On the Significance of Interferometric Revivals for the Fundamental Description of Gravity
Abstract
:1. Introduction
2. Revivals Due to a Coherent Interaction
3. LOCC Model
4. Product Form Kraus Representation for the LOCC Model
5. Experimental Tests of Gravitational Decoherence
6. A Remark on Classical Gravity and Black Hole Radiation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Derivation of the Feedback Equation
References
- Rickles, D.; DeWitt, C.M. The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference; Max-Planck-Gesellschaft zur Förderung der Wissenschaften: Berlin, Germany, 2011; p. 250ff. [Google Scholar]
- Karolyhazy, F. Gravitation and Quantum Mechanics of Macroscopic Objects. Nuovo C. A (1965–1970) 1966, 42, 390–402. [Google Scholar] [CrossRef]
- Penrose, R. On Gravity’s Role in Quantum State Reduction. Gen. Relat. Gravit. 1996, 28, 581–600. [Google Scholar] [CrossRef]
- Kafri, D.; Taylor, J.M. A Noise Inequality for Classical Forces. arXiv 2013, arXiv:1311.4558. [Google Scholar]
- Gonzalez-Ballestero, C.; Aspelmeyer, M.; Novotny, L.; Quidant, R.; Romero-Isart, O. Levitodynamics: Levitation and Control of Microscopic Objects in Vacuum. Science 2021, 374, eabg3027. [Google Scholar] [CrossRef]
- Aspelmeyer, M.; Kippenberg, T.J.; Marquardt, F. Cavity Optomechanics. Rev. Mod. Phys. 2014, 86, 1391–1452. [Google Scholar] [CrossRef]
- Delić, U.; Reisenbauer, M.; Dare, K.; Grass, D.; Vuletić, V.; Kiesel, N.; Aspelmeyer, M. Cooling of a Levitated Nanoparticle to the Motional Quantum Ground State. Science 2020, 367, 892–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streltsov, K.; Pedernales, J.S.; Plenio, M.B. Ground-State Cooling of Levitated Magnets in Low-Frequency Traps. Phys. Rev. Lett. 2021, 126, 193602. [Google Scholar] [CrossRef]
- Pikovski, I.; Vanner, M.R.; Aspelmeyer, M.; Kim, M.S.; Brukner, Č. Probing Planck-scale Physics with Quantum Optics. Nat. Phys. 2012, 8, 393–397. [Google Scholar] [CrossRef]
- Kafri, D.; Taylor, J.M.; Milburn, G.J. A Classical Channel Model for Gravitational Decoherence. New J. Phys. 2014, 16, 065020. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, A.; Retzker, A.; Plenio, M.B. Testing Quantum Gravity by Nanodiamond Interferometry with Nitrogen-Vacancy Centers. Phys. Rev. A 2014, 90, 033834. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.P.; Plenio, M.B. On Quantum Gravity Tests with Composite Particles. Nat. Commun. 2020, 11, 3900. [Google Scholar] [CrossRef] [PubMed]
- Krisnanda, T.; Zuppardo, M.; Paternostro, M.; Paterek, T. Revealing Nonclassicality of Inaccessible Objects. Phys. Rev. Lett. 2017, 119, 120402. [Google Scholar] [CrossRef] [Green Version]
- Bose, S.; Mazumdar, A.; Morley, G.W.; Ulbricht, H.; Toroš, M.; Paternostro, M.; Geraci, A.A.; Barker, P.F.; Kim, M.S.; Milburn, G. Spin Entanglement Witness for Quantum Gravity. Phys. Rev. Lett. 2017, 119, 240401. [Google Scholar] [CrossRef] [Green Version]
- Krisnanda, T.; Tham, G.Y.; Paternostro, M.; Paterek, T. Observable Quantum Entanglement Due to Gravity. npj Quant. Inf. 2020, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Pedernales, J.S.; Morley, G.W.; Plenio, M.B. Motional Dynamical Decoupling for Interferometry with Macroscopic Particles. Phys. Rev. Lett. 2020, 125, 023602. [Google Scholar] [CrossRef] [PubMed]
- Cosco, F.; Pedernales, J.S.; Plenio, M.B. Enhanced Force Sensitivity and Entanglement in Periodically Driven Optomechanics. Phys. Rev. A 2021, 103, L061501. [Google Scholar] [CrossRef]
- Weiss, T.; Roda-Llordes, M.; Torrontegui, E.; Aspelmeyer, M.; Romero-Isart, O. Large Quantum Delocalization of a Levitated Nanoparticle Using Optimal Control: Applications for Force Sensing and Entangling via Weak Forces. Phys. Rev. Lett. 2021, 127, 023601. [Google Scholar] [CrossRef]
- Pedernales, J.S.; Streltsov, K.; Plenio, M.B. Enhancing Gravitational Interaction between Quantum Systems by a Massive Mediator. arXiv 2021, arXiv:2104.14524. [Google Scholar]
- Lindner, N.H.; Peres, A. Testing Quantum Superpositions of the Gravitational Field with Bose-Einstein Condensates. Phys. Rev. A 2005, 71, 024101. [Google Scholar] [CrossRef] [Green Version]
- Bahrami, M.; Bassi, A.; McMillen, S.; Paternostro, M.; Ulbricht, H. Is Gravity Quantum? arXiv 2015, arXiv:1507.05733. [Google Scholar]
- Carlesso, M.; Paternostro, M.; Ulbricht, H.; Bassi, A. When Cavendish Meets Feynman: A Quantum Torsion Balance for Testing the Quantumness of Gravity. arXiv 2017, arXiv:1710.08695. [Google Scholar]
