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Abstract: The gauged Lorentz theory with torsion has been argued to have an effective theory whose
non-trivial background is responsible for background gravitational curvature if torsion is treated
as a quantum-mechanical variable against a background of constant curvature. We use the CDG
decomposition to argue that such a background can be found without including torsion. Adapting
our previously published Clairaut-based treatment of QCD, we go on to study the implications for
second quantisation.
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1. Introduction

The dual superconductor model of QCD confinement requires the vacuum to contain
a condensate of (chromo) magnetic monopoles. This led several authors to consider
embedded, usually Abelian, subgroups within gauge groups. The early focus was on
the U(1) subgroup of SU(2), with analyses by Savvidy [1], Nielsen and Olesen [2] and
t’Hooft [3] considering the maximal Abelian gauge in which the Abelian subgroup is
assumed to lie along the internal e3 axis. While they did find a magnetic condensate to
be a lower energy state than the perturbative vacuum, their analyses blatantly violated
gauge covariance and offered no evidence that the chromomagnetic background was due
to monopoles. There was also considerable controversy regarding the stability of such a
vacuum. These issues were resolved by the Cho–Duan–Ge (CDG) decomposition [4,5],
which introduces an internal vector to covariantly allow a subgroup embedding within
a theory’s gauge group to vary throughout spacetime. Analyses based on this approach
confirmed this magnetic background [1,3] and careful consideration of renormalisation
and causality [6–9] finally resolved such a condensate to be stable through several
independent arguments.

It is common for analyses of QCD based on the CDG decomposition to assume
the monopole condensate comprising the vacuum to provide a slow-moving vacuum
background to the quantum degrees of freedom (DOFs) [6]. This was the basis of a novel
approach to Einstein–Cartan gravity, in which contorsion (or torsion) is the quantised
dynamic degree of freedom confined by a slow-moving classical background gravitational
curvature et al. [10–12]. Their work was based on the Lorentz gauge field theory initially
put forward by Utiyam, Kibble and Sciama [13–15] for which it has long been known
that the non-compact nature of the Lorentz group led to the theory not being positive
semi-definite. They dealt with this by performing their initial analyses in Euclidean space,
transforming the Lorentz gauge group to SO(4) ' SU(2)× SU(2), until later work found
the theory to be well defined with propagators for its canonical DOFs [16].

The theory considered in this paper is also a Lorentz gauge theory quadratic in
curvature except that we set contorsion to be zero. Instead of including contorsion,
we consider the Abelian decomposition of the Lorentz gauge field, whose details and
consequences would be obscured by the complexities of handling contorsion properly.
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Because we also deal with the non-compact nature of the Lorentz group by working
with SU(2) × SU(2) in Euclidean space [16], we can draw on a considerable body of
literature concerning the Abelian decomposition of SU(2) Yang–Mills theory and find that
an interesting structure emerges without the introduction of contorsion. Additionally, like
Pak et al. [16], we take our DOFs to be those of the Lorentz gauge fields instead of the
metric and/or vierbein. To avoid third-order derivatives from entering the equations of
motion (EOMs), our theory does not include localised translation symmetry (for which
vierbein are required), despite it being accepted that spacetime respects the full Poincaré
symmetry group. We restrict ourselves to the subgroup in this work to avoid complications
and so that we can find conventional propagators for the gauge bosons with a Lagrangian
quadratic in gravitational curvature. We remain mindful, however, that this is a reduced
symmetry group of gravitational dynamics rendering our model to be either low-energy
effective or perhaps even just a toy.

One of the more confusing mathematical subtleties of the CDG decomposition was the
number of canonical degrees of freedom. Shabanov argued that an additional gauge-fixing
condition is needed to remove a supposed “two extra degrees” [17] introduced by the internal
unit vector field to covariantly describe the embedded subgroup(s). Bae, Cho and Kimm later
clarified that this internal vector did not introduce two degrees of freedom requiring to be
fixed but non-canonical DOFs without EOMs [18], while the proposed constraint was merely
a consistency condition. The interested reader is referred to [6,19–21] for further details (see,
also [22,23]). Cho et al. [24] approached the issue with Dirac quantisation using second-order
restraints. In an earlier paper [25], however, the authors present a new approach to rigorously
elucidate the dynamic DOFs from the topological. It is based on the Clairaut-type formulation,
proposed by one of the authors (SD) [26,27], in a constraintless generalisation of the standard
Hamiltonian formalism to include Hessians with zero determinant. It provides a rigorous
treatment of the non-physical DOFs in the derivation of EOMs and the quantum commutation
relations. In this paper, we apply our Clairaut approach to the gauged Lorentz group [28,29]
theory with a Lagrangian quadratic in curvature.

