M-Class Solar Flares in Solar Cycles 23 and 24: Properties and Space Weather Relevance
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Overall Properties of M-Class Flares and Associated Phenomena in SCs 23 and 24
3.1.1. Properties of M-Class Flares
3.1.2. Properties of the M-Class Related CMEs
3.1.3. Properties of the M-Class Related Sunspots
- : A unipolar sunspot group.
- : A sunspot group having both positive and negative magnetic polarities (bipolar), with a simple and distinct division between the polarities.
- : A complex active region in which the positive and negative polarities are so irregularly distributed as to prevent classification as a bipolar group.
- -: A sunspot group that is bipolar but which is sufficiently complex that no single, continuous line can be drawn between spots of opposite polarities.
- : A qualifier to magnetic classes indicating that umbrae separated by less than 2 degrees within one penumbra have opposite polarity.
- -: A sunspot group of general magnetic classification but containing one (or more) spot(s).
- --: A sunspot group of - magnetic classification but containing one (or more) spot(s).
- -: A sunspot group of magnetic classification but containing one (or more) spot(s).
3.1.4. Properties of the M-Class Related Energetic Particles
3.1.5. Properties of the M-Class Related IP Radio Emissions
3.1.6. Summary on the SC Trends
3.2. Occurrence of SF-Associated Phenomena as Function of M-Class and Sunspot Type
- The SF rise and decline times start with flat trends and show short-lived increases at the M7 class (with clear drops at M4–5 bins only in SC24).
- No clear trends of the parent AR location can be stated as they tend to vary around the solar disk center.
- Faster and wider CMEs, in terms of linear speed and AW, are obtained (even though AW growth in SC23 is less pronounced).
- A clear increasing trend of the occurrence of radio bursts is noticed: Over the three time periods, IP IIs range from 3% to 31%, whereas IP IIIs range from 39% to 70%.
- In either sunspot type under consideration, the mean and median values of the SF class are close to the M2 class.
- The mean (median) SF rise 15–17 (9–11) and decline times 12–13 (7–8) mins are closer to the values obtained for the weak SFs (M1–M5) in the M-class population.
- The considered sunspot configurations tend to occur at Western longitudes.
- From to -- sample, the values for the CME AW are decreasing in all three considered periods, however, no clear trend could be noticed for the CME speed.
- The occurrence of IP type II bursts has no preference to the underlying sunspots type and the association rate is very low.
- IP type III bursts show a decreasing trend of occurrence from (usually ∼50–60%) to -- type (down to ∼40%).
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AR | Active Region |
AW | Angular Width |
BFS | Big Flare Syndrome |
CME | Coronal Mass Ejection |
EM | Electromagnetic |
EUV | Extreme Ultraviolet |
IP | Interplanetary |
SC | Solar Cycle |
SEE | Solar Energetic Electron |
SEP | Solar Energetic Proton/Particle |
SF | Solar Flare |
SXR | Soft X-ray |
References
- Fletcher, L.; Dennis, B.R.; Hudson, H.S.; Krucker, S.; Phillips, K.; Veronig, A.; Battaglia, M.; Bone, L.; Caspi, A.; Chen, Q.; et al. An Observational Overview of Solar Flares. Space Sci. Rev. 2011, 159, 19–106. [Google Scholar] [CrossRef]
- Benz, A.O. Flare Observations. Living Rev. Sol. Phys. 2017, 14, 2. [Google Scholar] [CrossRef] [Green Version]
- Cliver, E.W.; Dietrich, W.F. The 1859 space weather event revisited: Limits of extreme activity. J. Space Weather Space Clim. 2013, 3, A31. [Google Scholar] [CrossRef] [Green Version]
