The Abundance of S-Process Elements: Temporal and Spatial Trends from Open Cluster Observations
Abstract
1. Introduction
2. The Open Cluster Samples and the Contribution of the Gaia-ESO Survey
3. Age Effects in the Abundances of the S-Process Elements
4. Spatial Effect in the Age-[s/Fe] Relationships
5. The [s/] Ratios as Age Tracers
6. Summary, Conclusions and Future Perspectives
- Observations in young clusters have revealed, for the first time, the important role played by low-mass stars during their AGB phase in the s-process Galactic enrichment during recent epochs, providing strong constraints on mixing processes, necessary to produce an enhanced C pocket, with consequent effects on nucleosynthesis [9,22,23,24,48].
- Large samples of open clusters have confirmed the growth with time of the s-process abundances, but showing a different time evolution at different R. That difference might be a signature of the non-monotonic metallicity dependence of the AGB yields for the s-process elements. The s-process yields are indeed driven by the neutron-to-seed ratio, which depends on the availability of free neutrons (numerator) and on the abundance of iron seed from which the s-process path starts (denominator). While the first quantity is of primary origin, the latter depends on the initial metallicity. The different time evolution of the elements belonging to the first and second peaks made a further theoretical effort necessary, in which the inclusion of magnetic fields succeeds in qualitatively reproducing the observations [52,62]. Given the great importance of the dependence on mass and metallicity of s-process element yields, it will be necessary in future to produce finer grids of stellar yields, taking also in to account constraints from other elements, like Pb and Rb, which will allow us to distinguish between different scenarios.
- Finally, the ratio between s-process and elements are considered excellent indicators of stellar age. Observations of these abundance ratios in clusters enabled us to calibrate relationships between ages and so-called chemical clocks. Recent works ([35] VV22), using the cluster sample in Gaia-ESO, have revealed that these relationships are not universal, and that they have a high degree of dependence on Galactocentric distance. So special care must be taken when inferring ages from them, and it is essential to take into account the radial region of origin of the stars. This can be particularly relevant for the older stars on which stellar migration has the greatest influence [75,76,77,78,79]. In addition, chemical clocks based on Ba and Y might not work for clusters younger than 150 Myr, since their abundances can be modified for other reasons (see [44]).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burbidge, E.M.; Burbidge, G.R.; Fowler, W.A.; Hoyle, F. Synthesis of the Elements in Stars. Rev. Mod. Phys. 1957, 29, 547–650. [Google Scholar] [CrossRef]
- Heil, M.; Käppeler, F.; Uberseder, E.; Gallino, R.; Pignatari, M. The s process in massive stars. Prog. Part. Nucl. Phys. 2007, 59, 174–182. [Google Scholar] [CrossRef]
- Pignatari, M.; Gallino, R.; Meynet, G.; Hirschi, R.; Herwig, F.; Wiescher, M. The s-Process in Massive Stars at Low Metallicity: The Effect of Primary 14N from Fast Rotating Stars. Astrophys. J. Lett. 2008, 687, L95. [Google Scholar] [CrossRef]
