Responses of Mesosphere and Lower Thermosphere Temperature to the Geomagnetic Storm on 7–8 September 2017
Abstract
:1. Introduction
2. Data and Model
2.1. SABER Temperature Data
2.2. TIMEGCM
3. The Geomagnetic Storm of 7–8 September 2017
4. Results
4.1. Temperature Variations at High Latitudes in the Northern Hemisphere
4.2. Temperature Variations at Low and Middle Latitudes in the Northern Hemisphere
4.3. Temperature Variations at Low and Middle Latitudes in the Southern Hemisphere
5. Discussion
6. Conclusions
- The temperature response to geomagnetic storm increases with altitude from 96 km to 110 km, and the response is larger at higher latitudes. In addition, the temperature increases below 95 km at high latitudes in the northern hemisphere, and the increased peak value reaches ~20 K;
- The effects of the intense storm on temperature are hemispherical asymmetric. The temperature changes are more significant in the northern hemisphere than in the southern hemisphere during a storm;
- No obvious bimodal structures correspond to the two main phases of a severe storm;
- In the lower thermosphere, the TIMEGCM temperature responses are generally consistent with that in SABER from 80° N to 35° N as well as from 20° S to 50° S. However, the model overestimates the temperature increases and underestimates the temperature decreases. Nevertheless, over the latitude range 20° N–5° S, the model outputs are prominently different from the SABER observations.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rees, M.H.; Emery, B.A.; Roble, R.G.; Stamnes, K. Neutral and ion gas heating by auroral electron precipitation. J. Geophys. Res. 1983, 88, 6289–6300. [Google Scholar] [CrossRef]
- Killeen, T.L.; Won, Y.I.; Niciejewski, R.J.; Burns, A.G. Upper thermosphere winds and temperatures in the geomagnetic polar cap: Solar cycle, geomagnetic activity, and interplanetary magnetic field dependencies. J. Geophys. Res. 1995, 100, 21327–21342. [Google Scholar] [CrossRef]
- Yi, W.; Reid, I.M.; Xue, X.; Murphy, D.J.; Hall, C.M.; Tsutsumi, M.; Ning, B.; Li, G.; Younger, J.P.; Chen, T.; et al. High- and middle-latitude neutral mesospheric density response to geomagnetic storms. Geophys. Res. Lett. 2018, 45, 436–444. [Google Scholar] [CrossRef] [Green Version]
- Banks, P.M. Observations of joule and particle heating in the auroral zone. J. Atmos. terr. Phy. 1977, 39, 179–193. [Google Scholar] [CrossRef]
- Roble, R.G.; Emery, B.A.; Killeen, T.L.; Reid, G.C.; Solomon, S.; Garcia, R.R.; Evans, D.S.; Hays, P.B.; Carignan, G.R.; Heelis, R.A.; et al. Joule heating in the mesosphere and thermosphere during the July 13, 1982, solar proton event. J. Geophys. Res. 1987, 92, 6083–6090. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Lu, J.; Yuan, T.; Yue, J.; Liu, X.; Zhang, K.; Burns, A.G.; Zhang, Y.; Li, Z. On the responses of mesosphere and lower thermosphere temperatures to geomagnetic storms at low and middle latitudes. Geophys. Res. Lett. 2018, 45, 10128–10137. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Lu, J.; Yue, J.; Burns, A.G.; Yuan, T.; Chen, X.; Dong, W. A modeling study of the responses of mesosphere and lower thermosphere winds to geomagnetic storms at middle latitudes. J. Geophys. Res. 2019, 124, 3666–3680. [Google Scholar] [CrossRef]
- Zhao, X.R.; Sheng, Z.; Li, J.W.; Yu, H.; Wei, K.J. Determination of the “wave turbopause” using a numerical differentiation method. J. Geophys. Res. 2019, 124, 10592–10607. [Google Scholar] [CrossRef]
- Roble, R.G. Energetics of the mesosphere and thermosphere, in The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory. Geophys. Monogr. Ser. 1995, 87, 1–21. [Google Scholar] [CrossRef]