A review of the CDG decomposition is given in Section 2, beginning with an
introduction in the context of QCD before illustrating its application to SU(2)× SU(2).
In Section 3, we illustrate the reduction of our theory to two copies of two-colour QCD
and use one-loop results from the latter to inform us about the former. Section 4 gives a
brief overview of the Clairaut–Hamiltonian formalism and uses it to study the quantisation
of this theory, sorting canonical dynamic DOFs from DOFs describing the embedding of
important subgroups and finding deviations from canonical second quantisation even for
dynamic fields. We consider the one-loop effective dynamics in Section 5, discussing the
effective particle spectrum in Section 5.1 and the possible emergence of the Einstein–Hilbert
(EH) term in Section 5.2. Our final discussion is in Section 6.

2. A Review of the Covariant Abelian Decomposition of Lorentz Gauge Theory
2.1. The CDG Decomposition in SU(2) QCD
2.1.1. Formalism

Abelian dominance has played a major role in our understanding of the QCD vacuum,
facilitating the demonstration of a monopole condensate. That a magnetic condensate
suitable for colour confinement can have lower energy than the perturbative vacuum has
been known since the 1970s [1–3], but in early work the internal direction supporting the
magnetic background could not be specified in a covariant manner and nor was there
support for the magnetic condensate being due to monopoles. The apparent existence
of destabilising tachyon modes was also an issue for some time [2,8,30]. These issues
were rectified by the introduction of the CDG decomposition, which specifies the internal
direction of the Abelian subgroup in a gauge covariant manner, allowing the internal
direction to vary arbitrarily throughout spacetime.



Universe 2022, 8, 176 3 of 14

The application of the CDG decomposition in N-colour (SU(N)) QCD is as follows:
The Lie group SU(N) has N2 − 1 generators λ(a) (a = 1, . . . N2 − 1), of which N − 1 are
Abelian generators Λ(i) (i = 1, . . . N − 1).

The gauge transformed Abelian directions (Cartan generators) are denoted as

n̂i(x) = U(x)†Λ(i)U(x). (1)

Gluon fluctuations in the n̂i directions are described by c(i)µ , where µ is the Minkowski
index. There is a covariant derivative which leaves the n̂i invariant,

D̂µn̂i(x) ≡ (∂µ + g~Vµ(x)×)n̂i(x) = 0, (2)

where ~Vµ(x) is of the form

~Vµ(x) = c(i)µ (x)n̂i(x) + ~Cµ(x), ~Cµ(x) = g−1∂µn̂i(x)× n̂i(x). (3)

The vector notation refers to the internal space, and summation is implied over
i = 1, . . . N − 1. For later convenience, we define

F(i)
µν (x) = ∂µc(i)ν (x)− ∂νc(i)µ (x), (4)

~Hµν(x) = ∂µ~Cν(x)− ∂ν~Cµ(x) + g~Cµ(x)× ~Cν(x) =∂µn̂i(x)× ∂νn̂i(x), (5)

H(i)
µν (x) = ~Hµν(x) · n̂i(x), (6)

~F(i)
µν (x) = F(i)

µν (x)n̂i(x) + ~Hµν(x). (7)

The second last term in Equation (5) follows from the definition in Equation (3). Its
being a cross-product is significant as it prevents µ, ν from having the same value. The
Lagrangian contains the square of this value, namely

H(i)
µν (x)Hµν

(i)(x) =
(
∂µn̂i(x)× ∂νn̂i(x)

)
· (∂µn̂i(x)× ∂νn̂i(x)), (8)

The form of Equation (3) might suggest the possibility of third or higher time
derivatives in a quadratic Lagrangian, but we have now seen that the specific form of
the Cho connection does not allow this.

The dynamical components of the gluon field in the off-diagonal directions of the
internal space vectors are denoted by ~Xµ(x), so if ~Aµ(x) is the gluon field then

~Aµ(x) = ~Vµ(x) + ~Xµ(x) = c(i)µ (x)n̂i(x) + ~Cµ(x) + ~Xµ(x), (9)

where
~Xµ(x)⊥n̂i(x), ∀ 1 ≤ i < N , ~Dµ = ∂µ + g~Aµ(x). (10)

The Lagrangian density is still

Lgauge(x) = −1
4
~Rµν(x) · ~Rµν(x), (11)

where the field strength tensor of QCD expressed in terms of the CDG decomposition is

~Rµν(x) = ~Fµν(x) + (D̂µ~Xν(x)− D̂ν~Xµ(x)) + g~Xµ(x)× ~Xν(x). (12)
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Gauge transformations are effected with a gauge parameter ~α(x). Under a gauge
transformation δ with SU(2) parameter~α(x)

δV̂(x) = D̂µ~α(x)

δcµ(x) = (∂µ~α(x) · n̂(x)),

δn̂(x) = n̂(x)×~α(x),

δ~Cµ(x) = (∂µ~α(x))⊥n̂ + g~Cµ(x)×~α(x),

δ~Xµ(x) = g ~Xµ(x)×~α(x). (13)

The form of the transform for ~Xµ is the same as that for a coloured source, so that
these components are sometimes described as “valence”. This gauge transformation tell
us two interesting things. The first is that the Abelian component cµ combined with the
Cho connection ~Cµ is enough to represent the full Lorentz symmetry even without the
valence components ~Xµ Cho et al. [28,29] described as the "restricted" theory. The second is
that the valence components transform like a source transforms. There is a corresponding
situation in N = 2 Yang–Mills theory where the valence gluons are interpreted as colour
sources. The importance of this observation is that we shall later discuss the possibility of
mass generation for the valence gluons and this form for the gauge transformation leaves
such mass terms covariant. We note however that a bare mass for ~Xµ cannot be inserted
artificially without spoiling renormalisability.

