Warm Dark Matter in Simulations
Abstract
:1. Introduction
2. Theoretical Considerations
3. Simulating Warm Dark Matter
3.1. The First Cut
3.2. Cutting Deeper
3.2.1. Velocity Dispersion in Simulations—Divergent Approaches
- The finite phase space argument—since for a warm dark matter particle the distribution in velocity space is important, e.g., [24] taking a strict zero thermal velocity is inconsistent with a finite phase space collisionless fluid.
- Heisenberg’s inequality sets a maximum phase space density that translates to a minimum particle velocity dispersion.
- The non-negligible influence of a ‘negligible’ velocity dispersion—while for some studies the velocity dispersion for a particle in the keV range may have a negligible effect, for other studies, especially at small scales, the effect becomes important not just in phase space and for the ‘physical’ correctness of the problem, but also in real space.
- The numerical resolution is very limited and thus the sampling of the phase space density distribution is poor in both ‘real’ space and velocity space.
- Thermal velocities for warm dark matter particles, in the keV range for example, are comparable (or smaller) to the bulk Zel’dovich velocities and thus, negligible.
- Furthermore, so introducing in the simulations a velocity that is much larger, due to the resolution limitations, to describe a contribution that is much smaller in reality, may introduce artificial artifacts. This argument that emphasizes the important effects of adding the velocities is usually followed by an argument that downgrades the real effect of the ‘real’ velocities.
3.2.2. No Escaping Velocities
3.3. The Deepest Cut
4. Simulation Methods and Analysis
4.1. The Fragmentation of WDM Filaments
5. Structure Formation in WDM Simulations
5.1. Top-Down or Bottom-Up?
5.2. A Hybrid Structure Formation Mechanism
- The collapse starts with sheets of matter collapsing into filaments, which then collapse into halos.
- The first halos are indeed formed top-down in the high density regions found at the intersection of well-contoured filaments. These halos begin accreting matter from the disrupted filaments.
- Depending on the morphology of the region, some of these halos can become very massive very fast just by accretion, and they can survive without major mergers until redshift zero.
- Later on, in medium density regions, depending on the spatial distribution of filaments in that region, halos merge into bigger ones, signaling the beginning of a bottom-up growth scenario.
- In less dense regions usually situated in voids, the collapse is even more delayed, with filaments being formed and collapsing very late. This favors the merger-free survival of a halo formed top-down all the way to redshift zero.
- Several of the early formed massive halos—depending once again on the region’s morphology—are violently merging together at later times forming large clusters.
5.3. The Baryon Component
5.4. Mergers and Satellites
Halo Mass Distribution
6. Internal Structure of WDM Halos
6.1. Shells and Caustics
6.2. Density Profiles
6.3. Cores in Simulated WDM Halos
Fitting Profiles
6.4. ‘Real Cores’
- AGN feedback, on the other hand, heats the gas with a much higher energy than the one available from supernova feedback [165].
6.5. Interpreting the Results
- The finite initial fine grained PSD sets a maximum coarse grained PSD, resulting in PSD profiles of WDM haloes similar to CDM halos in the outer regions, but which in inner regions turn over to a constant value set by the initial conditions.
- The pseudo phase space density is an overestimation of the six-dimensional phase space density and the coarse grained phase space density.
- The turnover in PSD results in a constant density core with a characteristic size in agreement with the simplest expectations.
- All WDM simulated halos show this turn in the PSD towards a constant value and have cored rather than cusped profiles.
- While the cutoff in the power spectrum alone results in a shallower PSD and density profile when compared to the CDM counterpart, it is the velocity dispersion that results in a constant PSD and a significant core in the density profile.
- For a WDM candidate with high enough velocities as to produce the observed large cores, the free streaming would erase all perturbations on that scale so that the halos would not be able to form in the first place—a catch 22—in the scenario in which velocities alone would be responsible for the production of the core.
7. Double Standards
8. Discussion and Outlook
8.1. How to Simulate Warm Dark Matter
- Proper representation of the physics in the simulations—free streaming length, velocity dispersion, particle-particle interactions.
- High-resolution simulations that will allow for the proper representation of the WDM effects at all scales—similar to the resolution in [76].
- Well-suited initial conditions—box size, starting redshift, simulation parameters.
- Inclusion of gas and baryonic processes early on in the simulation.
- Suitable analysis with suitable analysis tools—i.e., halo formation history, mass function.
- Proper representation of the physics in the analysis and interpretation of the results—i.e., quantum pressure, phase space analysis.
8.2. Learning from Simulations and Future Tests
- Since at larger scales the structure forms differently than in the CDM scenario and baryonic physics may put a twist on the structure formation, much higher resolution simulations with added baryonic processes should be performed.
- The early presence of super massive black holes can be tested in this scenario.
- Quantum pressure of the WDM particle should be included in simulations, since it has a significant effect on the cores.
- At smaller scales, even though PSD cores can be too small for the current simulations resolution to distinguish from CDM, they do occur naturally in WDM and thus when considering quantum pressure effects and baryonic physics they would surpass the core sizes found in CDM + baryons models.
- The formation of disk galaxies can be studied in this scenario, where baryons can condense coherently in a halo with a smooth potential.
- Since WDM halos have visible shells and caustics, the effects of baryons should be explored in this scenario and the enhancement in the annihilation signal should be studied.
- Voids and halos formed in voids may provide interesting insights into the qualitative differences between the models, differences that can be tested by observations.