- Mlynczak, M.G.; Martin-Torres, F.J.; Crowley, G.; Kratz, D.P.; Funke, B.; Lu, G.; López-Puertas, M.; Russell, J.M.; Kozyra, J.; Mertens, C.; et al. Energy transport in the thermosphere during the solar storms of April 2002. J. Geophys. Res. 2005, 110, A12S25. [Google Scholar] [CrossRef] [Green Version]
- Mlynczak, M.G.; Hunt, L.A.; Mertens, C.J.; Marshall, B.T.; Russell, J.M.; Woods, T.; Thompson, R.E.; Gordley, L.L. Influence of solar variability on the infrared radiative cooling of the thermosphere from 2002 to 2014. Geophys. Res. Lett. 2014, 41, 2508–2513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Knipp, D.; Wang, W. Understanding the behaviors of thermospheric nitric oxide cooling during the 15 May 2005 geomagnetic storm. J. Geophys. Res. 2019, 124, 2113–2126. [Google Scholar] [CrossRef]
- Yuan, T.; Zhang, Y.; Cai, X.; She, S.-Y.; Paxton, L.J. Impacts of CME-induced geomagnetic storms on the midlatitude mesosphere and lower thermosphere observed by a sodium lidar and TIMED/GUVI. Geophys. Res. Lett. 2015, 42, 7295–7302. [Google Scholar] [CrossRef]
- Liu, X.; Yue, J.; Wang, W.; Xu, J.; Zhang, Y.; Li, J.; Russell, J.M.; Hervig, M.E.; Bailey, S.; Nakamura, T. Responses of lower thermospheric temperature to the 2013 St. Patrick’s Day geomagnetic storm. Geophys. Res. Lett. 2018, 45, 4656–4664. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Yue, J.; Wang, W.; Qian, L.; Jian, L.; Zhang, J. A comparison of the CIR- and CME-induced geomagnetic activity effects on mesosphere and lower thermospheric temperature. J. Geophys. Res. 2021, 126, e2020JA029029. [Google Scholar] [CrossRef]
- Fagundes, P.R.; Sahai, Y.; Takahashi, H.; Gobbi, D.; Bittencourt, J.A. Thermospheric and mesospheric temperatures during geomagnetic storms at 23° S. J. Atmos. terr. Phy. 1996, 58, 1963–1972. [Google Scholar] [CrossRef]
- Von Savigny, C.; Sinnhuber, M.; Bovensmann, H.; Burrows, J.P.; Kallenrode, M.-B.; Schwartz, M. On the disappearance of noctilucent clouds during the January 2005 solar proton events. Geophys. Res. Lett. 2007, 34, L02805. [Google Scholar] [CrossRef] [Green Version]
- Pancheva, D.; Singer, W.; Mukhtarov, P. Regional response of the mesosphere-lower thermosphere dynamics over Scandinavia to solar proton events and geomagnetic storms in late October 2003. J. Atmos. Sol.-Terr. Phy. 2007, 69, 1075–1094. [Google Scholar] [CrossRef]
- Nesse Tyssøy, H.; Heinrich, D.; Stadsnes, J.; Sørbø, M.; Hoppe, U.P.; Evans, D.S.; Williams, B.P.; Honary, F. Upper-mesospheric temperatures measured during intense substorms in the declining phase of the January 2005 solar proton events. Ann. Geophys. 2008, 26, 2515–2529. [Google Scholar] [CrossRef] [Green Version]
- Nesse Tyssøy, H.; Stadsnes, J.; Sørbø, M.; Mertens, C.J.; Evans, D.S. Changes in upper mesospheric and lower thermospheric temperatures caused by energetic particle precipitation. J. Geophys. Res. 2010, 115, A10323. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.Y.; Smith, A.K.; Wang, W. An observational and theoretical study of the longitudinal variation in neutral temperature induced by aurora heating in the lower thermosphere. J. Geophys. Res. 2013, 118, 7410–7425. [Google Scholar] [CrossRef]
- Kamide, Y.; Yokoyama, N.; Gonzalez, W.; Tsurutani, B.T.; Daglis, I.A.; Brekke, A.; Masuda, S. Two-step development of geomagnetic storms. J. Geophys. Res. 1998, 103, 6917–6921. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.M., III; Mlynczak, M.G.; Gordley, L.L.; Tansock, J.; Esplin, R. An overview of the SABER experiment and preliminary calibration results. SPIE 1999, 3756, 277–288. [Google Scholar]