2.1.2. The Degrees of Freedom in the CDG Decomposition

Henceforth, we restrict ourselves to the SU(2) theory, for which there is only one n̂,
and neglect the (i) indices.

The unit vector n̂ posseses two DOFs and so its inclusion in the gluon field together
with the Abelian component cµ and the valence gluons ~Xµ raises questions about the DOF
of the decomposed gluon, with one paper [17] advocating the gauge condition

D̂µ~Xµ(x) = 0, (14)

to remove two apparent extra degrees of freedom. The matter was sorted by Bae et al. [18],
who demonstrated that the DOFs of n̂ were not canonical but topological, indicating the
embedding of the Abelian subgroup in the gauge group. The canonical DOFs are carried
by the components cµ, ~Xµ and Equation (14) is a consistency condition expected of valence
gluons. Kondo et al. [31] considered a stronger condition guaranteed not to be unaffected
by Gribov copys.

The topological nature of n̂ has significance beyond making the canonical DOFs add
up correctly. As is well known, monopole configurations in gauge theories are topological
configurations corresponding to the embedding of an Abelian subgroup. The other
important consequence is that n̂ does not have a canonical EOM from the Euler–Lagrange
equation.

We took an alternative approach to this issue by applying a new method for finding
the effects of degenerate variables called the Clairaut formalism. We further assumed that,
as a unit vector, its dynamics were best described by angular variables.

2.2. CDG Decomposition of SU(2)× SU(2) in Euclidean Space

As is well known [10,13–16], the non-compact nature of the Lorentz group causes
Lorentz gauge theories to be non-positive semi-definite. In fact, our attempts to apply the
CDG decomposition to the Lorentz gauge field strength tensor in Minkowski space led to
negative kinetic energy terms for some of the gauge fields (not shown). As demonstrated
by Pak et al. [10,16], this can be avoided by Wick rotating the theory to Euclidean space
and then either considering effective theories or finding a way to rotate back later without
spoiling the quantum theory.
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This procedure also rotates the internal Lorentz group to SO(4) which is locally
isomorphic to SU(2)R × SU(2)L, corresponding to the right- and left-handed groups
generated by

± êl ≡
1√
2
(Jl ± iKl), (15)

where Jl , Kl are the rotation and boost operators, respectively, and ± êl is used to represent
the corresponding direction in the internal space of the corresponding group. The two
SU(2) subgroups in our gauge theory, though separate, are not independent but are built
from the same rotation and boost operators, albeit in combinations of opposite chirality. It
follows that their respective Abelian directions must correspond, but represent operators
of different chirality. We denote them n̂R, n̂L, respectively, using these suffices for other
field objects also when appropriate, including R êl , L êl , and apply previously published
analyses [1,3,6–8] to each symmetry group.

We apply the CDG decomposition to SU(2)R × SU(2)L gauge group. Their Abelian
components we denote Rcµ and Lcµ, respectively, and the valence components we denote
as R~Xµ and L~Xµ, respectively. For each chirality χ ∈ {R, L}, we have the Cho connection

χCµ(x) = g−1∂µ χn̂(x)× χn̂(x), (16)

and monopole field strength

χ~Hµν ≡ ∂µχ~Cν(x)− ∂νχ~Cµ(x) + g χ~Cµ(x)× χ~Cν(x) = ∂µ n̂χ(x)× ∂ν n̂χ(x)

≡ χHµν(x) n̂χ(x). (17)

Similarly defining field strengths χ~F(x), χ~Rµν(x), we see from the direct product
structure of the group that the Lagrangian is simply

LE
gauge(x) =

1
4 ∑

χ ∈{R,L}
χ~Rµν(x) · χ~Rµν(x). (18)

3. The Vacuum of SU(2)R × SU(2)L

Since the component SU(2) symmetry groups have generators mutually orthogonal in
the internal space, their contributions to the ground state may be calculated independently
and summed. Furthermore, their identical fundamental dynamics imply that χHµν is
independent of χ when we are not considering an internal vector and may be replaced
with Hµν, which we do henceforth.

It is sufficient to calculate to one loop to find a non-zero monopole condensate in the
effective action of SU(2) Yang–Mills theory. The authors of [6–8] have shown this by a
variety of methods. Useful material on this theory at one-loop order can also be found in
references [32–34].

