Outliers in Spectral Time Lag-Selected Gamma Ray Bursts
Abstract
:1. Introduction
2. Statistical Methods
- We calculate the best cluster number K and choose K initial centroids, where K is a user-specified parameter, namely, the number of clusters desired. In this paper, the K is 2 or 3;
- We use the Euclidean distance as a similarity measurement. We calculate the Euclidean distance to the initial centroids of each point;
- Each point is then assigned to the closest centroid, and each collection of points assigned to a centroid is a cluster;
- For every cluster, we calculate the Euclidean distance sum to the centroid of each point, which are assigned to this centroid. Then, we obtain the sum of each cluster;
- For every cluster, we choose one point to update the centroid;
- Points are assigned to the updated centroids;
- For every cluster, we calculate the Euclidean distance sum to the updated centroid of each point, which are assigned to this updated centroid. Then, we get the sum of all the clusters;
- If the sum of all the clusters in the seventh step is smaller than the fourth step, we update the centroids;
- We repeat the assignments and update steps until no point changes clusters, or equivalently, until the centroids remain the same.
3. PAM Results
3.1. Remarkable Linear Regression Results without Outliers
3.2. Remarkable Outliers without Significant Linear Regression
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, A.; Veres, P.; Burns, E.; Briggs, M.S.; Hamburg, R.; Kocevski, D.; Wilson-Hodge, C.A.; Preece, R.D.; Poolakkil, S.; Roberts, O.J.; et al. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A. Astrophys. J. Lett. 2017, 848, L14. [Google Scholar] [CrossRef] [Green Version]
- Woosley, S.E. Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys. J. 1993, 405, 273–277. [Google Scholar] [CrossRef]
- Woosley, S.E.; Bloom, J.S. The Supernova–Gamma-Ray Burst Connection. Ann. Rev. Astron. Astrophys. 2006, 44, 507–556. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, P.K.; Berger, E.; Fong, W.-F. The Offset and Host Light Distributions of Long Gamma-Ray Bursts: A New View from HST Observations of Swift Bursts. Astrophys. J. 2016, 817, 144. [Google Scholar] [CrossRef] [Green Version]
- Balastegui, A.; Ruiz-Lapuente, P.; Canal, R. Reclassification of gamma-ray bursts. Mon. Not. R. Astron. Soc. 2001, 328, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, S.; Maitra, R. Gaussian-mixture-model-based cluster analysis finds five kinds of gamma-ray bursts in the BATSE catalogue. Mon. Not. R. Astron. Soc. 2017, 469, 3374–3389. [Google Scholar] [CrossRef] [Green Version]
- Modak, S.; Chattopadhyay, A.K.; Chattopadhyay, T. Clustering of gamma-ray bursts through kernel principal component analysis. Commun. Stat. Simul. Comput. 2017, 47, 1088–1102. [Google Scholar] [CrossRef] [Green Version]
- Modak, S. Distinction of groups of gamma-ray bursts in the BATSE catalog through fuzzy clustering. Astron. Comput. 2021, 34, 100441. [Google Scholar] [CrossRef]
- Wang, F.; Zou, Y.C.; Liu, F.; Liao, B.; Liu, Y.; Chai, Y.; Xia, L. A Comprehensive Statistical Study of Gamma-Ray Bursts. Astrophys. J. 2020, 893, 77. [Google Scholar] [CrossRef]