- Pignatari, M.; Gallino, R.; Heil, M.; Wiescher, M.; Käppeler, F.; Herwig, F.; Bisterzo, S. The Weak s-Process in Massive Stars and its Dependence on the Neutron Capture Cross Sections. Astrophys. J. 2010, 710, 1557–1577. [Google Scholar] [CrossRef]
- Busso, M.; Gallino, R. s-Process Abundances in AGB Stars At Various Metallicities and Their Theoretical Interpretation. Nucl. Phys. A 1997, 621, 431–434. [Google Scholar] [CrossRef]
- Busso, M.; Gallino, R.; Lambert, D.L.; Travaglio, C.; Smith, V.V. Nucleosynthesis and Mixing on the Asymptotic Giant Branch. III. Predicted and Observed s-Process Abundances. Astrophys. J. 2001, 557, 802–821. [Google Scholar] [CrossRef]
- Karakas, A.I.; Lugaro, M. Stellar Yields from Metal-rich Asymptotic Giant Branch Models. Astrophys. J. 2016, 825, 26. [Google Scholar] [CrossRef]
- Cristallo, S.; La Cognata, M.; Massimi, C.; Best, A.; Palmerini, S.; Straniero, O.; Trippella, O.; Busso, M.; Ciani, G.F.; Mingrone, F.; et al. The Importance of the 13C(α,n)16O Reaction in Asymptotic Giant Branch Stars. Astrophys. J. 2018, 859, 105. [Google Scholar] [CrossRef]
- Busso, M.; Vescovi, D.; Palmerini, S.; Cristallo, S.; Antonuccio-Delogu, V. s-processing in AGB Stars Revisited. III. Neutron Captures from MHD Mixing at Different Metallicities and Observational Constraints. Astrophys. J. 2021, 908, 55. [Google Scholar] [CrossRef]
- Dias, W.S.; Alessi, B.S.; Moitinho, A.; Lépine, J.R.D. New catalogue of optically visible open clusters and candidates. Astron. Astrophys. 2002, 389, 871–873. [Google Scholar] [CrossRef]
- Kharchenko, N.V.; Piskunov, A.E.; Schilbach, E.; Röser, S.; Scholz, R.D. Global survey of star clusters in the Milky Way. II. The catalogue of basic parameters. Astron. Astrophys. 2013, 558, A53. [Google Scholar] [CrossRef]
- Cantat-Gaudin, T.; Anders, F. Clusters and mirages: Cataloguing stellar aggregates in the Milky Way. Astron. Astrophys. 2020, 633, A99. [Google Scholar] [CrossRef]
- Cantat-Gaudin, T.; Anders, F.; Castro-Ginard, A.; Jordi, C.; Romero-Gómez, M.; Soubiran, C.; Casamiquela, L.; Tarricq, Y.; Moitinho, A.; Vallenari, A.; et al. Painting a portrait of the Galactic disc with its stellar clusters. Astron. Astrophys. 2020, 640, A1. [Google Scholar] [CrossRef]
- Castro-Ginard, A.; Jordi, C.; Luri, X.; Cantat-Gaudin, T.; Balaguer-Núñez, L. Hunting for open clusters in Gaia DR2: The Galactic anticentre. Astron. Astrophys. 2019, 627, A35. [Google Scholar] [CrossRef]
- Castro-Ginard, A.; Jordi, C.; Luri, X.; Álvarez Cid-Fuentes, J.; Casamiquela, L.; Anders, F.; Cantat-Gaudin, T.; Monguió, M.; Balaguer-Núñez, L.; Solà, S.; et al. Hunting for open clusters in Gaia DR2: 582 new open clusters in the Galactic disc. Astron. Astrophys. 2020, 635, A45. [Google Scholar] [CrossRef]
- Castro-Ginard, A.; Jordi, C.; Luri, X.; Cantat-Gaudin, T.; Carrasco, J.M.; Casamiquela, L.; Anders, F.; Balaguer-Núñez, L.; Badia, R.M. Hunting for open clusters in Gaia EDR3: 664 new open clusters found with OCfinder. arXiv 2021, arXiv:2111.01819. [Google Scholar]
- Majewski, S.R.; Schiavon, R.P.; Frinchaboy, P.M.; Allende Prieto, C.; Barkhouser, R.; Bizyaev, D.; Blank, B.; Brunner, S.; Burton, A.; Carrera, R.; et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron. J. 2017, 154, 94. [Google Scholar] [CrossRef]