9. Concluding Remarks
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
WDM | Warm Dark Matter |
CDM | Cold Dark Matter |
PSD | Phase Space Density |
NRP | Non-resonant Production Mechanism |
IGM | Intergalactic Medium |
1 | https://www.youtube.com/playlist?list=PLnGS4wkStJ1aqi3M9hTDaUzuZ-vs-Qg6i (accessed on 30 November 2021). |
References
- Dodelson, S.; Widrow, L.M. Sterile neutrinos as dark matter. Phys. Rev. Lett. 1994, 72, 17–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, X.; Fuller, G.M. New dark matter candidate: Nonthermal sterile neutrinos. Phys. Rev. Lett. 1999, 82, 2832. [Google Scholar] [CrossRef] [Green Version]
- Dolgov, A.D. Neutrinos in cosmology. Phys. Rep. 2002, 370, 333. [Google Scholar] [CrossRef] [Green Version]
- Asaka, T.; Shaposhnikov, M.; Kusenko, A. Opening a new window for warm dark matter. Phys. Lett. B 2006, 638, 401. [Google Scholar] [CrossRef] [Green Version]
- Boyarsky, A.; Drewes, M.; Lasserre, T.; Mertens, S.; Ruchayskiy, O. Sterile Neutrino Dark Matter. Prog. Part. Nucl. Phys. 2019, 104, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Boyanovsky, D. Sterile Neutrinos as Dark Matter: Alternative Production Mechanisms in the Early Universe. Universe 2021, 7, 264. [Google Scholar] [CrossRef]
- De Vega, H.; Sanchez, N.G. Model independent analysis of dark matter points to a particle mass at the keV scale. Mon. Not. R. Astron. Soc. 2010, 404, 885. [Google Scholar] [CrossRef] [Green Version]
- De Vega, H.; Salucci, P.; Sanchez, N.G. The mass of the dark matter particle from theory and observations. New Astron. 2012, 17, 653. [Google Scholar] [CrossRef] [Green Version]
- De Vega, H.; Sanchez, N.G. Cosmological evolution of warm dark matter fluctuations. I. Efficient computational framework with Volterra integral equations. Phys. Rev. D 2012, 85, 043516. [Google Scholar] [CrossRef] [Green Version]
- De Vega, H.; Sanchez, N.G. Cosmological evolution of warm dark matter fluctuations. II. Solution from small to large scales and keV sterile neutrinos. Phys. Rev. D 2012, 85, 043517. [Google Scholar] [CrossRef] [Green Version]
- Destri, C.; de Vega, H.J.; Sanchez, N.G. Fermionic warm dark matter produces galaxy cores in the observed scales because of quantum mechanics. New Astron. 2013, 22, 39. [Google Scholar] [CrossRef] [Green Version]
- Destri, C.; de Vega, H.J.; Sanchez, N.G. Quantum WDM fermions and gravitation determine the observed galaxy structures. Astropart. Phys. 2013, 46, 1. [Google Scholar] [CrossRef] [Green Version]
- Destri, C.; de Vega, H.J.; Sanchez, N.G. Warm dark matter primordial spectra and the onset of structure formation at redshift z. Phys. Rev. D 2013, 88, 083512. [Google Scholar] [CrossRef] [Green Version]
- De Vega, H.; Salucci, P.; Sanchez, N.G. Observational rotation curves and density profiles versus the Thomas—Fermi galaxy structure theory. Mon. Not. R. Astron. Soc. 2014, 442, 2717. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, N.; Paduroiu, S.; Biermann, P.L. Warm Dark Matter Astrophysics in Agreement with Observations and keV Sterile Neutrinos: Synthesis of Highlights and Conclusions of the Chalonge -de Vega MeudonWorkshop 2016 In Memoriam Héctor J. de Vega. HAL 2016, HAL Id:hal-01773092. Available online: https://hal.archives-ouvertes.fr/hal-01773092 (accessed on 30 November 2021).
- Paduroiu, S.; Revaz, Y.; Pfenniger, D. Structure formation in warm dark matter cosmologies: Top-Bottom Upside-Down. arXiv 2015, arXiv:1506.03789. [Google Scholar]
- Paduroiu, S. Structure Formation in Warm Dark Matter Cosmologies. Ph.D. Thesis, University of Geneva, Geneva, Switzerland, 2015. [Google Scholar]
- Bond, J.R.; Efstathiou, G.; Silk, J. Massive Neutrinos and the Large-Scale Structure of the Universe. Phys. Rev. Let. 1980, 45, 1980–1984. [Google Scholar] [CrossRef]
- Bode, P.; Ostriker, J.P.; Turok, N. Halo formation in warm dark matter models. Astrophys. J. 2001, 556, 93. [Google Scholar] [CrossRef]
- Viel, M.; Lesgourgues, J.; Haehnelt, M.G.; Matarrese, S.; Riotto, A. Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest. Phys. Rev. D 2005, 71, 063534. [Google Scholar] [CrossRef]
- Hansen, S.H.; Lesgourgues, J.; Pastor, S.; Silk, J. Constraining the window on sterile neutrinos as warm dark matter. Mon. Not. R. Astron. Soc. 2002, 333, 546. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.E.; Markovic, K. Testing the warm dark matter paradigm with large-scale structures. Phys. Rev. D 2011, 84, 063507. [Google Scholar] [CrossRef] [Green Version]
- Abazajian, K. Production and Evolution of Perturbations of Sterile Neutrino Dark Matter. Phys. Rev. D 2006, 73, 063506. [Google Scholar] [CrossRef] [Green Version]
- Colombi, S.; Dodelson, S.; Widrow, L.M. Large Scale Structure Tests of Warm Dark Matter. Astrophys. J. 1996, 458, 1. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, S. Principles of Stellar Dynamics; The University of Chicago Press: Chicago, IL, USA, 1942. [Google Scholar]
- Hénon, M. Dynamical Structure and Evolution of Stellar Systems; Swiss Society of Astronomy and Astrophysics: Sauverny, France, 1973; p. 183. [Google Scholar]
