Two Analytical Schemes for the Optical Soliton Solution of the (2 + 1) Hirota–Maccari System Observed in Single-Mode Fibers
Abstract
:1. Introduction
2. Obtaining the Nonlinear Ordinary Differential form of Equation (1) and the Description of the New Kudryashov Method
Application of the New Kudryashov Method to the Hirota–Maccari System
3. Description and Application of the Tanh-Coth Method
3.1. Description of the Tanh-Coth Method
3.2. Application of the Tanh-Coth Method to the Hirota–Maccari System
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Manton, N.; Sutcliffe, P. Topological Solitons; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Campos, J.G.F.; Mohammadi, A. Interaction between kinks and antikinks with double long-range tails. Phys. Lett. B 2021, 818, 136361. [Google Scholar]
- Blinov, P.A.; Gani, T.V.; Gani, V.A. Deformations of kink tails. Ann. Phys. 2022, 437, 168739. [Google Scholar]
- Belendryasova, E.; Gani, V.A.; Zloshchastiev, K.G. Kink solutions in logarithmic scalar field theory: Excitation spectra, scattering, and decay of bions. Phys. Lett. B 2021, 823, 136776. [Google Scholar]
- Manton, N.S. Forces between kinks and antikinks with long-range tails. J. Phys. A Math. Theor. 2019, 52, 065401. [Google Scholar]
- Campos, J.G.; Mohammadi, A. Wobbling double sine-Gordon kinks. J. High Energy Phys. 2021, 67, 1–20. [Google Scholar]
- Gani, V.A.; Marjaneh, A.M.; Blinov, P.A. Explicit kinks in higher-order field theories. Phys. Rev. D 2020, 101, 125017. [Google Scholar]
- Gani, V.A.; Moradi Marjaneh, A.; Saadatmand, D. Multi-kink scattering in the double sine-Gordon model. Eur. Phys. J. C 2019, 79, 620. [Google Scholar]
- Zhong, Y.; Du, X.L.; Jiang, Z.C.; Liu, Y.X.; Wang, Y.Q. Collision of two kinks with inner structure. J. High Energy Phys. 2020, 2020, 153. [Google Scholar]
- Saadatmand, D.; Marjaneh, A.M. Scattering of the asymmetric ϕ6 kinks from a PT-symmetric perturbation: Creation of multiple pairs of kink-antikink from phonons. Eur. Phys. J. B 2022, 95, 144. [Google Scholar]
- Gani, V.A.; Moradi Marjaneh, A. Asymmetric kink solutions of hyperbolically deformed model. J. Phys. Conf. Ser. 2020, 1690, 012096. [Google Scholar]
- Marjaneh, A.M.; Askari, A.; Saadatmand, D.; Dmitriev, S.V. Extreme values of elastic strain and energy in sine-Gordon multi-kink collisions. Eur. Phys. J. B 2018, 91, 22. [Google Scholar]
- Kudryashov, N.A. Exact solutions of the generalized Kuramoto-Sivashinsky equation. Phys. Lett. A 1990, 147, 287–291. [Google Scholar]
- Muniyappan, A.; Amirthani, S.; Chandrika, P.; Biswas, A.; Yildirim, Y.; Alshehri, H.M.; Al-Bogami, D.H. Dark solitons with anti–cubic and generalized anti–cubic nonlinearities in an optical fiber. Optik 2022, 255, 168641. [Google Scholar]
- Arnous, A.H.; Biswas, A.; Yildirim, Y.; Zhou, Q.; Liu, W.; Alshomrani, A.S.; Alshehri, H.M. Cubic–quartic optical soliton perturbation with complex Ginzburg–Landau equation by the enhanced Kudryashov’s method. Chaos Soliton Fract. 2022, 155, 111748. [Google Scholar]
- Arnous, A.H.; Zhou, Q.; Biswas, A.; Guggilla, P.; Khan, S.; Yildirim, Y.; Alshomrani, A.S.; Alshehri, H.M. Optical solitons in fiber Bragg gratings with cubic–quartic dispersive reflectivity by enhanced Kudryashov’s approach. Phys. Lett. A 2022, 422, 127797. [Google Scholar]
- Ozdemir, N.; Esen, H.; Secer, A.; Bayram, M.; Yusuf, A.; Sulaiman, T.A. Optical Soliton Solutions to Chen Lee Liu model by the modified extended tanh expansion scheme. Optik 2021, 245, 167643. [Google Scholar]
