Testing Screening Mechanisms with Mass Profiles of Galaxy Clusters
Abstract
:1. Introduction
2. Theoretical Background
3. The MG-MAMPOSSt Method
4. Results
4.1. Synthetic Halo Catalogue
4.2. Vainsthein Screening
4.3. Chameleon Screening
5. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | https://github.com/Pizzuti92/MG-MAMPOSSt. (accessed on 25 January 2022), see [13] for the basic usage of the code. |
2 | In the literature the coupling constant is often indicated by . However, as also denotes the velocity anisotropy profile in kinematic analyses of galaxy clusters, we adopt for the coupling to avoid confusion. |
3 | The public version of MAMPOSSt can be found at https://gitlab.com/gmamon/MAMPOSSt, accessed on 25 January 2022. |
4 | Note that is in general different from as the distribution of galaxies in clusters may not follow the distribution of the total matter (e.g., [28]). |
5 | In principle ClusterGEN can be used to produce mock clusters adopting different modified gravity setups and matter density distributions. In the exercise presented here we focus only on an NFW profile in GR as our fiducial model. |
References
- Saridakis, E.N.; Lazkoz, R.; Salzano, V.; Vargas Moniz, P.; Capozziello, S.; Beltrán Jiménez, J.; De Laurentis, M.; Olmo, G.J.; Akrami, Y.; Bahamonde, S.; et al. Modified Gravity and Cosmology: An Update by the CANTATA Network. arXiv 2021, arXiv:2105.12582. [Google Scholar]
- Deffayet, C.; Gao, X.; Steer, D.A.; Zahariade, G. From k-essence to generalised Galileons. arXiv 2011, arXiv:1103.3260. [Google Scholar]
- Zumalacárregui, M.; García-Bellido, J. Transforming gravity: From derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian. arXiv 2013, arXiv:1308.4685. [Google Scholar] [CrossRef] [Green Version]
- Amendola, L.; Bettoni, D.; Pinho, A.M.; Casas, S. Measuring gravity at cosmological scales. Universe 2020, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Koyama, K.; Sakstein, J. Astrophysical Probes of the Vainshtein Mechanism: Stars and Galaxies. Phys. Rev. D 2015, 91, 124066. [Google Scholar] [CrossRef] [Green Version]
- Cataneo, M.; Rapetti, D. Tests of gravity with galaxy clusters. Int. J. Mod. Phys. D 2018, 27, 1848006–1848936. [Google Scholar] [CrossRef]
- Terukina, A.; Lombriser, L.; Yamamoto, K.; Bacon, D.; Koyama, K.; Nichol, R.C. Testing chameleon gravity with the Coma cluster. J. Cosmol. Astropart. Phys. 2014, 1404, 013. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, H.; Bacon, D.; Nichol, R.C.; Rooney, P.J.; Terukina, A.; Romer, A.K.; Koyama, K.; Zhao, G.; Hood, R.; Mann, R.G.; et al. The XMM Cluster Survey: Testing chameleon gravity using the profiles of clusters. Mon. Not. R. Astron. Soc. 2015, 452, 1171–1183. [Google Scholar] [CrossRef] [Green Version]
- Sakstein, J.; Wilcox, H.; Bacon, D.; Koyama, K.; Nichol, R.C. Testing Gravity Using Galaxy Clusters: New Constraints on Beyond Horndeski Theories. J. Cosmol. Astropart. Phys. 2016, 1607, 019. [Google Scholar] [CrossRef] [Green Version]
- Pizzuti, L.; Sartoris, B.; Borgani1, S.; Amendola, L.; Umetsu, K.; Biviano, A.; Girardi, M.; Rosati, P.; Balestra, I.; Caminha, G.B.; et al. CLASH-VLT: Testing the Nature of Gravity with Galaxy Cluster Mass Profiles. J. Cosmol. Astropart. Phys. 2016, 1604, 023. [Google Scholar] [CrossRef] [Green Version]
- Pizzuti1, L.; Sartoris, B.; Amendola, L.; Borgani1, S.; Biviano, A.; Umetsu, K.; Mercurio, A.; Rosati, P.; Balestra, I.; Caminha, G.B.; et al. CLASH-VLT: Constraints on f(R) gravity models with galaxy clusters using lensing and kinematic analyses. J. Cosmol. Astropart. Phys. 2017, 1707, 023. [Google Scholar] [CrossRef] [Green Version]