- Pierpaoli, E.; Borgani, S.; Masiero, A.; Yamaguchi, M. The Formation of Cosmic Structures in a Light Gravitino Dominated Universe. Phys. Rev. D 1998, 57, 2089. [Google Scholar] [CrossRef] [Green Version]
- Paduroiu, S.; Rios, M.; Marrani, A.; Chester, D. Warm Dark Matter from Higher-Dimensional Gauge Theories. Universe 2021, 7, 462. [Google Scholar] [CrossRef]
- Destri, C. Hollow cores in Warm Dark Matter halos from the Vlasov-Poisson equation. Phys. Rev. D 2014, 90, 123531. [Google Scholar] [CrossRef] [Green Version]
- Shaposhnikov, M.; Tkachev, I. The nuMSM, inflation, and dark matter. Phys. Rev. B 2006, 639, 414. [Google Scholar]
- Padmanabhan, T. Theoretical Astrophysics; Cambridge University Press: Cambridge, UK, 2002; Volume III. [Google Scholar]
- Pfenniger, D.; Muccione, V. Cosmological neutrino entanglement and quantum pressure. Astron. Astrophys. 2006, 456, 45. [Google Scholar] [CrossRef] [Green Version]
- Ringwald, A.; Wong, Y.Y.Y. Gravitational clustering of relic neutrinos and implications for their detection. J. Cosmol. Astropart. Phys. 2004, 12, 5. [Google Scholar] [CrossRef]
- Asaka, T.; Laine, M.; Shaposhnikov, M. Lightest sterile neutrino abundance within the nuMSM. J. High Energy Phys. 2007, 1, 91. [Google Scholar]
- Boyarsky, A.; Lesgourgues, J.; Ruchayskiy, O.; Viel, M. Lyman-α constraints on warm and on warm-plus-cold dark matter models. J. Cosmol. Astropart. Phys. 2009, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Fuller, G.M.; Kishimoto, C.T.; Kusenko, A. Heavy sterile neutrinos, entropy and relativistic energy production, and the relic neutrino background. arXiv 2011, arXiv:1110.6479. [Google Scholar]
- Boehm, C.B.; Dolan, M.J.; McCabe, C. Increasing Neff with particles in thermal equilibrium with neutrinos. J. Cosmol. Astropart. Phys. 2012, 12, 027. [Google Scholar]
- Lello, L.; Boyanovsky, D. Cosmological Implications of Light Sterile Neutrinos produced after the QCD Phase Transition. Phys. Rev. D 2015, 91, 063502. [Google Scholar] [CrossRef] [Green Version]
- Springel, V. The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 2005, 364, 1105. [Google Scholar] [CrossRef] [Green Version]
- Stadel, J. Cosmological N-body Simulations and Their Analysis. Ph.D. Thesis, University of Washington, Washington, DC, USA, 2001. [Google Scholar]
- White, S.D.M. Cosmology and Large Scale Structure. In Formation and Evolution of Galaxies; Schaeffer, R., Silk, J., Spiro, M., Zinn-Justin, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; p. 349. [Google Scholar]
- Wang, J.; White, S.D.M. Discreteness effects in simulations of hot/warm dark matter. Mon. Not. R. Astron. Soc. 2007, 380, 93. [Google Scholar] [CrossRef] [Green Version]
- Reed, D.S.; Smith, R.E.; Potter, D.; Schneider, A.; Stadel, J.; Moore, B. Towards an accurate mass function for precision cosmology. Mon. Not. R. Astron. Soc. 2013, 431, 1866. [Google Scholar] [CrossRef]
- May, R.M. Simple mathematical models with very complicated dynamics. Nature 1976, 261, 459. [Google Scholar] [CrossRef]
- Bertschinger, E. Multiscale Gaussian Random Fields and Their Application to Cosmological Simulations. Astrophys. J. Suppl. Ser. 2001, 137, 1. [Google Scholar] [CrossRef]
- Hahn, O.; Abel, T. Multi-scale initial conditions for cosmological simulations. Mon. Not. R. Astron. Soc. 2011, 415, 2101. [Google Scholar] [CrossRef] [Green Version]
- Challinor, A.; Lewis, A. Lensed CMB power spectra from all-sky correlation functions. Phys. Rev. D 2005, 71, 103010. [Google Scholar] [CrossRef] [Green Version]
- Seljak, U.; Zaldarriaga, M. A Line-of-Sight Integration Approach to Cosmic Microwave Background Anisotropies. Astrophys. J. 1996, 469, 437. [Google Scholar] [CrossRef] [Green Version]
- Heitmann, K.; Lukic, Z.; Fasel, P. The Cosmic Code Comparison Project. Comput. Sci. Discov. 2008, 1, 015003. [Google Scholar] [CrossRef] [Green Version]
- Springel, V.; Wang, J.; Vogelsberger, M.; Ludlow, A.; Jenkins, A.; Helmi, A.; Navarro, J.F.; Frenk, C.S.; White, S.D.M. The Aquarius Project: The subhaloes of galactic haloes. Mon. Not. R. Astron. Soc. 2008, 391, 1685. [Google Scholar] [CrossRef]
- Stadel, J.; Potter, D.; Moore, B.; Diemand, D.; Madau, P.; Zemp, M.; Kuhlen, M.; Quilis, V. Quantifying the heart of darkness with GHALO—A multibillion particle simulation of a galactic halo. Mon. Not. R. Astron. Soc. 2009, 398, L21. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Abel, T.; Agertz, O.; Bryan, G.L.; Ceverino, D.; Christensen, C.; Conroy, C.; Dekel, A.; Gnedin, N.Y.; Goldbaum, N.J.; et al. The AGORA High-resolution Galaxy Simulations Comparison Project. Astrophys. J. 2014, 210, 14. [Google Scholar] [CrossRef] [Green Version]
- Melott, A.L.; Shandarin, S.F.; Splinter, R.J.; Suto, Y. Demonstrating discreteness and collision error in cosmological N-body simulations of dark matter gravitational clustering. Astrophys. J. Lett. 1997, 479, L79. [Google Scholar] [CrossRef]
- Splinter, R.J.; Melott, A.L.; Shandarin, S.F.; Suto, Y. Fundamental Discreteness Limitations of Cosmological N-body Clustering Simulations. Astrophys. J. 1998, 497, 38. [Google Scholar] [CrossRef] [Green Version]