- De Silva, G.M.; Freeman, K.C.; Bland-Hawthorn, J.; Martell, S.; de Boer, E.W.; Asplund, M.; Keller, S.; Sharma, S.; Zucker, D.B.; Zwitter, T.; et al. The GALAH survey: Scientific motivation. Mon. Not. R. Astron. Soc. 2015, 449, 2604–2617. [Google Scholar] [CrossRef]
- Gilmore, G.; Randich, S.; Asplund, M.; Binney, J.; Bonifacio, P.; Drew, J.; Feltzing, S.; Ferguson, A.; Jeffries, R.; Micela, G.; et al. The Gaia-ESO Public Spectroscopic Survey. Messenger 2012, 147, 25–31. [Google Scholar]
- Randich, S.; Gilmore, G.; Gaia-ESO Consortium. The Gaia-ESO Large Public Spectroscopic Survey. Messenger 2013, 154, 47–49. [Google Scholar]
- Pasquini, L.; Avila, G.; Blecha, A.; Cacciari, C.; Cayatte, V.; Colless, M.; Damiani, F.; de Propris, R.; Dekker, H.; di Marcantonio, P.; et al. Installation and commissioning of FLAMES, the VLT Multifibre Facility. Messenger 2002, 110, 1–9. [Google Scholar]
- D’Orazi, V.; Magrini, L.; Randich, S.; Galli, D.; Busso, M.; Sestito, P. Enhanced Production of Barium in Low-Mass Stars: Evidence from Open Clusters. Astrophys. J. Lett. 2009, 693, L31–L34. [Google Scholar] [CrossRef]
- Maiorca, E.; Randich, S.; Busso, M.; Magrini, L.; Palmerini, S. s-processing in the Galactic Disk. I. Super-solar Abundances of Y, Zr, La, and Ce in Young Open Clusters. Astrophys. J. 2011, 736, 120. [Google Scholar] [CrossRef]
- Maiorca, E.; Magrini, L.; Busso, M.; Randich, S.; Palmerini, S.; Trippella, O. News on the s Process from Young Open Clusters. Astrophys. J. 2012, 747, 53. [Google Scholar] [CrossRef][Green Version]
- Bisterzo, S.; Travaglio, C.; Gallino, R.; Wiescher, M.; Käppeler, F. Galactic Chemical Evolution and Solar s-process Abundances: Dependence on the 13C-pocket Structure. Astrophys. J. 2014, 787, 10. [Google Scholar] [CrossRef]
- Mishenina, T.; Pignatari, M.; Carraro, G.; Kovtyukh, V.; Monaco, L.; Korotin, S.; Shereta, E.; Yegorova, I.; Herwig, F. New insights on Ba overabundance in open clusters. Evidence for the intermediate neutron-capture process at play? Mon. Not. R. Astron. Soc. 2015, 446, 3651–3668. [Google Scholar] [CrossRef]
- Trippella, O.; Busso, M.; Palmerini, S.; Maiorca, E.; Nucci, M.C. s-Processing in AGB Stars Revisited. II. Enhanced 13C Production through MHD-induced Mixing. Astrophys. J. 2016, 818, 125. [Google Scholar] [CrossRef]
- Reddy, A.B.S.; Lambert, D.L. Solar Twins and the Barium Puzzle. Astrophys. J. 2017, 845, 151. [Google Scholar] [CrossRef]
- Magrini, L.; Spina, L.; Randich, S.; Friel, E.; Kordopatis, G.; Worley, C.; Pancino, E.; Bragaglia, A.; Donati, P.; Tautvaišienė, G.; et al. The Gaia-ESO Survey: The origin and evolution of s-process elements. Astron. Astrophys. 2018, 617, A106. [Google Scholar] [CrossRef]
- Spina, L.; Meléndez, J.; Karakas, A.I.; dos Santos, L.; Bedell, M.; Asplund, M.; Ramírez, I.; Yong, D.; Alves-Brito, A.; Bean, J.L.; et al. The temporal evolution of neutron-capture elements in the Galactic discs. Mon. Not. R. Astron. Soc. 2018, 474, 2580–2593. [Google Scholar] [CrossRef]
- Spina, L.; Nordlander, T.; Casey, A.R.; Bedell, M.; D’Orazi, V.; Meléndez, J.; Karakas, A.I.; Desidera, S.; Baratella, M.; Yana Galarza, J.J.; et al. How Magnetic Activity Alters What We Learn from Stellar Spectra. Astrophys. J. 2020, 895, 52. [Google Scholar] [CrossRef]