- Remsberg, E.E.; Marshall, B.T.; Garcia-Comas, M.; Krueger, D.; Lingenfelser, G.S.; Martin-Torres, J.; Mlynczak, M.G.; Russell, J.M.; Smith, A.; Zhao, Y.; et al. Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J. Geophys. Res. 2008, 113, D17101. [Google Scholar] [CrossRef]
- Forbes, J.M.; Zhang, X.; Marsh, D.R. Solar cycle dependence of middle atmosphere temperatures. J. Geophys. Res. 2014, 119, 9615–9625. [Google Scholar] [CrossRef]
- Xu, J.; Smith, A.K.; Liu, M.; Liu, X.; Gao, H.; Jiang, G.; Yuan, W. Evidence for nonmigrating tides produced by the interaction between tides and stationary planetary waves in the stratosphere and lower mesosphere. J. Geophys. Res. 2014, 119, 471–489. [Google Scholar] [CrossRef]
- Roble, R.G.; Ridley, E.C.; Richmond, A.D.; Dickinson, R.E. A coupled thermosphere/ionosphere general circulation model. Geophys. Res. Lett. 1988, 15, 1325–1328. [Google Scholar] [CrossRef]
- Richmond, A.D.; Ridley, E.C.; Roble, R.G. A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 1992, 19, 601–604. [Google Scholar] [CrossRef]
- Roble, R.G.; Ridley, E.C. A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): Equinox solar cycle minimum simulations (30–500 km). Geophys. Res. Lett. 1994, 21, 417–420. [Google Scholar] [CrossRef]
- Hagan, M.E.; Forbes, J.M. Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. 2002, 107, 4754. [Google Scholar] [CrossRef]
- Hagan, M.E.; Forbes, J.M. Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. 2003, 108, 1062. [Google Scholar] [CrossRef]
- Tassev, Y.; Velinov, P.I.; Tomova, D.; Mateev, L. Analysis of extreme solar activity in early September 2017: G4—Severe geomagnetic storm (07–08.09) and GLE72 (10.09) in solar minimum. Cr. Acad. Bulg. Sci. 2017, 70, 1437–1444. [Google Scholar]
- Huang, Y.S.; Richmond, A.D.; Deng, Y.; Roble, R. Height distribution of Joule heating and its influence on the thermosphere. J. Geophys. Res. 2012, 117, A08334. [Google Scholar] [CrossRef] [Green Version]
- Jee, G.; Burns, A.G.; Wang, W.; Solomon, S.C.; Schunk, R.W.; Scherliess, L.; Thompson, D.C.; Sojka, J.J.; Zhu, L. Driving the TING model with GAIM electron densities: Ionospheric effects on the thermosphere. J. Geophys. Res. 2008, 113, A03305. [Google Scholar] [CrossRef] [Green Version]
- Sinnhuber, M.; Nieder, H.; Wieters, N. Energetic particle precipitation and the chemistry of the mesosphere/lower thermosphere. Surv. Geophys. 2012, 33, 1281–1334. [Google Scholar] [CrossRef]
- Li, Z.; Knipp, D.; Wang, W.; Sheng, C.; Qian, L.; Flynn, S. A comparison study of NO cooling between TIMED/SABER measurements and TIEGCM simulations. J. Geophys. Res. 2018, 123, 8714–8729. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Li, Z.; Li, J.; Lu, J.; Gu, C.; Zhu, M.; Tian, Y. Responses of Mesosphere and Lower Thermosphere Temperature to the Geomagnetic Storm on 7–8 September 2017. Universe 2022, 8, 96. https://doi.org/10.3390/universe8020096
Sun M, Li Z, Li J, Lu J, Gu C, Zhu M, Tian Y. Responses of Mesosphere and Lower Thermosphere Temperature to the Geomagnetic Storm on 7–8 September 2017. Universe. 2022; 8(2):96. https://doi.org/10.3390/universe8020096
Chicago/Turabian StyleSun, Meng, Zheng Li, Jingyuan Li, Jianyong Lu, Chunli Gu, Mengbin Zhu, and Yufeng Tian. 2022. "Responses of Mesosphere and Lower Thermosphere Temperature to the Geomagnetic Storm on 7–8 September 2017" Universe 8, no. 2: 96. https://doi.org/10.3390/universe8020096
APA StyleSun, M., Li, Z., Li, J., Lu, J., Gu, C., Zhu, M., & Tian, Y. (2022). Responses of Mesosphere and Lower Thermosphere Temperature to the Geomagnetic Storm on 7–8 September 2017. Universe, 8(2), 96. https://doi.org/10.3390/universe8020096