- Diemand, J.; Moore, B.; Stadel, J. Convergence and scatter of cluster density profiles. Mon. Not. R. Astron. Soc. 2004, 353, 624. [Google Scholar] [CrossRef] [Green Version]
- Binney, J. Discreteness effects in cosmological N-body simulations. Mon. Not. R. Astron. Soc. 2004, 350, 939. [Google Scholar] [CrossRef] [Green Version]
- Romeo, A.B.; Agertz, O.; Moore, B.; Stadel, J. Discreteness effects in ΛCDM simulations: A wavelet-statistical view. Astrophys. J. 2008, 686, 1. [Google Scholar] [CrossRef] [Green Version]
- Joyce, M.; Marcos, B.; Baertschiger, T. Towards quantitative control on discreteness error in the non-linear regime of cosmological N-body simulations. Mon. Not. R. Astron. Soc. 2009, 394, 751. [Google Scholar] [CrossRef] [Green Version]
- Avila-Reese, V.; Colín, P.; Valenzuela, O.; D’Onghia, E.; Firmani, C. Formation and structure of halos in a warm dark matter cosmology. Astrophys. J. 2001, 559, 516. [Google Scholar] [CrossRef] [Green Version]
- Centrella, J.; Melott, A.L. Three-dimensional simulation of large-scale structure in the universe. Nature 1983, 305, 196. [Google Scholar] [CrossRef]
- Frenk, C.S.; White, S.D.M.; Davis, M. Elementary Particles and the Large-Scale Structure of the Universe—Short Contributions; Setti, G., Van Hove, L., Eds.; ESO: Garching, Germany, 1984; p. 257. [Google Scholar]
- Efstathiou, G.; Davis, M.; White, S.D.M.; Frenk, C.S. Numerical techniques for large cosmological N-body simulations. Astrophys. J. Suppl. Ser. 1985, 57, 24. [Google Scholar] [CrossRef]
- Centrella, J.M.; Gallagher, J.S., III; Melott, A.L.; Bushouse, H.A. A Case Study of Large-Scale Structure in a “Hot” Model Universe. Astrophys. J. 1988, 333, 24. [Google Scholar] [CrossRef]
- Knebe, A.; Devriendt, J.E.G.; Gibson, B.K.; Silk, J. Top-down fragmentation of a warm dark matter filament. Mon. Not. R. Astron. Soc. 2003, 345, 1285. [Google Scholar] [CrossRef] [Green Version]
- Götz, M.; Sommer-Larsen, J. Warm Dark Matter and the Missing Satellites Problem. Astrophys. Space Sci. 2002, 281, 415. [Google Scholar] [CrossRef]
- Götz, M.; Sommer-Larsen, J. Galaxy Formation: Warm Dark Matter, Missing Satellites, and the Angular Momentum Problem. Astrophys. Space Sci. 2003, 284, 341. [Google Scholar] [CrossRef]
- Hahn, O.; Abel, T.; Kaehler, R. A new approach to simulating collisionless dark matter fluids. Mon. Not. R. Astron. Soc. 2013, 434, 1171. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, A.; Read, J.; Agertz, O.; Iannuzzi, F.; Power, C. Novel Adaptive softening for collisionless N-body simulations: Eliminating spurious halos. Mon. Not. R. Astron. Soc. 2015, 458, 468. [Google Scholar] [CrossRef]
- Ostriker, J. On the Oscillations and the Stability of a Homogeneous Compressible Cylinder. Astrophys. J. 1964, 140, 1529. [Google Scholar] [CrossRef]
- Fridman, A.M.; Poliachenko, V.L. Physics of Gravitating Systems. II—Nonlinear Collective Processes: Nonlinear Waves, Solitons, Collisionless Shocks, Turbulence. Astrophysical Applications; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Lovell, M.R.; Frenk, C.S.; Eke, V.R.; Jenkins, A.; Gao, L.; Theuns, T. The properties of warm dark matter haloes. Mon. Not. R. Astron. Soc. 2014, 439, 300. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Theuns, T.; Springel, V. Star-forming filaments in warm dark matter models. Mon. Not. R. Astron. Soc. 2015, 450, 45. [Google Scholar] [CrossRef] [Green Version]
- Eggen, O.J.; Lynden-Bell, D.; Sandage, A.R. Evidence from the motions of old stars that the Galaxy collapsed. Astrophys. J. 1962, 136, 748. [Google Scholar] [CrossRef]
- Larson, R.B. Models for the formation of elliptical galaxies. Mon. Not. R. Astron. Soc. 1975, 173, 671. [Google Scholar] [CrossRef] [Green Version]
- Tinsley, B.M.; Gunn, J.E. Evolutionary synthesis of the stellar population in elliptical galaxies. I. Ingredients, broad-band colors, and infrared features. Astrophys. J. 1976, 203, 52. [Google Scholar] [CrossRef]
- Gao, L.; Theuns, T. Lighting the Universe with filaments. Science 2007, 317, 1527. [Google Scholar] [CrossRef] [Green Version]
- Governato, F.; Weisz, D.; Pontzen, A.; Loebman, S.; Reed, D.; Brooks, A.M.; Behroozi, P.; Christensen, C.; Madau, P.; Mayer, L.; et al. Faint dwarfs as a test of DM models: WDM versus CDM. Mon. Not. R. Astron. Soc. 2015, 448, 792. [Google Scholar] [CrossRef] [Green Version]
- Hernquist, L.; Spergel, D.N.; Heyl, J.S. Structure of merger remnants. III. Phase-space constraints. Astrophys. J. 1993, 416, 415. [Google Scholar] [CrossRef]
- Barnes, J.E. Formation of gas discs in merging galaxies. Mon. Not. R. Astron. Soc. 2002, 333, 481. [Google Scholar] [CrossRef] [Green Version]
- Springel, V.; Hernquist, L. Formation of a spiral galaxy in a major merger. Astrophys. J. 2005, 622, L9. [Google Scholar] [CrossRef]
- Robertson, B.; Bullock, J.S.; Cox, T.J.; Matteo, T.D.; Hernquist, L.; Springel, V.; Yoshida, N. A merger-driven scenario for cosmological disk galaxy formation. Astrophys. J. 2006, 645, 986. [Google Scholar] [CrossRef] [Green Version]