- Baratella, M.; D’Orazi, V.; Carraro, G.; Desidera, S.; Randich, S.; Magrini, L.; Adibekyan, V.; Smiljanic, R.; Spina, L.; Tsantaki, M.; et al. The Gaia-ESO Survey: A new approach to chemically characterising young open clusters. I. Stellar parameters, and iron-peak, α-, and proton-capture elements. Astron. Astrophys. 2020, 634, A34. [Google Scholar] [CrossRef]
- Nissen, P.E. High-precision abundances of elements in solar twin stars. Trends with stellar age and elemental condensation temperature. Astron. Astrophys. 2015, 579, A52. [Google Scholar] [CrossRef]
- Delgado Mena, E.; Moya, A.; Adibekyan, V.; Tsantaki, M.; González Hernández, J.I.; Israelian, G.; Davies, G.R.; Chaplin, W.J.; Sousa, S.G.; Ferreira, A.C.S.; et al. Abundance to age ratios in the HARPS-GTO sample with Gaia DR2. Chemical clocks for a range of [Fe/H]. Astron. Astrophys. 2019, 624, A78. [Google Scholar] [CrossRef]
- Casali, G.; Spina, L.; Magrini, L.; Karakas, A.; Kobayashi, C.; Casey, A.; Feltzing, S.; Van der Swaelmen, M.; Tsantaki, M.; Bragaglia, A.; et al. The Gaia-ESO survey: The non-universality of the age-chemical-clocks-metallicity relations in the Galactic disc. Astron. Astrophys. 2020, 639, A127. [Google Scholar] [CrossRef]
- Horta, D.; Ness, M.K.; Rybizki, J.; Schiavon, R.P.; Buder, S. Neutron-capture elements record the ordered chemical evolution of the disc over time. arXiv 2021, arXiv:2111.01809. [Google Scholar]
- Pagel, B.E.J.; Tautvaisiene, G. Galactic chemical evolution of primary elements in the solar neighbourhood-II. Elements affected by the s-process. Mon. Not. R. Astron. Soc. 1997, 288, 108–116. [Google Scholar] [CrossRef]
- Travaglio, C.; Galli, D.; Gallino, R.; Busso, M.; Ferrini, F.; Straniero, O. Galactic Chemical Evolution of Heavy Elements: From Barium to Europium. Astrophys. J. 1999, 521, 691–702. [Google Scholar] [CrossRef]
- Yong, D.; Carney, B.W.; Friel, E.D. Elemental Abundance Ratios in Stars of the Outer Galactic Disk. IV. A New Sample of Open Clusters. Astron. J. 2012, 144, 95. [Google Scholar] [CrossRef]
- Jacobson, H.R.; Friel, E.D. Zirconium, Barium, Lanthanum, and Europium Abundances in Open Clusters. Astron. J. 2013, 145, 107. [Google Scholar] [CrossRef]
- Mishenina, T.; Korotin, S.; Carraro, G.; Kovtyukh, V.V.; Yegorova, I.A. Barium and yttrium abundance in intermediate-age and old open clusters. Mon. Not. R. Astron. Soc. 2013, 433, 1436–1443. [Google Scholar] [CrossRef][Green Version]
- Sales-Silva, J.V.; Daflon, S.; Cunha, K.; Souto, D.; Smith, V.V.; Chiappini, C.; Donor, J.; Frinchaboy, P.M.; García-Hernández, D.A.; Hayes, C.; et al. Exploring the s-process history in the Galactic disk: Cerium abundances and gradients in Open Clusters from the OCCAM/APOGEE sample. arXiv 2021, arXiv:2112.02196. [Google Scholar]
- Nissen, P.E.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Collet, R.; Grundahl, F.; Slumstrup, D. High-precision abundances of elements in Kepler LEGACY stars. Verification of trends with stellar age. Astron. Astrophys. 2017, 608, A112. [Google Scholar] [CrossRef]
- Baratella, M.; D’Orazi, V.; Sheminova, V.; Spina, L.; Carraro, G.; Gratton, R.; Magrini, L.; Randich, S.; Lugaro, M.; Pignatari, M.; et al. The Gaia-ESO Survey: A new approach to chemically characterising young open clusters. II. Abundances of the neutron-capture elements Cu, Sr, Y, Zr, Ba, La, and Ce. Astron. Astrophys. 2021, 653, A67. [Google Scholar] [CrossRef]