Calculating the relevant one-loop Feynman diagrams in Feynman gauge with
dimensional regularisation [7,8], we have

∆Se f f = −
11g2

96 ∑
χ=R,L

∫
d4 p χ~Fµν(p) χ~Fµν(−p)

(
2
ε
− γ− ln

( p2

µ2

))
. (19)

An imaginary part is generated by the ln p2

µ2 term only when the momentum p is
timelike, leading to the well-known result [7,8,35] that it is the electric backgrounds are
unstable but magnetic ones are not. Using this information, we then have the effective
potential

V =
H2

g2

[
1 +

11g2

24

(
ln

√
H2

µ2 − c
)]

(20)
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It should be remembered that this close parallel with the corresponding N = 2
calculation does not hold beyond one loop because then there are diagrams including fields
from both SU(2) subgroups.

Defining the running coupling ḡ by [7,8]

∂2V
∂H2

∣∣∣√
H2=µ̄2

=
1
ḡ2 , (21)

leads to a non-trivial local minimum at

〈H〉 = µ̄2 exp
(
− 24π2

11ḡ2 + 1
)

. (22)

The specific value of H2 is less important than knowing it has a strictly positive value
lying in two orthogonal directions in the SU(2)R × SU(2)L internal space.

4. Application of Clairaut Formalism to the Rotation-Boost Decomposition of the
Gravitational Connection
4.1. A Review of the Hamiltonian-Clairaut Formalism

Here, we review the main ideas and formulae of the Clairaut-type formalism
for singular theories [26,36,37]. Let us consider a singular Lagrangian L

(
qA, vA) =

Ldeg(qA, vA), A = 1, . . . n, which is a function of 2n variables (n generalised coordinates qA

and n velocities vA = q̇A = dqA/dt) on the configuration space TM, where M is a smooth
manifold, for which the Hessian’s determinant is zero. Therefore, the rank of the Hessian

matrix WAB =
∂2L(qA ,vA)

∂vB∂vC is r < n, and we suppose that r is constant. We can rearrange
the indices of WAB in such a way that a non-singular minor of rank r appears in the upper
left corner. Then, we represent the index A as follows: if A = 1, . . . , r, we replace A with
i (the “regular” or “canonical” index), and, if A = r + 1, . . . , n we replace A with α (the
“degenerate” or “non-canonical” index). Obviously, det Wij 6= 0, and rank Wij = r. Thus
any set of variables labelled by a single index splits as a disjoint union of two subsets. We
call those subsets regular (having Latin indices) and degenerate (having Greek indices).
Canonical DOFs are obviously described by the former of these subsets while other DOFs
can be placed in the second if their contribution to the Wronskian vanishes. As was shown
in [26,36], the “physical” Hamiltonian can be presented in the form

Hphys

(
qA, pi

)
=

r

∑
i=1

piVi
(

qA, pi, vα
)
+

n

∑
α=r+1

Bα

(
qA, pi

)
vα − L

(
qA, Vi

(
qA, pi, vα

)
, vα
)

, (23)

where the functions

Bα

(
qA, pi

) de f
=

∂L
(
qA, vA)
∂vα

∣∣∣∣∣
vi=Vi(qA ,pi ,vα)

(24)

are independent of the unresolved velocities vα since rank WAB = r. Additionally, the r.h.s.
of (23) does not depend on the degenerate velocities vα

∂Hphys

∂vα
= 0, (25)

which justifies the term “physical”. The Hamilton–Clairaut system which describes any
singular Lagrangian classical system (satisfying the second-order Lagrange equations) has
the form
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dqi

dt
=
{

qi, Hphys

}
phys
−

n

∑
β=r+1

{
qi, Bβ

}
phys

dqβ

dt
, i = 1, . . . r (26)

dpi
dt

=
{

pi, Hphys

}
phys
−

n

∑
β=r+1

{
pi, Bβ

}
phys

dqβ

dt
, i = 1, . . . r (27)

n

∑
β=r+1

[
∂Bβ

∂qα
− ∂Bα

∂qβ
+
{

Bα, Bβ

}
phys

]
dqβ

dt

=
∂Hphys

∂qα
+
{

Bα, Hphys

}
phys

, α = r + 1, . . . , n (28)

where the “physical” Poisson bracket (in regular variables qi, pi) is

{X, Y}phys =
n−r

∑
i=1

(
∂X
∂qi

∂Y
∂pi
− ∂Y

∂qi
∂X
∂pi

)
. (29)

Whether the variables Bα

(
qA, pi

)
have a non-trivial effect on the time evolution and

commutation relations is equivalent to whether or not the so-called “qα-field strength”

Fαβ =
∂Bβ

∂qα
− ∂Bα

∂qβ
+
{

Bα, Bβ

}
phys (30)

is non-zero. The reader is referred to [26,27,36] for more details.

4.2. The Contribution of the Clairaut Formalism
4.2.1. qα Curvature

Substituting in this notation, the angles φ, θ are seen, in parallel with our previously
published analysis [25], to be degenerate DOFs with unresolved velocities. Indeed, their
contribution to both Lagrangian and Hamiltonian vanishes when their derivatives vanish.