- Helly, J.C.; Cole, S.; Frenk, C.S.; Baugh, C.M.; Benson, A.; Lacey, C. Galaxy formation using halo merger histories taken from N-body simulations. Mon. Not. R. Astron. Soc. 2003, 338, 903. [Google Scholar] [CrossRef] [Green Version]
- Springel, V.; White, S.D.M.; Jenkins, A.; Frenk, C.S.; Yoshida, N.; Gao, L.; Navarro, J.; Thacker, R.; Croton, D.; Helly, J.; et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 2005, 435, 629. [Google Scholar] [CrossRef]
- Hopkins, P.F.; Croton, D.; Bundy, K.; Khochfar, S.; van den Bosch, F.; Somerville, R.S.; Wetzel, A.; Keres, D.; Hernquist, L.; Stewart, K.; et al. Mergers in ΛCDM: Uncertainties in theoretical predictions and interpretations of the merger rate. Astrophys. J. 2010, 724, 2. [Google Scholar] [CrossRef]
- Sales, L.V.; Navarro, J.F.; Abadi, M.G.; Steinmetz, M. Satellites of simulated galaxies: Survival, merging and their relation to the dark and stellar haloes. Mon. Not. R. Astron. Soc. 2007, 379, 1475. [Google Scholar] [CrossRef] [Green Version]
- Press, W.H.; Schechter, P. Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation. Astrophys. J. 1974, 187, 425. [Google Scholar] [CrossRef]
- Bond, J.R.; Cole, S.; Efstathiou, G.; Kaiser, N. Excursion Set Mass Functions for Hierarchical Gaussian Fluctuations. Astrophys. J. 1991, 379, 440. [Google Scholar] [CrossRef]
- Bower, R.G. The evolution of groups of galaxies in the Press–Schechter formalism. Mon. Not. R. Astron. Soc. 1991, 248, 332. [Google Scholar] [CrossRef]
- Lacey, C.; Cole, S. Merger rates in hierarchical models of galaxy formation. Mon. Not. R. Astron. Soc. 1993, 262, 627. [Google Scholar] [CrossRef] [Green Version]
- Eke, V.R.; Cole, S.; Frenk, C.S.; Navarro, J.F. Cluster correlation functions in N-body simulations. Mon. Not. R. Astron. Soc. 1996, 281, 703. [Google Scholar] [CrossRef] [Green Version]
- Sheth, R.K.; Mo, H.J.; Tormen, G. Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes. Mon. Not. R. Astron. Soc. 2001, 323, 1. [Google Scholar] [CrossRef] [Green Version]
- Reed, D.S.; Bower, R.; Frenk, C.S.; Jenkins, A.; Theuns, T. The halo mass function from the dark ages through the present day. Mon. Not. R. Astron. Soc. 2007, 374, 2. [Google Scholar] [CrossRef] [Green Version]
- Tinker, J.; Kravtsov, A.V.; Klypin, A.; Abazajian, K.; Warren, M.; Yepes, G.; Gottlöber, S.; Holz, D.E. Toward a halo mass function for precision cosmology: The limits of universality. Astrophys. J. 2008, 688, 709. [Google Scholar] [CrossRef]
- Robertson, B.E.; Kravtsov, A.V.; Tinker, J.; Zentner, A.R. Collapse barriers and halo abundance: Testing the excursion set ansatz. Astrophys. J. 2009, 696, 636. [Google Scholar] [CrossRef] [Green Version]
- Eisenstein, D.J.; Hu, W. Power Spectra for Cold Dark Matter and Its Variants. Astrophys. J. 1999, 511, 5. [Google Scholar] [CrossRef] [Green Version]
- Lovell, M.R. Toward a General Parameterization of the Warm Dark Matter Halo Mass Function. Astrophys. J. 2020, 897, 147. [Google Scholar] [CrossRef]
- Sikivie, P.; Ipser, J.R. Phase-space structure of cold dark matter halos. Phys. Lett. B 1992, 291, 288. [Google Scholar] [CrossRef] [Green Version]
- Sikivie, P.; Tkachev, I.I.; Wang, Y. The secondary infall model of galactic halo formation and the spectrum of cold dark matter particles on Earth. Phys. Rev. D 1997, 56, 1863. [Google Scholar] [CrossRef] [Green Version]
- Tremaine, S. The geometry of phase mixing. Mon. Not. R. Astron. Soc. 1999, 307, 877. [Google Scholar] [CrossRef] [Green Version]
- Alard, C.; Colombi, S. A cloudy Vlasov solution. Mon. Not. R. Astron. Soc. 2005, 359, 123. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, A.; Sikivie, P. Inner caustics of cold dark matter halos. Phys. Rev. D 2006, 73, 023510. [Google Scholar] [CrossRef] [Green Version]
- Malin, D.F.; Carter, D. Giant shells around normal elliptical galaxies. Nature 1980, 285, 643. [Google Scholar] [CrossRef]
- Carter, D.; Allen, D.A.; Malin, D.F. Nature of the shells of NGC1344. Nature 1982, 295, 126. [Google Scholar] [CrossRef]
- Hernquist, L.; Quinn, P.J. Formation of Shell Galaxies. I. Spherical Potentials. Astrophys. J. 1988, 331, 682. [Google Scholar] [CrossRef]
- Hernquist, L.; Quinn, P.J. Formation of shell galaxies. II—Nonspherical potentials. Astrophys. J. 1989, 342, 1. [Google Scholar] [CrossRef]
- Cooper, A.P.; Cole, S.; Frenk, C.S.; White, S.D.M.; Helly, J.; Benson, A.J.; De Lucia, G.; Helmi, A.; Jenkins, A.; Navarro, J.F.; et al. Galactic stellar haloes in the CDM model. Mon. Not. R. Astron. Soc. 2010, 406, 744. [Google Scholar] [CrossRef] [Green Version]
- Lovell, M.R.; Eke, V.; Frenk, C.S.; Gao, L.; Jenkins, A.; Theuns, T.; Wang, J.; White, S.D.M.; Boyarsky, A.; Ruchayskiy, O. The haloes of bright satellite galaxies in a warm dark matter universe. Mon. Not. R. Astron. Soc. 2012, 420, 2318. [Google Scholar] [CrossRef] [Green Version]
- Angulo, R.E.; Hahn, O.; Abel, T. The warm dark matter halo mass function below the cut-off scale. Mon. Not. R. Astron. Soc. 2013, 434, 3337. [Google Scholar] [CrossRef]
- Bulbul, E.; Markevitch, M.; Foster, A.; Smith, R.K.; Loewenstein, M.; Randall, S.W. Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters. Astrophys. J. 2014, 789, 13. [Google Scholar] [CrossRef] [Green Version]