- Busso, M.; Wasserburg, G.J.; Nollett, K.M.; Calandra, A. Can Extra Mixing in RGB and AGB Stars Be Attributed to Magnetic Mechanisms? Astrophys. J. 2007, 671, 802–810. [Google Scholar] [CrossRef]
- Nordhaus, J.; Busso, M.; Wasserburg, G.J.; Blackman, E.G.; Palmerini, S. Magnetic Mixing in Red Giant and Asymptotic Giant Branch Stars. Astrophys. J. Lett. 2008, 684, L29. [Google Scholar] [CrossRef]
- Nucci, M.C.; Busso, M. Magnetohydrodynamics and Deep Mixing in Evolved Stars. I. Two- and Three-dimensional Analytical Models for the Asymptotic Giant Branch. Astrophys. J. 2014, 787, 141. [Google Scholar] [CrossRef][Green Version]
- Trippella, O.; Busso, M.; Maiorca, E.; Käppeler, F.; Palmerini, S. s-Processing in AGB Stars Revisited. I. Does the Main Component Constrain the Neutron Source in the 13C Pocket? Astrophys. J. 2014, 787, 41. [Google Scholar] [CrossRef]
- Vescovi, D.; Busso, M.; Palmerini, S.; Trippella, O.; Cristallo, S.; Piersanti, L.; Chieffi, A.; Limongi, M.; Hoppe, P.; Kratz, K.L. On the Origin of Early Solar System Radioactivities: Problems with the Asymptotic Giant Branch and Massive Star Scenarios. Astrophys. J. 2018, 863, 115. [Google Scholar] [CrossRef]
- Vescovi, D.; Cristallo, S.; Palmerini, S.; Abia, C.; Busso, M. Magnetic-buoyancy-induced mixing in AGB stars: Fluorine nucleosynthesis at different metallicities. Astron. Astrophys. 2021, 652, A100. [Google Scholar] [CrossRef]
- Palmerini, S.; Trippella, O.; Busso, M. A deep mixing solution to the aluminum and oxygen isotope puzzles in pre-solar grains. Mon. Not. R. Astron. Soc. 2017, 467, 1193–1201. [Google Scholar] [CrossRef][Green Version]
- Vescovi, D.; Cristallo, S.; Busso, M.; Liu, N. Magnetic-buoyancy-induced Mixing in AGB Stars: Presolar SiC Grains. Astrophys. J. Lett. 2020, 897, L25. [Google Scholar] [CrossRef]
- Palmerini, S.; Cristallo, S.; Busso, M.; La Cognata, M.; Sergi, M.L.; Vescovi, D. Low mass stars or intermediate mass stars? The stellar origin of presolar oxide grains revealed by their isotopic composition. Front. Astron. Space Sci. 2021, 7, 103. [Google Scholar] [CrossRef]
- Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D. Evolution, Nucleosynthesis, and Yields of AGB Stars at Different Metallicities. III. Intermediate-mass Models, Revised Low-mass Models, and the ph-FRUITY Interface. Astrophys. J. Suppl. Ser. 2015, 219, 40. [Google Scholar] [CrossRef]
- Battino, U.; Tattersall, A.; Lederer-Woods, C.; Herwig, F.; Denissenkov, P.; Hirschi, R.; Trappitsch, R.; den Hartogh, J.W.; Pignatari, M.; NuGrid Collaboration. NuGrid stellar data set-III. Updated low-mass AGB models and s-process nucleosynthesis with metallicities Z = 0.01, Z = 0.02, and Z = 0.03. Mon. Not. R. Astron. Soc. 2019, 489, 1082–1098. [Google Scholar] [CrossRef]
- Reddy, A.B.S.; Giridhar, S.; Lambert, D.L. Galactic chemical evolution and chemical tagging with open clusters. J. Astrophys. Astron. 2020, 41, 38. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Y.; Zhao, G. Radial Migration from the Metallicity Gradient of Open Clusters and Outliers. Astrophys. J. 2021, 919, 52. [Google Scholar] [CrossRef]
