Dynamical Symmetry and the Thermofield State at Large N
Abstract
:1. Introduction
2. Symmetry of Thermofield Double QFT
2.1. Thermofield Dynamics in Free Theory
2.2. Thermofield Dynamics in Interacting Theory
- .
- .
- .
- .
2.3. Field Transformations
3. Collective Theory
4. Large N Thermofield Double State
4.1. Direct Construction
4.2. Collective Construction
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Algebra of Bi-Local Operators
Appendix A.1. Definition
Appendix A.2. The Algebra
Appendix A.3. Useful Relations
Appendix B. O(N) Vector Model at Finite Temperature
Appendix C. Thermofield Wavefunction in One Dimension
1 | We adopt the following notation
|
2 | We include the imaginary unit ‘i’ and the minus sign ‘−’ in the definition of [13]. We also include the complex conjugate numerical factors in the definition of so as to guarantee canonical commutation relations. |
References
- Schwinger, J.S. Brownian motion of a quantum oscillator. J. Math. Phys. 1961, 2, 407–432. [Google Scholar] [CrossRef]
- Keldysh, L.V. Diagram technique for nonequilibrium processes. Zh. Eksp. Teor. Fiz. 1964, 47, 1515–1527. [Google Scholar]
- Herzog, C.P.; Son, D.T. Schwinger-Keldysh propagators from AdS/CFT correspondence. J. High Energy Phys. 2003, 3, 46. [Google Scholar] [CrossRef]
- Horava, P.; Mogni, C.J. String Perturbation Theory on the Schwinger-Keldysh Time Contour. Phys. Rev. Lett. 2020, 125, 261602. [Google Scholar] [CrossRef] [PubMed]
- Haehl, F.M.; Loganayagam, R.; Rangamani, M. Schwinger-Keldysh formalism. Part I: BRST symmetries and superspace. J. High Energy Phys. 2017, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Nair, V.P. Thermofield dynamics and Gravity. Phys. Rev. D 2015, 92, 104009. [Google Scholar] [CrossRef] [Green Version]
- Israel, W. Thermo field dynamics of black holes. Phys. Lett. A 1976, 57, 107–110. [Google Scholar] [CrossRef]
- Maldacena, J.M. Eternal black holes in anti-de Sitter. J. High Energy Phys. 2003, 21. [Google Scholar] [CrossRef]
- Cottrell, W.; Freivogel, B.; Hofman, D.M.; Lokhande, S.F. How to Build the Thermofield Double State. J. High Energy Phys. 2019, 2, 58. [Google Scholar] [CrossRef] [Green Version]
- Martyn, J.; Swingle, B. Product Spectrum Ansatz and the Simplicity of Thermal States. Phys. Rev. A 2019, 100, 032107. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Hsieh, T.H. Variational Thermal Quantum Simulation via Thermofield Double States. Phys. Rev. Lett. 2019, 123, 220502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berenstein, D. Quenches on thermofield double states and time reversal symmetry. Phys. Rev. D 2019, 100, 066022. [Google Scholar] [CrossRef]
- Jevicki, A.; Yoon, J. Bulk from Bi-locals in Thermo Field CFT. J. High Energy Phys. 2016, 2, 90. [Google Scholar] [CrossRef] [Green Version]
- Jevicki, A.; Suzuki, K. Thermofield Duality for Higher Spin Rindler Gravity. J. High Energy Phys. 2016, 2, 94. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Engelsöy, J.; Larana-Aragon, J.; Sundborg, B.; Thorlacius, L.; Wintergerst, N. Quenched coupling, entangled equilibria, and correlated composite operators: A tale of two O(N) models. J. High Energy Phys. 2019, 8, 139. [Google Scholar] [CrossRef] [Green Version]