- Boyarsky, A.; Ruchayskiy, O.; Iakubovskyi, D.; France, J. An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster. Phys. Rev. Let. 2014, 113, 251301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fillmore, J.A.; Goldreich, P. Self-similar gravitational collapse in an expanding universe. Astrophys. J. 1984, 281, 1. [Google Scholar] [CrossRef] [Green Version]
- Bertschinger, E. Self-similar secondary infall and accretion in an Einstein-de Sitter universe. Astrophys. J. Suppl. Ser. 1985, 58, 39. [Google Scholar] [CrossRef]
- Mohayaee, R.; Shandarin, S.F. Gravitational cooling and density profile near caustics in collisionless dark matter haloes. Mon. Not. R. Astron. Soc. 2006, 366, 1217. [Google Scholar] [CrossRef] [Green Version]
- Mohayaee, R.; Salati, P. The cosmic ray signature of dark matter caustics. Mon. Not. R. Astron. Soc. 2008, 390, 1297. [Google Scholar] [CrossRef] [Green Version]
- Vogelsberger, M.; White, S.D.M. Streams and caustics: The fine-grained structure of Λ cold dark matter haloes. Mon. Not. R. Astron. Soc. 2011, 413, 1419. [Google Scholar] [CrossRef] [Green Version]
- De Blok, W.J.G.; McGaugh, S.S.; Bosma, A.; Rubin, V.C. Mass Density Profiles of LSB Galaxies. Astrophys. J. Lett. 2001, 552, L23. [Google Scholar] [CrossRef] [Green Version]
- Kuzio de Naray, R.; McGaugh, S.S.; Mihos, J.C. Constraining the NFW Potential with Observations and Modeling of LSB Galaxy Velocity Fields. Astrophys. J. 2009, 692, 1321. [Google Scholar] [CrossRef]
- Oh, S.H.; de Blok, W.J.G.; Brinks, E.; Walter, F.; Kennicutt, R.C., Jr. Dark and luminous matter in THINGS dwarf galaxies. Astron. J. 2011, 141, 193. [Google Scholar] [CrossRef] [Green Version]
- Salucci, P.; Wilkinson, M.I.; Walker, M.G.; Gilmore, G.F.; Grebel, E.K.; Koch, A.; Frigerio Martins, C.; Wyse, R.F.G. Dwarf spheroidal galaxy kinematics and spiral galaxy scaling laws. Mon. Not. R. Astron. Soc. 2011, 420, 2034. [Google Scholar] [CrossRef] [Green Version]
- Moore, B. Evidence against dissipation-less dark matter from observations of galaxy haloes. Nature 1994, 370, 629. [Google Scholar] [CrossRef]
- Flores, R.A.; Primack, J.R. Observational and Theoretical Constraints on Singular Dark Matter Halos. Astrophys. J. 1994, 427, L1. [Google Scholar] [CrossRef]
- Diemand, J.; Zemp, M.; Moore, B.; Stadel, J.; Carollo, M. Cusps in cold dark matter haloes. Mon. Not. R. Astron. Soc. 2005, 364, 665. [Google Scholar] [CrossRef]
- Macciò, A.V.; Dutton, A.A.; van den Bosch, F.C.; Moore, B.; Potter, D.; Stadel, J. Concentration, spin and shape of dark matter haloes: Scatter and the dependence on mass and environment. Mon. Not. R. Astron. Soc. 2007, 378, 55. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. The Structure of Cold Dark Matter Halos. Astrophys. J. 1996, 462, 563. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. A Universal Density Profile from Hierarchical Clustering. Astrophys. J. 1997, 490, 493. [Google Scholar] [CrossRef]
- Einasto, J. On the Construction of a Composite Model for the Galaxy and on the Determination of the System of Galactic Parameters. Trudy Inst. Astrofiz. Alma-Ata 1965, 51, 87. [Google Scholar]
- Navarro, J.F.; Hayashi, E.; Power, C.; Jenkins, A.R.; Frenk, C.S.; White, S.D.M.; Springel, V.; Stadel, J.; Quinn, T.R. The inner structure of ΛCDM haloes—III. Universality and asymptotic slopes. Mon. Not. R. Astron. Soc. 2004, 349, 1039. [Google Scholar] [CrossRef]
- Merritt, D.; Navarro, J.F.; Ludlow, A.; Jenkins, A. A Universal Density Profile for Dark and Luminous Matter? Astrophys. J. 2005, 624, L85. [Google Scholar] [CrossRef] [Green Version]
- Prada, F.; Klypin, A.A.; Simonneau, E.; Betancort-Rijo, J.; Patiri, S.; Gottlöber, S.; Sanchez-Conde, M.A. How far do they go? The outer structure of dark matter halos. Astrophys. J. 2006, 645, 1001. [Google Scholar] [CrossRef]
- Gao, L.; Navarro, J.F.; Cole, S.; Frenk, C.S.; White, S.D.M.; Springel, V.; Jenkins, A.; Neto, A.F. The redshift dependence of the structure of massive Λ cold dark matter haloes. Mon. Not. R. Astron. Soc. 2008, 387, 536. [Google Scholar] [CrossRef] [Green Version]
- Tremaine, S.; Gunn, J.E. Dynamical Role of Light Neutral Leptons in Cosmology. Phys. Rev. Lett. 1979, 42, 407. [Google Scholar] [CrossRef]
- Dalcanton, J.J.; Hogan, C.J. Halo Cores and Phase Space Densities: Observational Constraints on Dark Matter Physics and Structure Formation. Astrophys. J. 2001, 561, 35. [Google Scholar] [CrossRef] [Green Version]
- Strigari, L.E.; Bullock, J.S.; Kaplinghat, M.; Kravtsov, A.V.; Gnedin, O.Y.; Abazajian, K.; Klypin, A.A. A Large Dark Matter Core in the Fornax Dwarf Spheroidal Galaxy? Astrophys. J. 2006, 652, 306. [Google Scholar] [CrossRef]
- Hogan, C.J.; Dalcanton, J.J. New dark matter physics: Clues from halo structure. Phys. Rev. D 2000, 62, 063511. [Google Scholar] [CrossRef] [Green Version]
- Shao, S.; Gao, L.; Theuns, T.; Frenk, C.S. The phase-space density of fermionic dark matter haloes. Mon. Not. R. Astron. Soc. 2013, 430, 2346. [Google Scholar] [CrossRef]