We use the CDG decomposition in which the embedding of a dominant direction U(1)
is denoted by n̂χ which, from the discussion in Section 2.2, is expressed by,

n̂χ(x) ≡ cos θ(x) sin φ(x) χ ê1 + sin θ(x) sin φ(x) χ ê2 + cos φ(x) χ ê3. (31)

We note that the angles are φ, θ are independent of χ for the reasons discussed after
Equation (15) and need not be labelled. The following will prove useful:

sin φ(x) χn̂θ(x) ≡
∫

dy4 dn̂(x)
dθ(y)

= sin φ(x) (− sin θ(x) χ ê1 + cos θ(x) χ ê2),

χn̂φ(x) ≡
∫

dy4 dn̂χ(x)
dφ(y)

= cos θ(x) cos φ(x) χ ê1

+ sin θ(x) cos φ(x) χ ê2 − sin φ(x) χ ê3. (32)

For later convenience, we note that

χn̂φφ(x) = −χn̂(x), χn̂θθ(x) = − sin φ χn̂(x)− cos φ(x) χn̂φ(x) ,

χn̂θφ(x) = 0, χn̂φθ(x) = cos φ(x) χn̂θ(x), (33)

and that the vectors χn̂ = χn̂φ × χn̂θ form an orthonormal basis of the internal space.
Substituting the above into the Cho connection in Equation (3) gives



Universe 2022, 8, 176 8 of 14

g χ~Cµ(x) = (cos θ(x) cos φ(x) sin φ(x)∂µθ(x) + sin θ(x)∂φ(x)) χ ê1

+ (sin θ(x) cos φ(x) sin φ(x)∂µθ(x)− cos θ(x)∂φ(x)) χ ê2 − sin2 φ(x)∂µθ(x) χ ê3

= sin φ(x) ∂µθ(x) χn̂φ(x)− ∂µφ(x) χn̂θ(x) (34)

from which, it follows that

g2
χ~Cµ(x)× χ~Cν(x) = sin φ(x)(∂µφ(x)∂νθ(x)− ∂νφ(x)∂µθ(x))n̂χ(x), (35)

where we again see that higher-order time derivatives are thwarted.
Since their Lagrangian terms do not fit the form of a canonical DOFs we consider

them instead to be degenerate, having no canonical DOFs of their own but manifesting
through their alteration of the EOMs of the dynamic variables. Finding these alterations
first requires the Clairaut-related quantities

Bφ(x) =
∫

dy3 δL
x∂0φ(x)

= ∑
χ=R,L

∫
dy3

∫
dy0 δ(x0 − y0)

(
sin φ(y)y∂µθ(y)n̂χ(y)

+ χn̂θ(y)× χ~Xµ(y)
)
· χ~R0µ(y) δ3(~x−~y)

= ∑
χ=R,L

(
sin φ(x) ∂µθ(x)n̂χ(x) + χn̂θ(x)× χ~Xµ(x)

)
· χ~R0µ(x), (36)

Bθ(x) =
∫

dy3 δL
x∂0θ(x)

= − ∑
χ=R,L

∫
dy3

∫
dy0δ(x0 − y0) sin φ(y)

(
y
∂µφ(y) n̂χ(y)

+ sin φ(y) χn̂φ(y)× χ~Xµ(y)
)
· χ~R0µ(y) δ3(~x−~y)

= − ∑
χ=R,L

sin φ(x)
(

∂µφ(x) n̂χ(x) + χn̂φ(x)× χ~Xµ(x)
)
· χ~R0µ(x). (37)

δBφ(x)
δθ(y)

= ∑
χ=R,L

(
sin φ(x) χn̂θθ(x)× χ~Xµ · χ~R0µ(x)− χTφ(x)

)
δ4(x− y), (38)

δBθ(x)
δφ(y)

=− ∑
χ=R,L

(
cos φ(x)

(
∂µφ(x) n̂χ(x) + χn̂φ(x)× χ~Xµ(x)

)
·
(

χ~R0µ(x) + χ~H0µ(x)
)

+ χTθ(x)
)

δ4(x− y), (39)

where

χTφ(x) = ∂k

[
sin φ(x) n̂χ · χ~R0k(x)−

(
sin φ(x)∂kθ(x) + χn̂θ(x)× χ~Xk · n̂χ

)
∂0φ(x)

]
, (40)

χTθ(x) =− ∂k

[
sin φ(x)

(
n̂χ · χ~R0k(x) +

(
∂kφ(x) + χn̂φ(x)× χ~Xk · n̂χ

)
∂0θ(x)

)]
, (41)

are the surface terms arising from derivatives δ(∂θ)
δθ , δ(∂φ)

δφ and the latin index k is used to
indicate that only spacial indices are summed over.
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This yields the qα-curvature

Fθφ(x) =
∫

dy4
( δBθ(x)

δφ(y)
−

δBφ(x)
δθ(y)

)
δ4(x− y) + {Bφ(x), Bθ(x)}phys

=− ∑
χ=R,L

cos φ(x)
(

∂µφ(x) n̂χ(x) + χn̂φ(x)× χ~Xµ(x)
)
·
(

χ~R0µ(x) + χ~H0µ(x)
)

− ∑
χ=R,L

sin φ(x) χn̂θθ(x)× χ~Xµ(x) · χ~Rµ0(x) + ∑
χ=R,L

(
χTφ(x)− χTθ(x)

)
. (42)

where we have used that the bracket {Bφ, Bθ}phys vanishes because Bφ and Bθ share the
same dependence on the dynamic DOFs and their derivatives.