- Engelsöy, J.; Sundborg, B. Tidal excitation as mixing in thermal CFT. J. High Energy Phys. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Maldacena, J.; Qi, X.L. Eternal traversable wormhole. arXiv 2018, arXiv:1804.00491. [Google Scholar]
- García-García, A.M.; Nosaka, T.; Rosa, D.; Verbaarschot, J.J.M. Quantum chaos transition in a two-site Sachdev-Ye-Kitaev model dual to an eternal traversable wormhole. Phys. Rev. D 2019, 100, 026002. [Google Scholar] [CrossRef] [Green Version]
- Plugge, S.; Lantagne-Hurtubise, E.; Franz, M. Revival Dynamics in a Traversable Wormhole. Phys. Rev. Lett. 2020, 124, 221601. [Google Scholar] [CrossRef] [PubMed]
- Alet, F.; Hanada, M.; Jevicki, A.; Peng, C. Entanglement and Confinement in Coupled Quantum Systems. J. High Energy Phys. 2021, 2, 34. [Google Scholar] [CrossRef]
- Das, S.R.; Ghosh, A.; Jevicki, A.; Suzuki, K. Near Conformal Perturbation Theory in SYK Type Models. J. High Energy Phys. 2020, 12, 171. [Google Scholar] [CrossRef]
- Kitaev, A.; Suh, S.J. The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual. J. High Energy Phys. 2018, 5, 183. [Google Scholar] [CrossRef] [Green Version]
- Das, S.R.; Jevicki, A. Large N collective fields and holography. Phys. Rev. D 2003, 68, 044011. [Google Scholar] [CrossRef] [Green Version]
- Jevicki, A.; Suzuki, K.; Yoon, J. Bi-Local Holography in the SYK Model. J. High Energy Phys. 2016, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Maldacena, J.; Stanford, D. Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D 2016, 94, 106002. [Google Scholar] [CrossRef] [Green Version]
- Andric, I.; Bardek, V. 1/N Corrections in the Matrix Model and the Quantum Collective Field. Phys. Rev. D 1985, 32, 1025. [Google Scholar] [CrossRef] [PubMed]
- de Mello Koch, R.; Rodrigues, J.P. Systematic 1/N corrections for bosonic and fermionic vector models without auxiliary fields. Phys. Rev. D 1996, 54, 7794–7814. [Google Scholar] [CrossRef] [Green Version]
- Haehl, F.M.; Loganayagam, R.; Rangamani, M. The Fluid Manifesto: Emergent symmetries, hydrodynamics, and black holes. J. High Energy Phys. 2016, 1, 184. [Google Scholar] [CrossRef] [Green Version]
- Crossley, M.; Glorioso, P.; Liu, H. Effective field theory of dissipative fluids. J. High Energy Phys. 2017, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Das, S.R.; Kaushal, A.; Liu, S.; Mandal, G.; Trivedi, S.P. Gauge invariant target space entanglement in D-brane holography. J. High Energy Phys. 2021, 4, 225. [Google Scholar] [CrossRef]
- Koch, R.d.M.; Jevicki, A.; Liu, X.; Mathaba, K.; Rodrigues, J.P. Large N Optimization for multi-matrix systems. arXiv 2021, arXiv:2108.08803. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jevicki, A.; Liu, X.; Yoon, J.; Zheng, J. Dynamical Symmetry and the Thermofield State at Large N. Universe 2022, 8, 114. https://doi.org/10.3390/universe8020114
Jevicki A, Liu X, Yoon J, Zheng J. Dynamical Symmetry and the Thermofield State at Large N. Universe. 2022; 8(2):114. https://doi.org/10.3390/universe8020114
Chicago/Turabian StyleJevicki, Antal, Xianlong Liu, Junggi Yoon, and Junjie Zheng. 2022. "Dynamical Symmetry and the Thermofield State at Large N" Universe 8, no. 2: 114. https://doi.org/10.3390/universe8020114
APA StyleJevicki, A., Liu, X., Yoon, J., & Zheng, J. (2022). Dynamical Symmetry and the Thermofield State at Large N. Universe, 8(2), 114. https://doi.org/10.3390/universe8020114