- Macciò, A.V.; Paduroiu, S.; Anderhalden, D.; Schneider, A.; Moore, B. Cores in warm dark matter haloes: A Catch 22 problem. Mon. Not. R. Astron. Soc. 2012, 424, 1105, Erratum in Mon. Not. R. Astron. Soc. 2013, 428, 3715. [Google Scholar] [CrossRef] [Green Version]
- De Vega, H.J.; Sanchez, N.G. Warm dark matter in the galaxies: Theoretical and observational progresses. Highlights and conclusions of the chalonge meudon workshop 2011. arXiv 2011, arXiv:1109.3187. [Google Scholar]
- De Vega, H.J.; Falvella, M.C.; Sanchez, N.G. Towards the Chalonge 16th Paris Cosmology Colloquium 2012: Highlights and Conclusions of the Chalonge 15th Paris Cosmology Colloquium 2011. arXiv 2012, arXiv:1203.3562. [Google Scholar]
- Taylor, J.E.; Navarro, J.F. The Phase-Space Density Profiles of Cold Dark Matter Halos. Astrophys. J. 2001, 563, 483. [Google Scholar] [CrossRef] [Green Version]
- Kent, S.M. Dark matter in spiral galaxies. I. Galaxies with optical rotation curves. Astron. J. 1986, 91, 1301. [Google Scholar] [CrossRef]
- Begeman, K.G.; Broeils, A.H.; Sanders, R.H. Extended rotation curves of spiral galaxies: Dark haloes and modified dynamics. Mon. Not. R. Astron. Soc. 1991, 249, 523. [Google Scholar] [CrossRef] [Green Version]
- Walker, M. Dark Matter in the Galactic Dwarf Spheroidal Satellites in Planets, Stars and Stellar Systems. In Galactic Structure and Stellar Populations; Springer: Dordrecht, The Netherlands, 2013; Volume 5, p. 1039. [Google Scholar]
- Sánchez-Salcedo, F.J.; Reyes-Iturbide, J.; Hernandez, X. An extensive study of dynamical friction in dwarf galaxies: The role of stars, dark matter, halo profiles and MOND. Mon. Not. R. Astron. Soc. 2006, 370, 1829. [Google Scholar] [CrossRef] [Green Version]
- Goerdt, T.; Moore, B.; Read, J.I.; Stadel, J.; Zemp, M. Does the Fornax dwarf spheroidal have a central cusp or core? Mon. Not. R. Astron. Soc. 2006, 368, 1073. [Google Scholar] [CrossRef] [Green Version]
- Goerdt, T.; Moore, B.; Read, J.I.; Stadel, J. Core creation in galaxies and halos via sinking massive objects. Astrophys. J. 2010, 725, 1707. [Google Scholar] [CrossRef] [Green Version]
- Cole, D.R.; Dehnen, W.; Wilkinson, M.I. Weakening dark matter cusps by clumpy baryonic infall. Mon. Not. R. Astron. Soc. 2011, 416, 1118. [Google Scholar] [CrossRef] [Green Version]
- Read, J.I.; Gilmore, G. Mass loss from dwarf spheroidal galaxies: The origins of shallow dark matter cores and exponential surface brightness profiles. Mon. Not. R. Astron. Soc. 2005, 356, 107. [Google Scholar] [CrossRef] [Green Version]
- Mashchenko, S.; Couchman, H.M.P.; Wadsley, J. The removal of cusps from galaxy centres by stellar feedback in the early Universe. Nature 2006, 442, 539. [Google Scholar] [CrossRef]
- Mashchenko, S.; Wadsley, J.; Couchman, H.M.P. Stellar Feedback in Dwarf Galaxy Formation. Science 2008, 319, 174. [Google Scholar] [CrossRef] [Green Version]
- De Souza, R.S.; Rodrigues, L.F.S.; Ishida, E.E.O.; Opher, R. The effect of a single supernova explosion on the cuspy density profile of a small-mass dark matter halo. Mon. Not. R. Astron. Soc. 2011, 415, 2969. [Google Scholar] [CrossRef] [Green Version]
- Sawala, T.; Scannapieco, C.; Maio, U.; White, S. Formation of isolated dwarf galaxies with feedback. Mon. Not. R. Astron. Soc. 2010, 402, 1599. [Google Scholar] [CrossRef] [Green Version]
- Parry, O.H.; Eke, V.R.; Frenk, C.S.; Okamoto, T. The Baryons in the Milky Way Satellites. Mon. Not. R. Astron. Soc. 2011, 419, 3304. [Google Scholar] [CrossRef] [Green Version]
- Walker, M.G.; Penarrubia, J. A Method for Measuring (Slopes of) the Mass Profiles of Dwarf Spheroidal Galaxies. Astrophys. J. 2011, 742, 2. [Google Scholar] [CrossRef] [Green Version]
- Abel, T.; Bryan, G.L.; Norman, M.L. The Formation of the First Star in the Universe. Science 2002, 295, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bromm, V.; Coppi, P.S.; Larson, R.B. The Formation of the First Stars. I. The Primordial Star-forming Cloud. Astrophys. J. 2002, 564, 23. [Google Scholar] [CrossRef]
- Scannapieco, C.; Tissera, P.B.; White, S.D.M.; Springel, V. Feedback and metal enrichment in cosmological smoothed particle hydrodynamics simulations—I. A model for chemical enrichment. Mon. Not. R. Astron. Soc. 2005, 364, 552. [Google Scholar] [CrossRef] [Green Version]
- Scannapieco, C.; Tissera, P.B.; White, S.D.M.; Springel, V. Feedback and metal enrichment in cosmological SPH simulations—II. A multiphase model with supernova energy feedback. Mon. Not. R. Astron. Soc. 2006, 371, 1125. [Google Scholar] [CrossRef] [Green Version]
- Oñorbe, J.; Boylan-Kolchin, M.; Bullock, J.S.; Hopkins, P.F.; Kerěs, D.; Faucher-Giguère, C.A.; Quataert, E.; Murray, N. Forged in fire: Cusps, cores and baryons in low-mass dwarf galaxies. Mon. Not. R. Astron. Soc. 2015, 454, 2092. [Google Scholar] [CrossRef]
- Okamoto, T.; Eke, V.R.; Frenk, C.S.; Jenkins, A. Effects of feedback on the morphology of galaxy discs. Mon. Not. R. Astron. Soc. 2005, 363, 1299. [Google Scholar] [CrossRef] [Green Version]
- Scannapieco, C.; Tissera, P.B.; White, S.D.M.; Springel, V. Effects of supernova feedback on the formation of galaxy discs. Mon. Not. R. Astron. Soc. 2008, 389, 1137. [Google Scholar] [CrossRef]