In earlier work on the Clairaut formalism [26,36], this was called the qα-field strength,
but we call it qα-curvature in quantum field theory applications to avoid confusion.

This non-zero F θφ is necessary, and usually sufficient, to indicate a non-dynamic
contribution to the conventional Euler–Lagrange EOMs. More significant is a corresponding
alteration of the quantum commutators, with repurcussions for canonical quantisation and
the particle number.

4.2.2. Corrections to the Equations of Motion

Generalising Equations (7.1,7.3,7.5) in [26] (see also the discussion around
Equation (23)

∂0q(x) = {q(x), Hphys}new =
δHphys

δp(x)
−
∫

dy4 ∑
α=φ,θ

δBα(y)
δp(x)

∂0α(y), (43)

the derivative of the Abelian component, complete with corrections from the monopole
background is

∂0 χcσ(x) =
δHphys

δ χΠσ(x)
−
∫

dy4 ∑
α=φ,θ

δBα(y)
δ χΠσ(x)

∂0α(y). (44)

The effect of the second term is to remove the monopole contribution to
δHphys
δ χΠσ . To

see this, consider that, by construction, the monopole contribution to the Lagrangian and
Hamiltonian is dependent on the time derivatives of θ, φ, so the monopole component of
δHphys
δ χΠσ is

δ

δ χΠσ(x)
Hphys|θ̇φ̇ =

δ

δ χΠσ(x)

( δHphys

δ∂0θ(x)
∂0θ(x) +

δHphys

δ∂0φ(x)
∂0φ(x)

)
=

δ

δ χΠσ(x)

( δLphys

δ∂0θ(x)
∂0θ(x) +

δLphys

δ∂0φ(x)
∂0φ(x)

)
=

δ

δ χΠσ(x)

(
Bθ(x)∂0θ(x) + Bφ(x)∂0φ(x)

)
, (45)

which is a consistency condition for Equation (44). This confirms the necessity of treating
the monopole as a non-dynamic field.

We now observe that
δBθ(x)

δ χcσ(y)
=

δBφ(x)
δ χcσ(y)

= 0, (46)

from which it follows that the EOMs of χcσ receives no correction. However, its {, }phys
contribution, corresponding to the terms in the conventional EOM for the Abelian
component, already contains a contribution from the monopole field strength.
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Repeating the above steps for the valence gluons χ~Xµ, assuming σ 6= 0 and combining

D̂0 χ~Πσ(x) =
δH

δ χ~Xσ(x)
−
∫

dy4 ∑
α=φ,θ

δBα(y)
δ χ~Xσ(x)

∂0α(y). (47)

with

δBφ(y)

δ χ~Xσ(x)
=−

((
sin φ(y)y∂σθ(y)n̂χ(y) + χn̂θ(y)× χ~Xσ(y)

)
× χ~X0(y)

− χn̂φ(y)n̂χ · χ~R0σ(y)
)

δ4(x− y), (48)

δBθ(y)
δ χ~Xσ(x)

=
((

∂σφ(y)n̂(y) + sin φ(y) n̂φ(y)× χ~Xσ(y)
)
× χ~X0(y)

− sin φ(y) χn̂θ(y)n̂χ(y) · χ~R0σ(y)
)

δ4(x− y), (49)

gives

D̂0 χ~Πσ(x) =
δH

δ χ~Xσ(x)
− 1

2

((
sin φ(x)(∂σφ(x)∂0θ(x)− ∂σθ(x)∂0φ(x)

)
n̂χ(x)

+
(

sin φ(x) χn̂φ(x)∂0θ(x)− χn̂θ(x)∂0φ(x)
)
× χ~Xσ(x)

)
× χ~X0(x)

=
δH

δ χ~Xσ(x)
− 1

2
g2
(

χ~Cσ(x)× χ~C0(x) + χ~C0(x)× χ~Xσ(x)
)
× χ~X0(x). (50)

This is the converse situation of the Abelian gluon, where their derivatives χ~Xσ is
uncorrected while their EOM receives a correction which cancels the monopole’s electric
contribution to {D̂0 χ~Xσ, Hphys}phys. This is required by the conservation of topological
current, but a further implication is that the monopole background, even if assumed to
be present, does not contribute to the EOMs of motion and therefore makes no impact at
the classical level. Note that this is strictly limited to the monopole field and the effects
of backgrounds due to the dynamic fields are not affected. Monopole field contributions
are not cancelled from quantum corrections however, although calculating loop effects is
beyond the scope of this paper.

4.2.3. Corrections to the Commutation Relations

Corrections to the classical Poisson bracket correspond to corrections to the equal-time
commutators in the quantum regime. We shall see corrections for commutators with fields
of different SU(2)χ representations even though there were no such crossover terms in the
effective potential calculation.