- Spina, L.; Ting, Y.S.; De Silva, G.M.; Frankel, N.; Sharma, S.; Cantat-Gaudin, T.; Joyce, M.; Stello, D.; Karakas, A.I.; Asplund, M.B.; et al. The GALAH survey: Tracing the Galactic disc with open clusters. Mon. Not. R. Astron. Soc. 2021, 503, 3279–3296. [Google Scholar] [CrossRef]
- Nissen, P.E. High-precision abundances of Sc, Mn, Cu, and Ba in solar twins. Trends of element ratios with stellar age. Astron. Astrophys. 2016, 593, A65. [Google Scholar] [CrossRef]
- Delgado Mena, E.; Tsantaki, M.; Adibekyan, V.Z.; Sousa, S.G.; Santos, N.C.; González Hernández, J.I.; Israelian, G. Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program. II. Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Eu. Astron. Astrophys. 2017, 606, A94. [Google Scholar] [CrossRef]
- Casamiquela, L.; Soubiran, C.; Jofré, P.; Chiappini, C.; Lagarde, N.; Tarricq, Y.; Carrera, R.; Jordi, C.; Balaguer-Núñez, L.; Carbajo-Hijarrubia, J.; et al. Abundance-age relations with red clump stars in open clusters. Astron. Astrophys. 2021, 652, A25. [Google Scholar] [CrossRef]
- Magrini, L.; Vescovi, D.; Casali, G.; Cristallo, S.; Viscasillas Vázquez, C.; Cescutti, G.; Spina, L.; Van Der Swaelmen, M.; Randich, S. Magnetic-buoyancy-induced mixing in AGB stars: A theoretical explanation of the non-universal relation of [Y/Mg] to age. Astron. Astrophys. 2021, 646, L2. [Google Scholar] [CrossRef]
- Gaia Collaboration; Prusti, T.; de Bruijne, J.H.J.; Brown, A.G.A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C.A.L.; Bastian, U.; Biermann, M.; Evans, D.W.; et al. The Gaia mission. Astron. Astrophys. 2016, 595, A1. [Google Scholar] [CrossRef]
- Gaia Collaboration; Brown, A.G.A.; Vallenari, A.; Prusti, T.; de Bruijne, J.H.J.; Babusiaux, C.; Bailer-Jones, C.A.L.; Biermann, M.; Evans, D.W.; Eyer, L.; et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 2018, 616, A1. [Google Scholar] [CrossRef]
- Gaia Collaboration; Brown, A.G.A.; Vallenari, A.; Prusti, T.; de Bruijne, J.H.J.; Babusiaux, C.; Biermann, M.; Creevey, O.L.; Evans, D.W.; Eyer, L.; et al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 2021, 649, A1. [Google Scholar] [CrossRef]
- Spina, L.; Meléndez, J.; Karakas, A.I.; Ramírez, I.; Monroe, T.R.; Asplund, M.; Yong, D. Nucleosynthetic history of elements in the Galactic disk. [X/Fe]-age relations from high-precision spectroscopy. Astron. Astrophys. 2016, 593, A125. [Google Scholar] [CrossRef]
- Jofré, P.; Jackson, H.; Tucci Maia, M. Traits for chemical evolution in solar twins. Trends of neutron-capture elements with stellar age. Astron. Astrophys. 2020, 633, L9. [Google Scholar] [CrossRef]
- Casali, G.; Magrini, L.; Tognelli, E.; Jackson, R.; Jeffries, R.D.; Lagarde, N.; Tautvaišienė, G.; Masseron, T.; Degl’Innocenti, S.; Prada Moroni, P.G.; et al. The Gaia-ESO survey: Calibrating a relationship between age and the [C/N] abundance ratio with open clusters. Astron. Astrophys. 2019, 629, A62. [Google Scholar] [CrossRef]
- Tucci Maia, M.; Ramírez, I.; Meléndez, J.; Bedell, M.; Bean, J.L.; Asplund, M. The Solar Twin Planet Search. III. The [Y/Mg] clock: Estimating stellar ages of solar-type stars. Astron. Astrophys. 2016, 590, A32. [Google Scholar] [CrossRef]