- Sales, L.V.; Navarro, J.F.; Schaye, J.; Dalla Vecchia, C.; Springel, V.; Booth, C.M. Feedback and the structure of simulated galaxies at redshift z = 2. Mon. Not. R. Astron. Soc. 2010, 409, 1541. [Google Scholar] [CrossRef] [Green Version]
- Guedes, J.; Callegari, S.; Madau, P.; Mayer, L. Forming Realistic Late-type Spirals in a ΛCDM Universe: The Eris Simulation. Astrophys. J. 2011, 742, 76. [Google Scholar] [CrossRef] [Green Version]
- Macciò, A.V.; Stinson, G.; Brook, C.B.; Wadsley, J.; Couchman, H.M.P.; Shen, S.; Gibson, B.K.; Quinn, T. Halo Expansion in Cosmological Hydro Simulations: Toward a Baryonic Solution of the Cusp/Core Problem in Massive Spirals. Astrophys. J. 2012, 744, L9. [Google Scholar] [CrossRef]
- Marinacci, F.; Pakmor, R.; Springel, V. The formation of disc galaxies in high-resolution moving-mesh cosmological simulations. Mon. Not. R. Astron. Soc. 2014, 437, 1750. [Google Scholar] [CrossRef]
- Di Matteo, T.; Springel, V.; Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 2005, 433, 604. [Google Scholar] [CrossRef]
- Del Popolo, A.; Le Delliou, M. Small Scale Problems of the ΛCDM Model: A Short Review. Galaxies 2017, 5, 17. [Google Scholar] [CrossRef]
- Benson, A.J. Galaxy formation theory. Phys. Rep. 2010, 495, 33. [Google Scholar] [CrossRef] [Green Version]
- Governato, F.; Willman, B.; Mayer, L.; Brooks, A.; Stinson, G.; Valenzuela, O.; Wadsley, J.; Quinn, T. Forming disc galaxies in ΛCDM simulations. Mon. Not. R. Astron. Soc. 2007, 374, 1479. [Google Scholar] [CrossRef]
- Kaufmann, T.; Mayer, L.; Wadsley, J.; Stadel, J.; Moore, B. Angular momentum transport and disc morphology in smoothed particle hydrodynamics simulations of galaxy formation. Mon. Not. R. Astron. Soc. 2007, 375, 53. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. Universal Neutrino Degeneracy. Phys. Rev 1962, 128, 1457. [Google Scholar] [CrossRef]
- Muccione, V.; Pfenniger, D. Degenerate Fermions in Galaxy Clusters and Halos. EAS Publ. Ser. 2006, 20, 291. [Google Scholar] [CrossRef]
- Domcke, V.; Urbano, A. Dwarf spheroidal galaxies as degenerate gas of free fermions. J. Cosmol. Astropart. Phys. 2015, 1, 002. [Google Scholar] [CrossRef]
- Randall, L.; Scholtz, J.; Unwin, J. Cores in dwarf galaxies from Fermi repulsion. Mon. Not. R. Astron. Soc. 2017, 467, 2, 1515. [Google Scholar] [CrossRef] [Green Version]
- Amorisco, N.C.; Evans, N.W. Dark matter cores and cusps: The case of multiple stellar populations in dwarf spheroidals. Mon. Not. R. Astron. Soc. 2012, 419, 184. [Google Scholar] [CrossRef]
- Jardel, J.; Gebhardt, K. The dark matter density profile of the FORNAX dwarf. Astrophys. J. 2012, 746, 89. [Google Scholar] [CrossRef] [Green Version]
- Viel, M.; Becker, G.D.; Bolton, J.S.; Haehnelt, M.G. Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data. Phys. Rev. D 2013, 88, 043502. [Google Scholar] [CrossRef] [Green Version]
- Markovic, K.; Viel, M. Lyman-α Forest and Cosmic Weak Lensing in a Warm Dark Matter Universe. Publ. Astron. Soc. Aust. 2014, 31, 6. [Google Scholar] [CrossRef] [Green Version]
- De Souza, R.S.; Mesinger, A.; Ferrara, A.; Haiman, Z.; Perna, R.; Yoshida, N. Constraints on warm dark matter models from high-redshift long gamma-ray bursts. Mon. Not. R. Astron. Soc. 2013, 432, 3218. [Google Scholar] [CrossRef] [Green Version]
- Schneider, A.; Anderhalden, D.; Macciò, A.V.; Diemand, J. Warm dark matter does not do better than cold dark matter in solving small-scale inconsistencies. Mon. Not. R. Astron. Soc. 2014, 441, L6. [Google Scholar] [CrossRef] [Green Version]
- Garzilli, A.; Magalich, A.; Theuns, T.; Frenk, C.S.; Weniger, C.; Ruchayskiy, O.; Boyarsky, A. The Lyman-alpha forest as a diagnostic of the nature of the dark matter. Mon. Not. R. Astron. Soc. 2019, 489, 3. [Google Scholar] [CrossRef]
- Laine, M.; Shaposhnikov, M. Sterile neutrino dark matter as a consequence of nuMSM-induced lepton asymmetry. J. Cosmol. Astropart. Phys. 2008, 806, 031. [Google Scholar] [CrossRef] [Green Version]
- Mocz, P.; Fialkov, A.; Vogelsberger, M.; Becerra, F.; Amin, M.A.; Bose, S.; Boylan-Kolchin, M.; Chavanis, P.H.; Hernquist, L.; Lancaster, L.; et al. First Star-Forming Structures in Fuzzy Cosmic Filaments. Phys. Rev. Lett. 2019, 14, 123. [Google Scholar] [CrossRef] [PubMed]
Mass | Bode et al. | Pierpaoli et al. | Paduroiu et al. | Boyarsky et al. | Boyarsky et al. |
---|---|---|---|---|---|
TR | NRP | ||||
keV | km/s | km/s | km/s | km/s | km/s |
0.2 | 0.366 | 0.4032 | 1.113 | 0.29 | 0.785 |
1.0 | 0.0429 | 0.0225 | 0.223 | 0.034 | 0.157 |
3.5 | 0.00806 | 0.0037 | 0.0636 | 0.0064 | 0.00448 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paduroiu, S. Warm Dark Matter in Simulations. Universe 2022, 8, 76. https://doi.org/10.3390/universe8020076
Paduroiu S. Warm Dark Matter in Simulations. Universe. 2022; 8(2):76. https://doi.org/10.3390/universe8020076
Chicago/Turabian StylePaduroiu, Sinziana. 2022. "Warm Dark Matter in Simulations" Universe 8, no. 2: 76. https://doi.org/10.3390/universe8020076
APA StylePaduroiu, S. (2022). Warm Dark Matter in Simulations. Universe, 8(2), 76. https://doi.org/10.3390/universe8020076