- Carlesso, M.; Bassi, A.; Paternostro, M.; Ulbricht, H. Testing the Gravitational Field Generated by a Quantum Superposition. New J. Phys. 2019, 21, 093052. [Google Scholar] [CrossRef]
- Haine, S.A. Searching for Signatures of Quantum Gravity in Quantum Gases. New J. Phys. 2021, 23, 033020. [Google Scholar] [CrossRef]
- Schmöle, J.; Dragosits, M.; Hepach, H.; Aspelmeyer, M. A Micromechanical Proof-of-Principle Experiment for Measuring the Gravitational Force of Milligram Masses. Class. Quantum Grav. 2016, 33, 125031. [Google Scholar] [CrossRef] [Green Version]
- Pedernales, J.S.; Morley, G.W.; Plenio, M.B. Motional Dynamical Decoupling for Matter-Wave Interferometry. arXiv 2020, arXiv:1906.00835. [Google Scholar]
- Carney, D.; Müller, H.; Taylor, J.M. Using an Atom Interferometer to Infer Gravitational Entanglement Generation. PRX Quantum 2021, 2, 030330. [Google Scholar] [CrossRef]
- Wiseman, H.M.; Milburn, G.J. Quantum Measurement and Control; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Gross, J.A.; Caves, C.M.; Milburn, G.J.; Combes, J. Qubit Models of Weak Continuous Measurements: Markovian Conditional and Open-System Dynamics. Quantum Sci. Technol. 2018, 3, 024005. [Google Scholar] [CrossRef] [Green Version]
- Gieseler, J.; Kabcenell, A.; Rosenfeld, E.; Schaefer, J.D.; Safira, A.; Schuetz, M.J.A.; Gonzalez-Ballestero, C.; Rusconi, C.C.; Romero-Isart, O.; Lukin, M.D. Single-Spin Magnetomechanics with Levitated Micromagnets. Phys. Rev. Lett. 2020, 124, 163604. [Google Scholar] [CrossRef] [Green Version]
- Altamirano, N.; Corona-Ugalde, P.; Mann, R.B.; Zych, M. Gravity Is Not a Pairwise Local Classical Channel. Class. Quantum Grav. 2018, 35, 145005. [Google Scholar] [CrossRef] [Green Version]
- Kovachy, T.; Asenbaum, P.; Overstreet, C.; Donnelly, C.A.; Dickerson, S.M.; Sugarbaker, A.; Hogan, J.M.; Kasevich, M.A. Quantum Superposition at the Half-Metre Scale. Nature 2015, 528, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Stamper-Kurn, D.M.; Marti, G.E.; Müller, H. Verifying Quantum Superpositions at Metre Scales. Nature 2016, 537, E1–E2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovachy, T.; Asenbaum, P.; Overstreet, C.; Donnelly, C.A.; Dickerson, S.M.; Sugarbaker, A.; Hogan, J.M.; Kasevich, M.A. Kovachy et al. Reply. Nature 2016, 537, E2–E3. [Google Scholar] [CrossRef] [PubMed]
- Cronenberg, G.; Brax, P.; Filter, H.; Geltenbort, P.; Jenke, T.; Pignol, G.; Pitschmann, M.; Thalhammer, M.; Abele, H. Acoustic Rabi Oscillations between Gravitational Quantum States and Impact on Symmetron Dark Energy. Nat. Phys. 2018, 14, 1022–1026. [Google Scholar] [CrossRef]
- Schimmoller, A.J.; McCaul, G.; Abele, H.; Bondar, D.I. Decoherence-Free Entropic Gravity: Model and Experimental Tests. Phys. Rev. Res. 2021, 3, 033065. [Google Scholar] [CrossRef]
- Verlinde, E. On the Origin of Gravity and the Laws of Newton. J. High Energ. Phys. 2011, 2011, 29. [Google Scholar] [CrossRef] [Green Version]
- Hosten, O. On Testing Quantum Gravity with Interactive Information Sensing. arXiv 2021, arXiv:2106.08221. [Google Scholar]
- Ma, Y.; Guff, T.; Morley, G.; Pikovski, I.; Kim, M.S. Limits on Inference of Gravitational Entanglement. arXiv 2021, arXiv:2111.00936. [Google Scholar] [CrossRef]
- Carney, D.; Muller, H.; Taylor, J.M. Comment on “Using an Atom Interferometer to Infer Gravitational Entanglement Generation”. arXiv 2021, arXiv:2111.04667. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Streltsov, K.; Pedernales, J.S.; Plenio, M.B. On the Significance of Interferometric Revivals for the Fundamental Description of Gravity. Universe 2022, 8, 58. https://doi.org/10.3390/universe8020058
Streltsov K, Pedernales JS, Plenio MB. On the Significance of Interferometric Revivals for the Fundamental Description of Gravity. Universe. 2022; 8(2):58. https://doi.org/10.3390/universe8020058
Chicago/Turabian StyleStreltsov, Kirill, Julen Simon Pedernales, and Martin Bodo Plenio. 2022. "On the Significance of Interferometric Revivals for the Fundamental Description of Gravity" Universe 8, no. 2: 58. https://doi.org/10.3390/universe8020058
APA StyleStreltsov, K., Pedernales, J. S., & Plenio, M. B. (2022). On the Significance of Interferometric Revivals for the Fundamental Description of Gravity. Universe, 8(2), 58. https://doi.org/10.3390/universe8020058