- Norris, J.P.; Nemiroff, R.J.; Bonnell, J.T.; Scargle, J.D.; Kouveliotou, C.; Paciesas, W.S.; Meegan, C.A.; Fishman, G.J. Attributes of Pulses in Long Bright Gamma-Ray Bursts. Astrophys. J. 1996, 459, 393. [Google Scholar] [CrossRef]
- Ukwatta, T.N.; Stamatikos, M.; Dhuga, K.S.; Sakamoto, T.; Barthelmy, S.D.; Eskandarian, A.; Gehrels, N.; Maximon, L.C.; Norris, J.P.; Parke, W.C. Spectral Lags and the Lag-Luminosity Relation: An Investigation with Swift BAT Gamma-Ray Bursts. Astrophys. J. 2010, 711, 1073–1086. [Google Scholar] [CrossRef] [Green Version]
- Dermer, C.D. Curvature Effects in Gamma-Ray Burst Colliding Shells. Astrophys. J. 2004, 614, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Uhm, Z.L.; Zhang, B. Toward an Understanding of GRB Prompt Emission Mechanism. I. the Origin of Spectral Lags. Astrophys. J. 2016, 825, 97. [Google Scholar] [CrossRef] [Green Version]
- Norris, J.P.; Marani, G.F.; Bonnell, J.T. Connection between Energy-Dependent Lags and Peak Luminosity in Gamma-Ray Bursts. Astrophys. J. 2000, 534, 248–257. [Google Scholar] [CrossRef]
- Norris, J.P. Implications of the Lag-Luminosity Relationship for Unified Gamma-Ray Burst Paradigms. Astrophys. J. 2002, 579, 386–403. [Google Scholar] [CrossRef]
- Gehrels, N.; Norris, J.P.; Barthelmy, S.D.; Granot, J.; Kaneko, Y.; Kouveliotou, C.; Markwardt, C.B.; Mészáros, P.; Nakar, E.; Nousek, J.A.; et al. A new γ-ray burst classification scheme from GRB060614. Nature 2006, 444, 1044–1046. [Google Scholar] [CrossRef] [Green Version]
- Ukwatta, T.N.; Dhuga, K.S.; Stamatikos, M.; Dermer, C.D.; Sakamoto, T.; Sonbas, E.; Parke, W.C.; Maximon, L.C.; Linnemann, J.T.; Bhat, P.N.; et al. The lag-luminosity relation in the GRB source frame: An investigation with Swift BAT bursts. Mon. Not. R. Astron. Soc. 2012, 419, 614–623. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Zhang, B.B.; Wang, F.R.; Wu, X.F.; Cheng, Y.H.; Zhang, X.; Yu, B.Y.; Xi, B.J.; Wang, X.; Feng, H.X.; et al. A New Measurement of the Spectral Lag of Gamma-Ray Bursts and its Implications for Spectral Evolution Behaviors. Astrophys. J. 2017, 844, 126. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhang, B.B.; Virgili, F.J.; Liang, E.W.; Kann, D.A.; Wu, X.F.; Proga, D.; Lv, H.J.; Toma, K.; Mészáros, P.; et al. Discerning the Physical Origins of Cosmological Gamma-ray Bursts Based on Multiple Observational Criteria: The Cases of z = 6.7 GRB 080913, z = 8.2 GRB 090423, and Some Short/Hard GRBs. Astrophys. J. 2009, 703, 1696–1724. [Google Scholar] [CrossRef]
- Ioka, K.; Nakamura, T. Peak Luminosity–Spectral Lag Relation Caused by the Viewing Angle of the Collimated Gamma-Ray Bursts. Astrophys. J. 2001, 554, L163–L167. [Google Scholar] [CrossRef]
- Chen, L.; Lou, Y.Q.; Wu, M.; Qu, J.L.; Jia, S.M.; Yang, X.J. Distribution of Spectral Lags in Gamma-Ray Bursts. Astrophys. J. 2005, 619, 983–993. [Google Scholar] [CrossRef] [Green Version]
- Yi, T.; Liang, E.; Qin, Y.; Lu, R. On the spectral lags of the short gamma-ray bursts. Mon. Not. R. Astron. Soc. 2006, 367, 1751–1756. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Xie, G.Z.; Deng, J.G.; Jin, W. Revisiting the characteristics of the spectral lags in short gamma-ray bursts. Mon. Not. R. Astron. Soc. 2006, 373, 729–732. [Google Scholar] [CrossRef]