- Slumstrup, D.; Grundahl, F.; Brogaard, K.; Thygesen, A.O.; Nissen, P.E.; Jessen-Hansen, J.; Van Eylen, V.; Pedersen, M.G. The [Y/Mg] clock works for evolved solar metallicity stars. Astron. Astrophys. 2017, 604, L8. [Google Scholar] [CrossRef]
- Feltzing, S.; Howes, L.M.; McMillan, P.J.; Stonkutė, E. On the metallicity dependence of the [Y/Mg]-age relation for solar-type stars. Mon. Not. R. Astron. Soc. 2017, 465, L109–L113. [Google Scholar] [CrossRef]
- Titarenko, A.; Recio-Blanco, A.; de Laverny, P.; Hayden, M.; Guiglion, G. The AMBRE Project: [Y/Mg] stellar dating calibration with Gaia. Astron. Astrophys. 2019, 622, A59. [Google Scholar] [CrossRef]
- Nissen, P.E.; Christensen-Dalsgaard, J.; Mosumgaard, J.R.; Silva Aguirre, V.; Spitoni, E.; Verma, K. High-precision abundances of elements in solar-type stars. Evidence of two distinct sequences in abundance-age relations. Astron. Astrophys. 2020, 640, A81. [Google Scholar] [CrossRef]
- Tautvaišienė, G.; Viscasillas Vázquez, C.; Mikolaitis, Š.; Stonkutė, E.; Minkevičiūtė, R.; Drazdauskas, A.; Bagdonas, V. Abundances of neutron-capture elements in thin- and thick-disc stars in the solar neighbourhood. Astron. Astrophys. 2021, 649, A126. [Google Scholar] [CrossRef]
- Minchev, I.; Famaey, B. A New Mechanism for Radial Migration in Galactic Disks: Spiral-Bar Resonance Overlap. Astrophys. J. 2010, 722, 112–121. [Google Scholar] [CrossRef]
- Minchev, I.; Famaey, B.; Quillen, A.C.; Di Matteo, P.; Combes, F.; Vlajić, M.; Erwin, P.; Bland-Hawthorn, J. Evolution of galactic discs: Multiple patterns, radial migration, and disc outskirts. Astron. Astrophys. 2012, 548, A126. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, G. The Influence of Radial Stellar Migration on the Chemical Evolution of the Milky Way. Astrophys. J. 2013, 769, 4. [Google Scholar] [CrossRef]
- Vera-Ciro, C.; D’Onghia, E.; Navarro, J.; Abadi, M. The Effect of Radial Migration on Galactic Disks. Astrophys. J. 2014, 794, 173. [Google Scholar] [CrossRef]
- Frankel, N.; Rix, H.W.; Ting, Y.S.; Ness, M.; Hogg, D.W. Measuring Radial Orbit Migration in the Galactic Disk. Astrophys. J. 2018, 865, 96. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magrini, L.; Vázquez, C.V.; Casali, G.; Baratella, M.; D’Orazi, V.; Spina, L.; Randich, S.; Cristallo, S.; Vescovi, D. The Abundance of S-Process Elements: Temporal and Spatial Trends from Open Cluster Observations. Universe 2022, 8, 64. https://doi.org/10.3390/universe8020064
Magrini L, Vázquez CV, Casali G, Baratella M, D’Orazi V, Spina L, Randich S, Cristallo S, Vescovi D. The Abundance of S-Process Elements: Temporal and Spatial Trends from Open Cluster Observations. Universe. 2022; 8(2):64. https://doi.org/10.3390/universe8020064
Chicago/Turabian StyleMagrini, Laura, Carlos Viscasillas Vázquez, Giada Casali, Martina Baratella, Valentina D’Orazi, Lorenzo Spina, Sofia Randich, Sergio Cristallo, and Diego Vescovi. 2022. "The Abundance of S-Process Elements: Temporal and Spatial Trends from Open Cluster Observations" Universe 8, no. 2: 64. https://doi.org/10.3390/universe8020064
APA StyleMagrini, L., Vázquez, C. V., Casali, G., Baratella, M., D’Orazi, V., Spina, L., Randich, S., Cristallo, S., & Vescovi, D. (2022). The Abundance of S-Process Elements: Temporal and Spatial Trends from Open Cluster Observations. Universe, 8(2), 64. https://doi.org/10.3390/universe8020064