- Cinar, M.; Onder, I.; Secer, A.; Sulaiman, T.A.; Yusuf, A.; Bayram, M. Optical solitons of the (2 + 1)-dimensional Biswas–Milovic equation using modified extended tanh-function method. Optik 2021, 245, 167631. [Google Scholar]
- Ozisik, M. On the optical soliton solution of the (1 + 1)- dimensional perturbed NLSE in optical nano-fibers. Optik 2022, 250, 168233. [Google Scholar]
- Mohamed, M.S.; Akinyemi, L.; Najati, S.A.; Elagan, S.K. Abundant solitary wave solutions of the Chen–Lee–Liu equation via a novel analytical technique. Opt. Quant. Electron. 2022, 54, 141. [Google Scholar]
- Yel, G.; Cattani, C.; Baskonus, H.M.; Gao, W. On the complex simulations with dark–bright to the Hirota–Maccari system. J. Comput. Nonlinear Dyn. 2021, 16, 061005. [Google Scholar]
- Alquran, M.; Ali, M.; Jaradat, I.; Al-Ali, N. Changes in the physical structures for new versions of the Degasperis-Procesi-Camassa-Holm model. Chin. J. Phys. 2021, 71, 85–94. [Google Scholar]
- Bekhouche, F.; Alquran, M.; Komashynska, I. Explicit Rational Solutions for Time-Space Fractional Nonlinear Equation Describing the Propagation of Bidirectional Waves in Low-Pass Electrical Lines. Rom. J. Phys. 2021, 66, 7–8. [Google Scholar]
- Causanilles, F.S.V.; Baskonus, H.M.; Guirao, J.L.G.; Bermúdez, G.R. Some Important Points of the Josephson Effect via Two Superconductors in Complex Bases. Mathematics 2022, 10, 2591. [Google Scholar]
- Yang, X.F.; Deng, Z.C.; Wei, Y. A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application. Adv. Differ. Equ. 2015, 1, 117. [Google Scholar]
- Hashemi, M.S. A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative. Chaos Soliton Fract. 2021, 152, 111367. [Google Scholar]
- Onder, I.; Secer, A.; Ozisik, M.; Bayram, M. On the optical soliton solutions of Kundu-Mukherjee-Naskar equation via two different analytical methods. Optik 2022, 257, 168761. [Google Scholar]
- Guo, L.; Zhang, Y.; Xu, S.; Wu, Z.; He, J. The higher order rogue wave solutions of the Gerdjikov–Ivanov equation. Phys. Scr. 2014, 89, 035501. [Google Scholar]
- Ling, L.; Feng, B.F.; Zhu, Z. General soliton solutions to a coupled Fokas–Lenells equation. Nonlinear Anal.-Real 2018, 40, 185–214. [Google Scholar]
- Durur, H.; Yokus, A. Exact solutions of (2 + 1)-Ablowitz-Kaup-Newell-Segur equation. Appl. Math. Nonlinear Sci. 2021, 6, 381–386. [Google Scholar]
- Chen, Q.; Baskonus, H.M.; Gao, W.; Ilhan, E. Soliton theory and modulation instability analysis: The Ivancevic option pricing model in economy. Alex. Eng. J. 2022, 61, 7843–7851. [Google Scholar]
- Zhirong, G.; Daniyal, M.A. Optimal solution of fractional differential equations in solving the relief of college students’ mental obstacles. Appl. Math. Nonlinear sci. 2021, 7, 353–360. [Google Scholar]
- Hu, S.; Meng, Q.; Xu, D.; Hasan, H. The optimal solution of feature decomposition based on the mathematical model of nonlinear landscape garden features. Appl. Math. Nonlinear Sci. 2021, 7, 751–760. [Google Scholar]
- Maccari, A. A generalized Hirota equation in 2 + 1 dimensions. J. Math. Phys. 1998, 39, 6547–6551. [Google Scholar]
- Maccari, A. The Kadomtsev–Petviashvili equation as a source of integrable model equations. J. Math. Phys. 1996, 37, 6207–6212. [Google Scholar]
- Zhao, H. Applications of the generalized algebraic method to special-type nonlinear equations. Chaos Soliton Fract. 2008, 36, 359–369. [Google Scholar]
- Raza, N.; Jhangeer, A.; Rezazadeh, H.; Bekir, A. Explicit solutions of the (2 + 1)-dimensional Hirota–Maccari system arising in nonlinear optics. Int. J. Mod. Phys. B 2019, 33, 1950360. [Google Scholar]