- Lu, R.J.; Liang, Y.F.; Lin, D.B.; Lü, J.; Wang, X.G.; Lü, H.J.; Liu, H.B.; Liang, E.W.; Zhang, B. A Comprehensive Analysis of Fermi Gamma-Ray Burst Data. IV. Spectral Lag and its Relation to Ep Evolution. Astrophys. J. 2018, 865, 153. [Google Scholar] [CrossRef] [Green Version]
- Reichart, D.E.; Lamb, D.Q.; Fenimore, E.E.; Ramirez-Ruiz, E.; Cline, T.L.; Hurley, K. A Possible Cepheid-like Luminosity Estimator for the Long Gamma-Ray Bursts. Astrophys. J. 2001, 552, 57–71. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.B.; Zhang, B.; Murase, K.; Connaughton, V.; Briggs, M.S. How Long does a Burst Burst? Astrophys. J. 2014, 787, 66. [Google Scholar] [CrossRef] [Green Version]
- Foley, S.; McGlynn, S.; Hanlon, L.; McBreen, S.; McBreen, B. Global characteristics of GRBs observed with INTEGRAL and the inferred large population of low-luminosity GRBs. Astron. Astrophys. 2008, 484, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, B.; Lü, H.J. A Comparative Study of Long and Short GRBs. I. Overlapping Properties. Astrophys. J. 2016, 227, 7. [Google Scholar] [CrossRef] [Green Version]
- Band, D.; Matteson, J.; Ford, L.; Schaefer, B.; Palmer, D.; Teegarden, B.; Cline, T.; Briggs, M.; Paciesas, W.; Pendleton, G.; et al. BATSE observations of gamma-ray burst spectra. I. Spectral diversity. Astrophys. J. 1993, 413, 281–292. [Google Scholar] [CrossRef]
- Tan, P.; Steinbach, M.; Kumar, V. Introduction to Data Mining; Pearson: New York, NY, USA, 2005; Chapter 8; pp. 487–568. ISBN 978-0321321367. [Google Scholar]
- Zou, Y.C.; Wang, F.F.; Moharana, R.; Liao, B.; Chen, W.; Wu, Q.; Lei, W.H.; Wang, F.Y. Determining the Lorentz Factor and Viewing Angle of GRB 170817A. Astrophys. J. 2017, 852, L1. [Google Scholar] [CrossRef] [Green Version]
- Dudoit, S.; Fridlyand, J. A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol. 2002, 3, 1–12. [Google Scholar] [CrossRef]
- Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, 1, 224–227. [Google Scholar] [CrossRef]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, B.E. The Hubble Diagram to Redshift >6 from 69 Gamma-Ray Bursts. Astrophys. J. 2007, 660, 16–46. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, A.; Bošnjak, Ž.; Palladino, A.; Sadeh, I.; Winter, W. Multiwavelength radiation models for low-luminosity GRBs and the implications for UHECRs. Mon. Not. R. Astron. Soc. 2022, 511, 5823–5842. [Google Scholar] [CrossRef]
- Rau, A.; Salvato, M.; Greiner, J. The host of GRB/XRF 030528—An actively star forming galaxy at z = 0.782. Astron. Astrophys. 2005, 444, 425–430. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.-F.; Zou, Y.-C. Outliers in Spectral Time Lag-Selected Gamma Ray Bursts. Universe 2022, 8, 521. https://doi.org/10.3390/universe8100521
Wang F-F, Zou Y-C. Outliers in Spectral Time Lag-Selected Gamma Ray Bursts. Universe. 2022; 8(10):521. https://doi.org/10.3390/universe8100521
Chicago/Turabian StyleWang, Fei-Fei, and Yuan-Chuan Zou. 2022. "Outliers in Spectral Time Lag-Selected Gamma Ray Bursts" Universe 8, no. 10: 521. https://doi.org/10.3390/universe8100521
APA StyleWang, F. -F., & Zou, Y. -C. (2022). Outliers in Spectral Time Lag-Selected Gamma Ray Bursts. Universe, 8(10), 521. https://doi.org/10.3390/universe8100521