Bekenstein Bound and Non-Commutative Canonical Variables
Abstract
:1. Introduction
2. HUP and Bekenstein Bound
- (i)
- The system is in a regime where the equipartition theorem holds, namely, on average, the energy of each component of the system is approximately given by
- (ii)
- As our system is quantum, the momentum p of each component should satisfy the de Broglie relation
3. Non-Commutative Variables
4. Concluding Remarks
Appendix
Funding
Data Availability Statement
Conflicts of Interest
1 | For completeness, we emphasize that the ansatz contains the hidden assumption of a unique ground state. |
2 | For instance, an electron can be in two possible states (spin up and spin down) and, therefore, its entropy is given by |
References
- Bekenstein, J.D. Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys. Rev. D 1981, 23, 287. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black holes and the second law. Nuovo Cim. Lett. 1972, 4, 737–740. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black Holes and Entropy. Phys. Rev. D 1973, 7, 2333. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Generalized second law of thermodynamics in black-hole physics. Phys. Rev. D 1974, 9, 3292. [Google Scholar] [CrossRef] [Green Version]
- Bardeen, J.M.; Carter, B.; Hawking, S.W. The four laws of black hole mechanics. Commun. Math. Phys. 1973, 31, 161. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Energy Cost of Information Transfer. Phys. Rev. Lett. 1981, 46, 623. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black Holes And Everyday Physics. Gen. Rel. Grav. 1982, 14, 355. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Holographic bound from second law of thermodynamics. Phys. Lett. B 2000, 481, 339. [Google Scholar] [CrossRef] [Green Version]
- Schiffer, M.; Bekenstein, J.D. Proof of the Quantum Bound on Specific Entropy for Free Fields. Phys. Rev. D 1989, 39, 1109. [Google Scholar] [CrossRef]
- Bekenstein, J.D.; Schiffer, M. Quantum limitations on the storage and transmission of information. Int. J. Mod. Phys. C 1990, 1, 355. [Google Scholar] [CrossRef] [Green Version]
- Unruh, W.G.; Wald, R.M. Acceleration radiation and the generalized second law of thermodynamics. Phys. Rev. D 1982, 25, 942. [Google Scholar] [CrossRef]
- Unwin, S.D. Possible Violations Of The Entropy To Energy Ratio Bound. Phys. Rev. D 1982, 26, 944. [Google Scholar] [CrossRef]
- Page, D.N. Comment on a Universal Upper Bound on the Entropy to Energy Ratio for Bounded Systems. Phys. Rev. D 1982, 26, 947. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Entropy Bounds And The Second Law For Black Holes. Phys. Rev. D 1983, 27, 2262. [Google Scholar] [CrossRef]
- Unruh, W.G.; Wald, R.M. Entropy Bounds, Acceleration Radiation, And The Generalized Second Law. Phys. Rev. D 1983, 27, 2271. [Google Scholar] [CrossRef]
- Pelath, M.A.; Wald, R.M. Comment on entropy bounds and the generalized second law. Phys. Rev. D 1999, 60, 104009. [Google Scholar] [CrossRef] [Green Version]
- Page, D.N. Defining entropy bounds. J. High Energy Phys. 2008, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Diaz, P. BOUNDS ON THE ENTROPY. Phys. Rev. D 1983, 27, 3042. [Google Scholar] [CrossRef] [Green Version]
- Hooft, G. Dimensional reduction in quantum gravity. Conf. Proc. C 1993, 930308, 284. [Google Scholar]
- Susskind, L. The world as a hologram. J. Math. Phys. 1995, 36, 6377. [Google Scholar] [CrossRef]
- Bousso, R. A Covariant entropy conjecture. J. High Energy Phys. 1999, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Brustein, R.; Veneziano, G. Causal entropy bound for a spacelike region. Phys. Rev. Lett. 2000, 84, 5695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casini, H. Relative entropy and the Bekenstein bound. Class. Quant. Grav. 2008, 25, 205021. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Information in the holographic universe. Scientific American 2003, 289, 58. [Google Scholar] [CrossRef] [PubMed]
- Smolin, J.; Oppenheim, J. Locking information in black holes. Phys. Rev. Lett. 2006, 96, 081302. [Google Scholar] [CrossRef] [Green Version]
- Hänggi, E.; Wehner, S. A violation of the uncertainty principle implies a violation of the second law of thermodynamics. Nat. Commun. 2013, 4, 1670. [Google Scholar] [CrossRef] [Green Version]
- Fischler, W.; Susskind, L. Holography and Cosmology. arXiv 1998, arXiv:hep-th/9806039. [Google Scholar]
- Banks, T.; Fischler, W. Cosmological Implications of the Bekenstein Bound. arXiv 2018, arXiv:1810.01671. [Google Scholar]
- Veneziano, G. Entropy Bounds and String Cosmology. arXiv 1999, arXiv:hep-th/9907012. [Google Scholar]
- Bousso, R.; Engelhardt, N. Generalized second law for cosmology. Phys. Rev. D 2016, 93, 024025. [Google Scholar] [CrossRef] [Green Version]
- Dvali, G. Entropy Bound and Unitarity of Scattering Amplitudes. J. High Energy Phys. 2021, 3, 126. [Google Scholar] [CrossRef]
- Acquaviva, G.; Iorio, A.; Smaldone, L. Bekenstein bound from the Pauli principle. Phys. Rev. D 2020, 102, 106002. [Google Scholar] [CrossRef]
- Buoninfante, L.; Luciano, G.G.; Petruzziello, L.; Scardigli, F. Bekenstein bound and uncertainty relations. Phys. Lett. B 2022, 824, 136818. [Google Scholar] [CrossRef]
- Ivanov, M.G.; Volovich, I.V. Entropy Bounds, Holographic Principle and Uncertainty Relation. Entropy 2001, 3, 66. [Google Scholar] [CrossRef] [Green Version]
- Custodio, P.S.; Horvath, J.E. The generalized uncertainty principle, entropy bounds and black-hole (non-) evaporation in a thermal bath. Class. Quant. Grav. 2003, 20, L197. [Google Scholar] [CrossRef]
- Bousso, R. Flat space physics from holography. J. High Energy Phys. 2004, 5, 50. [Google Scholar] [CrossRef] [Green Version]
- Chaichian, M.; Tureanu, A.; Zet, G. Corrections to Schwarzschild solution in noncommutative gauge theory of gravity. Phys. Lett. B 2008, 660, 573–578. [Google Scholar] [CrossRef] [Green Version]
- Kanazawa, T.; Lambiase, G.; Vilasi, G.; Yoshioka, A. Noncommutative Schwarzschild geometry and generalized uncertainty principle. Eur. Phys. J. C 2019, 79, 95. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scardigli, F. Bekenstein Bound and Non-Commutative Canonical Variables. Universe 2022, 8, 645. https://doi.org/10.3390/universe8120645
Scardigli F. Bekenstein Bound and Non-Commutative Canonical Variables. Universe. 2022; 8(12):645. https://doi.org/10.3390/universe8120645
Chicago/Turabian StyleScardigli, Fabio. 2022. "Bekenstein Bound and Non-Commutative Canonical Variables" Universe 8, no. 12: 645. https://doi.org/10.3390/universe8120645
APA StyleScardigli, F. (2022). Bekenstein Bound and Non-Commutative Canonical Variables. Universe, 8(12), 645. https://doi.org/10.3390/universe8120645