- Mamon, G.A.; Biviano, A.; Boué, G. MAMPOSSt: Modelling Anisotropy and Mass Profiles of Observed Spherical Systems—I. Gaussian 3D velocities. Mon. Not. R. Astron. Soc. 2013, 429, 3079–3098. [Google Scholar] [CrossRef] [Green Version]
- Pizzuti, L.; Saltas, I.D.; Biviano, A.; Mamon, G.; Amendola, L. MG-MAMPOSSt, a code to test gravity at galaxy-cluster scales: A technical introduction. arXiv 2022, arXiv:2201.07194. [Google Scholar]
- Buchdahl, H.A. Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. Soc. 1970, 150, 1. [Google Scholar] [CrossRef] [Green Version]
- Khoury, J. Chameleon field theories. Class. Quantum Gravity 2013, 30, 214004. [Google Scholar] [CrossRef] [Green Version]
- Burrage, C.; Sakstein, J. Tests of chameleon gravity. Living Rev. Relativ. 2018, 21, 1–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brax, P.; van de Bruck, C.; Davis, A.C.; Shaw, D.J. f(R) gravity and chameleon theories. Phys. Rev. D 2008, 78, 104021. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. A Universal Density Profile from Hierarchical Clustering. Astrophys. J. 1997, 490, 493. [Google Scholar] [CrossRef]
- Peirani, S.; Dubois, Y.; Volonteri, M.; Devriendt, J.; Bundy, K.; Silk, J.; Pichon, C.; Kaviraj, S.; Gavazzi, R.; Habouzit, M. Density profile of dark matter haloes and galaxies in the HORIZON-AGN simulation: The impact of AGN feedback. Mon. Not. R. Astron. Soc. 2017, 472, 2153–2169. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, H.; Nichol, R.C.; Zhao, G.B.; Bacon, D.; Koyama, K.; Romer, A.K. Simulation tests of galaxy cluster constraints on chameleon gravity. Mon. Not. R. Astron. Soc. 2016, 462, 715–725. [Google Scholar] [CrossRef] [Green Version]
- Dima, A.; Vernizzi, F. Vainshtein Screening in Scalar-Tensor Theories before and after GW170817: Constraints on Theories beyond Horndeski. Phys. Rev. 2018, D97, 101302. [Google Scholar] [CrossRef] [Green Version]
- Pizzuti, L.; Saltas, I.D.; Amendola, L. mg-mamposst: A code to test modifications of gravity with internal kinematics and lensing analyses of galaxy clusters. Mon. Not. R. Astron. Soc. 2021, 506, 595–612. [Google Scholar] [CrossRef]
- Saltas, I.D.; Sawicki, I.; Lopes, I. White dwarfs and revelations. J. Cosmol. Astropart. Phys. 2018, 1805, 028. [Google Scholar] [CrossRef] [Green Version]
- Sakstein, J. Astrophysical tests of screened modified gravity. Int. J. Mod. Phys. 2018, D27, 1848008. [Google Scholar] [CrossRef] [Green Version]
- Haridasu, B.S.; Karmakar, P.; De Petris, M.; Cardone, V.F.; Maoli, R. Testing generalized scalar-tensor theories of gravity with clusters of galaxies. arXiv 2021, arXiv:2111.01101. [Google Scholar]
- Laudato, E.; Salzano, V.; Umetsu, K. Multi-component DHOST analysis in galaxy clusters. arXiv 2021, arXiv:2110.11019. [Google Scholar]
- Mamon, G.A.; Łokas, E.L. Dark matter in elliptical galaxies—II. Estimating the mass within the virial radius. Mon. Not. R. Astron. Soc. 2005, 363, 705–722. [Google Scholar] [CrossRef] [Green Version]
- Mamon, G.A.; Cava, A.; Biviano, A.; Moretti, A.; Poggianti, B.; Bettoni, D. Structural and dynamical modeling of WINGS clusters. II. The orbital anisotropies of elliptical, spiral, and lenticular galaxies. Astron. Astrophys. 2019, 631, A131. [Google Scholar] [CrossRef] [Green Version]
- Tiret, O.; Combes, F.; Angus, G.W.; Famaey, B.; Zhao, H.S. Velocity dispersion around ellipticals in MOND. Astron. Astrophys. 2007, 476, L1–L4. [Google Scholar] [CrossRef] [Green Version]
