2707–2716. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.M.; Walker, M.L.; Pak, D.G. Monopole condensation and confinement of color in SU(2) QCD. JHEP 2004, 05, 073. [Google Scholar] [CrossRef] [Green Version]
- Kay, D.; Kumar, A.; Parthasarathy, R. Savvidy vacuum in SU(2) Yang-Mills theory. Mod. Phys. Lett. 2005, A20, 1655–1662. [Google Scholar] [CrossRef]
- Kim, S.W.; Pak, D.G. Torsion as a dynamic degree of freedom of quantum gravity. Class. Quantum Gravity 2008, 25, 065011. [Google Scholar] [CrossRef]
- Pak, D. Confinement, vacuum structure: From QCD to quantum gravity. Nucl. Phys. A 2010, 844, 115c–119c. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.M.; Pak, D.G.; Park, B.S. A Minimal model of Lorentz gauge gravity with dynamical torsion. Int. J. Mod. Phys. A 2010, 25, 2867–2882. [Google Scholar] [CrossRef] [Green Version]
- Utiyama, R. Invariant theoretical interpretation of interaction. Phys. Rev. 1956, 101, 1597. [Google Scholar] [CrossRef]
- Kibble, T. Lorentz invariance and the gravitational field. J. Math. Phys. 1961, 2, 212–221. [Google Scholar] [CrossRef] [Green Version]
- Sciama, D. The physical structure of general relativity. Rev. Mod. Phys. 1964, 36, 463. [Google Scholar] [CrossRef]
- Pak, D.; Kim, Y.; Tsukioka, T. Lorentz gauge theory as a model of emergent gravity. Phys. Rev. D 2012, 85, 084006. [Google Scholar] [CrossRef] [Green Version]
- Shabanov, S.V. Yang–Mills theory as an Abelian theory without gauge fixing. Phys. Lett. 1999, B463, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Bae, W.S.; Cho, Y.M.; Kimm, S.W. Qcd versus skyrme-faddeev theory. Phys. Rev. 2002, D65, 025005. [Google Scholar]
- Shabanov, S.V. An effective action for monopoles and knot solitons in Yang-Mills theory. Phys. Lett. 1999, B458, 322–330. [Google Scholar] [CrossRef] [Green Version]
- Kondo, K.I.; Murakami, T.; Shinohara, T. BRST symmetry of SU(2) Yang-Mills theory in Cho-Faddeev-Niemi decomposition. Eur. Phys. J. 2005, C42, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Kondo, K.I. Gauge-invariant gluon mass, infrared Abelian dominance and stability of magnetic vacuum. Phys. Rev. 2006, D74, 125003. [Google Scholar] [CrossRef] [Green Version]
- Lavrov, P.M.; Merzlikin, B.S. Legendre transformations and Clairaut-type equations. Phys. Lett. 2016, B756, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Wang, H.; Wang, Z.; Qu, F. The Wu-Yang potential of Magnetic Skyrmion from SU(2) Flat Connection. Sci. China Phys. Mech. Astron. 2019, 62, 950021. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.; Hong, S.T.; Kim, J.; Park, Y.J. Dirac quantization of restricted QCD. Mod. Phys. Lett. A 2007, 22, 2799–2813. [Google Scholar] [CrossRef] [Green Version]
- Walker, M.L.; Duplij, S. Cho-Duan-Ge decomposition of QCD in the constraintless Clairaut-type formalism. Phys. Rev. D 2015, 91, 064022. [Google Scholar] [CrossRef] [Green Version]
- Duplij, S. Generalized duality, Hamiltonian formalism and new brackets. J. Math. Phys. Anal. Geom. 2014, 10, 189–220. [Google Scholar] [CrossRef] [Green Version]
- Duplij, S. Formulation of singular theories in a partial Hamiltonian formalism using a new bracket and multi-time dynamics. Int. J. Geom. Methods Mod. Phys. 2015, 12, 1550001. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.; Oh, S.; Kim, S. Abelian dominance in Einstein’s theory. Class. Quantum Gravity 2012, 29, 205007. [Google Scholar] [CrossRef]
- Cho, Y.M.; Oh, S.H.; Park, B.S. Abelian decomposition of Einstein’s theory: Restricted gravity. Grav. Cosm. 2015, 21, 257–269. [Google Scholar] [CrossRef]
- Schanbacher, V. Gluon propagator and effective lagrangian in QCD. Phys. Rev. 1982, D26, 489. [Google Scholar] [CrossRef]
- Kondo, K.I.; Murakami, T.; Shinohara, T. Yang–Mills theory constructed from Cho-Faddeev-Niemi decomposition. Prog. Theor. Phys. 2006, 115, 201–216. [Google Scholar] [CrossRef] [Green Version]
- Itzykson, C.; Zuber, J.B. Quantum Field Theory; McGraw-Hill: New York, NY, USA, 2012. [Google Scholar]
- Peskin, M.; Schroeder, D. An Introduction to Quantum Field Theory; Addison-Wesley: Reading, MA, USA, 1995. [Google Scholar]
- Weinberg, S. The Quantum Theory of Fields; Cambridge University Press: Cambridge, UK, 1996; Volumes 1–3. [Google Scholar]
- Schwinger, J. On gauge invariance and vacuum polarization. Phys. Rev. 1951, 82, 664. [Google Scholar] [CrossRef]
- Duplij, S. A new Hamiltonian formalism for singular Lagrangian theories. J. Kharkov Univ. Ser. Nuclei Part. Fields 2011, 969, 34–39. [Google Scholar]
- Duplij, S. Constraintless Hamiltonian formalism and new brackets. In Exotic Algebraic and Geometric Structures in Theoretical Physics; Duplij, S., Ed.; Nova Publishers: New York, NY, USA, 2018; pp. 197–230. [Google Scholar]
- Antoniadis, I.; Tomboulis, E. Gauge invariance and unitarity in higher-derivative quantum gravity. Phys. Rev. D 1986, 33, 2756. [Google Scholar] [CrossRef] [PubMed]
- Johnston, D. Sedentary ghost poles in higher derivative gravity. Nucl. Phys. B 1988, 297, 721–732. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walker, M.L.; Duplij, S. Gauge Gravity Vacuum in Constraintless Clairaut-Type Formalism. Universe 2022, 8, 176. https://doi.org/10.3390/universe8030176
Walker ML, Duplij S. Gauge Gravity Vacuum in Constraintless Clairaut-Type Formalism. Universe. 2022; 8(3):176. https://doi.org/10.3390/universe8030176
Chicago/Turabian StyleWalker, Michael L., and Steven Duplij. 2022. "Gauge Gravity Vacuum in Constraintless Clairaut-Type Formalism" Universe 8, no. 3: 176. https://doi.org/10.3390/universe8030176
APA StyleWalker, M. L., & Duplij, S. (2022). Gauge Gravity Vacuum in Constraintless Clairaut-Type Formalism. Universe, 8(3), 176. https://doi.org/10.3390/universe8030176