Denoting conventional commutators as [, ]phys and the corrected ones as [, ]new, for
µ, ν 6= 0, we have

[χcµ(x), χ̃cν(z)]new = [ χcµ(x), χ̃cν(z)]phys

−
∫

dy4
( δBθ(y)

δ χΠµ(x)
F−1

θφ (z)
δBφ(y)

δ χΠν(z)
−

δBφ(y)
δ χ̃Πµ(x)

F−1
φθ (z)

δBθ(y)
δ χΠν(z)

)
δ4(x− z)

= [ χcµ(x), χ̃cν(z)]phys

− sin φ(x) sin φ(z)(∂µφ(x)∂νθ(z)− ∂νφ(z)∂µθ(x))F−1
θφ (z)δ4(x− z). (51)

The second term on the final line, after integration over d4z, clearly becomes

Hµν(x) sin φ(x)F−1
θφ (x), (52)
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indicating the role of the monopole condensate in the correction. By contrast, the
commutation relations

[ χcµ(x), χ̃Πν(z)]new = [ χcµ(x), χ̃Πν(z)]phys,

[ χΠµ(x), χ̃Πν(z)]new = [ χΠµ(x), χ̃Πν(z)]phys, (53)

are unchanged. Nonetheless, the deviation from the canonical commutation shown in
Equation (51) is inconsistent with the particle creation/annihilation operator formalism of
conventional second quantisation, so that particle number is no longer well defined for the
χcµ fields.

Repeating for the valence part,

[ χΠa
µ(x), χ̃Πb

ν(z)]new (54)

=[ χΠa
µ(x), χ̃Πb

ν(z)]phys −
∫

dy4
( δBθ(y)

δ χXa
µ(x)

δBφ(y)
δ χ̃Xb

ν(z)
−

δBφ(y)
δXa

µ(x)
δBθ(y)

δ χ̃Xb
ν(z)

)
F−1

θφ (z)

=[ χΠa
µ(x), χ̃Pib

ν(z)]phys +
(

sin φ(z)na
φ(x)nb

θ(z) χ~R0µ(x) · n̂χ(x) χ̃~R0ν(z) · n̂χ̃(z)

− sin φ(x)na
θ(x)nb

φ(z) χ~R0µ(z) · n̂χ(z) χ̃~R0ν(x) · n̂χ̃(x)
)
×F−1

θφ (z) δ4(x− z), (55)

where the second term on the final line, integrates over d4z to become

(na
φ(x)nb

θ(x)− na
θ(x)nb

φ(x)) sin φ(x) χ~R0µ(x) · n̂χ(x) χ̃~R0ν(x) · n̂χ̃(x)F−1
θφ (x), (56)

while other relevant commutators are unchanged

[ χXa
µ(x), χ̃Πb

ν(z)]new = [ χXa
µ(x), χ̃Πb

ν(z)]phys,

[ χXa
µ(x), χ̃Xb

ν(z)]new = [ χXa
µ(x), χ̃Xb

ν(z)]phys. (57)

5. Effective Action
5.1. Particle Number and the Monopole Background

It is textbook knowledge that gravitational curvature spoils canonical quantisation,
but our approach gives a detailed mechanism. It also provides some narrowly defined
circumstances under which it may be salvaged. For monopole background χ~Hµν the form
of Equation (51) indicates that they would arise for χcσ polarised along either of the µ, ν
directions. The only way to avoid this is if χcσ is polarised in the direction of the monopole
field strength, requiring that the Abelian component of the connection propagate at a right
angle to the monopole field strength. However, the form of the monopole field strength
requires that a non-vanishing field must have a varying orientation in space, since it is
proportional to the derivatives of the angles φ, θ. So even if the Abelian gauge component
is propagating at a right angle to the monopole field strength with its polarisation in the
direction of the field strength, in general this could not be assumed to continue as the
orientation of the monopole field strength varied. However, if the variation were gradual
over space in comparison to the wavelength of χcµ, then it might continue to propagate
while adjusting to the required orientations in a manner analogous to photon polarisation
being rotated by successive, closely oriented, polarising filters. On the other hand, if the
wavelength of χcµ is significant compared to the length scale of the field variation, then
such a mechanism could not act and the particle’s energy would be either absorbed or
deflected by the condensate, effectively suppressing the longer wavelengths and providing
a measure of the background curvature.

One important observation is that the background field is (Lorentz) magnetic, so
that at any point in spacetime a reference frame exists where the monopole field and its
associated potential lie entirely along the spatial directions.
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The particle inconsistent contribution from Equation (54) only occurs in the presence
of a background electric component of the monopole field strength, vanishing when the
polarisation of χ~Xµ is orthogonal to the electric component of the background field. This
restricts the polarisation for a transversally polarised field whose direction of propagation
is not in the direction of this electric component, but not otherwise. Of course, the electric
component of the background monopole field can always be removed by a suitable Lorentz
transformation, but this still leaves the particle interpretation frame-dependent.