- Umetsu, K.; Zitrin, A.; Gruen, D.; Merten, J.; Donahue, M.; Postman, M. CLASH: Joint Analysis of Strong-lensing, Weak-lensing Shear, and Magnification Data for 20 Galaxy Clusters. Astrophys. J. 2016, 821, 116. [Google Scholar] [CrossRef]
- Pizzuti, L.; Saltas, I.D.; Casas, S.; Amendola, L.; Biviano, A. Future constraints on the gravitational slip with the mass profiles of galaxy clusters. Mon. Not. R. Astron. Soc. 2019, 486, 596–607. [Google Scholar] [CrossRef]
- Kazantzidis, S.; Magorrian, J.; Moore, B. Generating Equilibrium Dark Matter Halos: Inadequacies of the Local Maxwellian Approximation. Astrophys. J. 2004, 601, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Vasiliev, E. Agama reference documentation. arXiv 2019, arXiv:1802.08255. [Google Scholar]
- Laureijs, R.; Amiaux, J.; Arduini, S.; Auguères, J.; Brinchmann, J.; Cole, R.; Cropper, M.; Dabin, C.; Duvet, L.; Ealet, A.; et al. Euclid Definition Study Report. arXiv 2011, arXiv:1110.3193. [Google Scholar]
- Postman, M.; Coe, D.; Benítez, N.; Bradley, L.; Broadhurst, T.; Donahue, M.; Ford, H.; Graur, O.; Graves, G.; Jouvel, S.; et al. The Cluster Lensing and Supernova Survey with Hubble: An Overview. Astrophys. J. 2012, 199, 25. [Google Scholar] [CrossRef]
- Rosati, P.; Balestra, I.; Grillo, C.; Mercurio, A.; Nonino, M.; Biviano, A.; Girardi, M.; Vanzella, E.; Clash-VLT Team. CLASH-VLT: A VIMOS Large Programme to Map the Dark Matter Mass Distribution in Galaxy Clusters and Probe Distant Lensed Galaxies. Messenger 2014, 158, 48–53. [Google Scholar]
- Pizzuti, L.; Saltas, I.D.; Umetsu, K.; Sartoris, B. Probing Vainsthein-screening gravity with galaxy clusters using internal kinematics and strong and weak lensing. arXiv 2021, arXiv:2112.12139. [Google Scholar]
- Pizzuti, L.; Sartoris, B.; Borgani, S.; Biviano, A. Calibration of systematics in constraining modified gravity models with galaxy cluster mass profiles. J. Cosmol. Astropart. Phys. 2020, 04, 024. [Google Scholar] [CrossRef]
- Anderson, T.W.; Darling, D.A. Asymptotic Theory of Certain. Ann. Math. Statist. 1952, 6, 193–212. [Google Scholar] [CrossRef]
- Corasaniti, P.S.; Giocoli, C.; Baldi, M. Dark matter halo sparsity of modified gravity scenarios. Phys. Rev. D 2020, 102, 043501. [Google Scholar] [CrossRef]
- Burrage, C.; Dombrowski, J.; Saadeh, D. The shape dependence of Vainshtein screening in the cosmic matter bispectrum. J. Cosmol. Astropart. Phys. 2019, 2019, 023. [Google Scholar] [CrossRef] [Green Version]
- Biviano, A.; Rosati, P.; Balestra, I.; Mercurio, A.; Girardi, M.; Nonino, M.; Grillo, C.; Scodeggio, M.; Lemze, D.; Kelson, D.; et al. CLASH-VLT: The mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z = 0.44 galaxy cluster MACS J1206.2-0847. Astron. Astrophys. 2013, 558, A1. [Google Scholar] [CrossRef] [Green Version]
Vainshtein Screening | Gravity | |||||
---|---|---|---|---|---|---|
Clusters | ||||||
1 | ≲2.75 | ≲ | – | – | ||
5 | ≲1.65 | ≲ | ≲ | ≲ | ||
10 | ≲ | ≲ | ≲ | ≲ | ||
15 | ≲ | ≲ | ≲ | |||
20 | ≲ | ≲ | ≲ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pizzuti, L. Testing Screening Mechanisms with Mass Profiles of Galaxy Clusters. Universe 2022, 8, 157. https://doi.org/10.3390/universe8030157
Pizzuti L. Testing Screening Mechanisms with Mass Profiles of Galaxy Clusters. Universe. 2022; 8(3):157. https://doi.org/10.3390/universe8030157
Chicago/Turabian StylePizzuti, Lorenzo. 2022. "Testing Screening Mechanisms with Mass Profiles of Galaxy Clusters" Universe 8, no. 3: 157. https://doi.org/10.3390/universe8030157
APA StylePizzuti, L. (2022). Testing Screening Mechanisms with Mass Profiles of Galaxy Clusters. Universe, 8(3), 157. https://doi.org/10.3390/universe8030157