- Demiray, S.T.; Pandir, Y.; Bulut, H. All exact traveling wave solutions of Hirota equation and Hirota–Maccari system. Optik 2016, 127, 1848–1859. [Google Scholar]
- Irshad, A.; Ahmed, N.; Khan, U.; Mohyud-Din, S.T.; Khan, I.; Sherif, E.S.M. Optical Solutions of Schrödinger Equation Using Extended Sinh–Gordon Equation Expansion Method. Front. Phys. 2020, 8, 73. [Google Scholar]
- Alotaibi, H. Traveling wave solutions to the nonlinear evolution equation using expansion method and addendum to Kudryashov’s method. Symmetry 2021, 13, 2126. [Google Scholar]
- Chen, Y.; Yan, Z. The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations. Chaos Soliton Fract. 2006, 29, 948–964. [Google Scholar]
- Yokus, A.; Baskonus, H.M. Dynamics of traveling wave solutions arising in fiber optic communication of some nonlinear models. Soft Comput. 2022, 26, 13605–13614. [Google Scholar]
- Kudryashov, N.A. Method for finding highly dispersive optical solitons of nonlinear differential equations. Optik 2020, 206, 163550. [Google Scholar]
- Ozisik, M.; Secer, A.; Bayram, M.; Aydin, H. An encyclopedia of Kudryashov’s integrability approaches applicable to optoelectronic devices. Optik 2022, 265, 169499. [Google Scholar]
- Rezazadeh, H.; Ullah, N.; Akinyemi, L.; Shah, A.; Mirhosseini-Alizamin, S.M.; Chu, Y.M.; Ahmad, H. Optical soliton solutions of the generalized non-autonomous nonlinear Schrödinger equations by the new Kudryashov’s method. Results Phys. 2021, 24, 104179. [Google Scholar]
- Wazwaz, A.M. The tanh–coth method for solitons and kink solutions for nonlinear parabolic equations. Appl. Math. Comput. 2007, 188, 1467–1475. [Google Scholar]
- Kudryashov, N.A. On types of nonlinear nonintegrable equations with exact solutions. Phys. Lett. A 1991, 155, 269–275. [Google Scholar]
- Kudryashov, N.A. Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Soliton Fract. 2005, 24, 1217–1231. [Google Scholar]
- Kudryashov, N.A. One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2248–2253. [Google Scholar]
- Arshed, S.; Raza, N.; Javid, A.; Baskonus, H.M. Chiral solitons of (2 + 1)-Dimensional Stochastic Chiral Nonlinear Schrodinger Equation. Int. J. Geom. Methods M. 2022, 19, 2250149-3991. [Google Scholar]
- Baskonus, H.M.; Wei, G. Investigation of optical solitons to the nonlinear complex Kundu–Eckhaus and Zakharov–Kuznetsov–Benjamin–Bona–Mahony equations in conformable. Opt. Quant. Electron. 2022, 54, 388. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozdemir, N.; Secer, A.; Ozisik, M.; Bayram, M. Two Analytical Schemes for the Optical Soliton Solution of the (2 + 1) Hirota–Maccari System Observed in Single-Mode Fibers. Universe 2022, 8, 584. https://doi.org/10.3390/universe8110584
Ozdemir N, Secer A, Ozisik M, Bayram M. Two Analytical Schemes for the Optical Soliton Solution of the (2 + 1) Hirota–Maccari System Observed in Single-Mode Fibers. Universe. 2022; 8(11):584. https://doi.org/10.3390/universe8110584
Chicago/Turabian StyleOzdemir, Neslihan, Aydin Secer, Muslum Ozisik, and Mustafa Bayram. 2022. "Two Analytical Schemes for the Optical Soliton Solution of the (2 + 1) Hirota–Maccari System Observed in Single-Mode Fibers" Universe 8, no. 11: 584. https://doi.org/10.3390/universe8110584
APA StyleOzdemir, N., Secer, A., Ozisik, M., & Bayram, M. (2022). Two Analytical Schemes for the Optical Soliton Solution of the (2 + 1) Hirota–Maccari System Observed in Single-Mode Fibers. Universe, 8(11), 584. https://doi.org/10.3390/universe8110584