Some authors have argued that the valence gluons in two-colour QCD gain an effective
mass term [20,21] via their quartic interaction with the non-trivial monopole condensate.
A similar mechanism could apply to the valence components of this theory. Consider the
following quartic term from Equations (11) and (12),

g2

4
(χ~Cµ(x)×χ ~Xν(x)) · (χ~Cµ(x)× χ~Xν(x))

=
g2

4
(χ~Cµ(x) · χ~Cµ(x) χ~Xν(x) · χ~Xν(x)− χ~Cµ(x) · χ~Xµ(x) χ~Xµ(x) · χ~Cµ(x)). (58)

Remembering that the Lorentz monopole fields χ~Cµ have non-zero condensates yields
the terms

g2

4
〈χ~Cµ(x) · χ~Cµ(x)〉 χ~Xν(x) · χ~Xν(x), (59)

so that the monopole condensate is seen to generate a mass term for the valence component.
Such a mass term is covariant under the gauge transformation because, as shown in
the discussion of Equation (13), the valence components transform as sources although
explicitly adding a mass term for these fields would spoil renormalisability. In this case the
valence components could also be longitudinally polarised. With longitudinal polarisation
the only restriction is that the direction of propagation be orthogonal to the background
electric component of the monopole field strength. The valence component might therefore
enjoy a limited particle interpretation under a range of circumstances.

We observe that the two monopole field strengths R~Hµν, L~Hµν sum to give a net field
strength lying purely along the rotation directions in the internal space. Exactly how this
affects the observed dynamics of the theory, or even if it does, is unclear. We were unable
to find a linear combination of the gauge fields to separate rotation and boost generators
which was equivalent to the original theory. If there is an effect, then a reasonable scenario
is that the coupling to linear momentum would dominate that to rotational momentum at
large distances, as determined by the length scale of the condensate.

5.2. The Hilbert–Einstein Term

Kim and Pak [10] considered the effects of a torsion condensate. They found the
resulting background field strength, if constant, spontaneously generated an EH term if
the curvature tensor is expanded around it (see the discussion of Equation (45) in their
paper [10]). EH terms have been shown to stabilise theories with higher-order derivatives
by rendering the propagator poles gauge invariant [38,39] and Kim and Pak suggest that
this may stabilise their theory also. Since our background is attributable to an Abelian
background field, we expect the effective theory to have an Abelianised EH term, similar to
that derived by Cho et al. [28,29] when applying the CDG decomposition to the Levi-Civita
tensor. Such details must await further work, but we are encouraged to believe that the
theory may be Wick rotated back to Lorentz space for a positive semi-definite effective
theory. Not only do all quantum fields have kinetic terms with the correct sign, but the
Lagrangian’s lowest-order derivative terms come from an emergent term sometimes added
to rectify the non-semi-positive definiteness.

6. Discussion

We have applied the CDG decomposition to a Lorentz gauge theory and confirmed that
it has a monopole condensate at one loop. Using the Clairaut formalism, we have found how
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the monopole background modifies the canonical EOMs for the physical DOFs. Lorentz
gauge theory has the problem of being non-positive semi-definite, which can be handled
by adding a EH term. We did not add such a term but instead postponed the problem by
Wick rotating the theory into Euclidean space, where the Lorentz gauge group becomes
locally isomorphic to SU(2)R× SU(2)L. We found the spontaneous generation of a vacuum
condensate which others have argued [10,16] leads to an effective Hilbert–Einstein term.

The CDG decomposition introduces an internal unit vector to indicate the local internal
direction of the Abelian subgroup of the gauged symmetry group. However, the unit vector
used to specify this subgroup does not form a canonical EOM and is degenerate. If we
expand it in terms of its angular dependence, since its information content is purely
directional, then those angles are also degenerate and we do not derive canonical EOMs for
them. They do however add additional terms with important consequences for the theory’s
physics. They may not be ignored therefore, but require appropriate theoretical tools to
analyse them. The authors addressed these issues in a previous analysis of QCD. The
purpose of this paper was to do so for a theory relevant to gravity. The main advantages of
working in a gauged Lorentz theory for us is that the gauge fields have quadratic kinetic
terms well suited to our Clairaut-based approach in addition to the opportunity to apply
analyses and even results from SU(2) Yang–Mills theories.

We have not considered the effects of matter fields in the fundamental representation.
We do note in passing that differences in this part of the spectrum must lead to variations in
the magnitude for the monopole condensate, so the differences in their matter spectra
suggest that this theory has significantly different infrared behaviour from that of
SU(2) QCD.

We also observe that the net monopole condensate lies in a direction of a rotation
generator. We have not been able to derive corresponding canonical DOFs to reflect this, so
the physical significance of this observation, if any, remains obscure.

We have left the inclusion of translation symmetry to subsequent work. A full
gravitational theory must of course include the full Poincaré symmetry group, but we
submit that our Lorentz-only theory makes a sufficiently good approximation to indicate
some relevant phenomenology.
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