- Riley, P.; Baker, D.; Liu, Y.D.; Verronen, P.; Singer, H.; Güdel, M. Extreme Space Weather Events: From Cradle to Grave. Space Sci. Rev. 2018, 214, 21. [Google Scholar] [CrossRef]
- Nitta, N.V.; Aschwanden, M.J.; Boerner, P.F.; Freeland, S.L.; Lemen, J.R.; Wuelser, J.P. Soft X-ray Fluxes of Major Flares Far Behind the Limb as Estimated Using STEREO EUV Images. Sol. Phys. 2013, 288, 241–254. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.P.; Krucker, S.; Hurford, G.J.; Smith, D.M.; Hudson, H.S.; Holman, G.D.; Schwartz, R.A.; Dennis, B.R.; Share, G.H.; Murphy, R.J.; et al. RHESSI Observations of Particle Acceleration and Energy Release in an Intense Solar Gamma-Ray Line Flare. ApJ 2003, 595, L69–L76. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, S.N.; Kudela, K.; Ryumin, S.P.; Gotselyuk, Y.V. CORONAS-F satellite: Tasks for study of particle acceleration. Adv. Space Res. 2002, 30, 1857–1863. [Google Scholar] [CrossRef]
- Kurt, V.G.; Yushkov, B.Y.; Kudela, K.; Galkin, V.I.; Kashapova, L.K. CORONAS-F observation of HXR and gamma-ray emissions from the solar flare X10 on 29 October 2003 as a probe of accelerated proton spectrum. Contrib. Astron. Obs. Skaln. Pleso 2015, 45, 42–59. [Google Scholar]
- Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; et al. High-energy Gamma-Ray Emission from Solar Flares: Summary of Fermi Large Area Telescope Detections and Analysis of Two M-class Flares. Astrophys. J. Lett. 2014, 787, 15. [Google Scholar] [CrossRef] [Green Version]
- Nindos, A.; Aurass, H.; Klein, K.L.; Trottet, G. Radio Emission of Flares and Coronal Mass Ejections. Invited Review. Sol. Phys. 2008, 253, 3–41. [Google Scholar] [CrossRef]
- Pick, M.; Vilmer, N. Sixty-five years of solar radioastronomy: Flares, coronal mass ejections and Sun Earth connection. Astron. Astrophys. Rev. 2008, 16, 1–153. [Google Scholar] [CrossRef]
- Wild, J.P.; Smerd, S.F.; Weiss, A.A. Solar Bursts. ARA&A 1963, 1, 291. [Google Scholar] [CrossRef]
- Miteva, R.; Samwel, S.W.; Krupar, V. Solar energetic particles and radio burst emission. J. Space Weather Space Clim. 2017, 7, A37. [Google Scholar] [CrossRef]
- Zhang, P.; Zucca, P.; Sridhar, S.S.; Wang, C.; Bisi, M.M.; Dabrowski, B.; Krankowski, A.; Mann, G.; Magdalenic, J.; Morosan, D.E.; et al. Interferometric imaging with LOFAR remote baselines of the fine structures of a solar type-IIIb radio burst. Astron. Astrophys. 2020, 639, A115. [Google Scholar] [CrossRef]
- Webb, D.F.; Howard, T.A. Coronal Mass Ejections: Observations. Living Rev. Sol. Phys. 2012, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Desai, M.; Giacalone, J. Large gradual solar energetic particle events. Living Rev. Sol. Phys. 2016, 13, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eren, S.; Kilcik, A.; Atay, T.; Miteva, R.; Yurchyshyn, V.; Rozelot, J.P.; Ozguc, A. Flare-production potential associated with different sunspot groups. Mon. Not. R. Astron. Soc. 2017, 465, 68–75. [Google Scholar] [CrossRef]
- Carrasco, V.M.S.; Lefèvre, L.; Vaquero, J.M.; Gallego, M.C. Equivalence Relations Between the Cortie and Zürich Sunspot Group Morphological Classifications. Sol. Phys. 2015, 290, 1445–1455. [Google Scholar] [CrossRef] [Green Version]
- Cortie, A.L. On the Types of Sun-Spot Disturbances. Astrophys. J. Lett. 1901, 13, 260. [Google Scholar] [CrossRef]
- Waldmeier, M. Chromosphärische Eruptionen. I. Mit 6 Abbildungen. Z. Astrophys. 1938, 16, 276. [Google Scholar]
- McIntosh, P.S. The Classification of Sunspot Groups. Sol. Phys. 1990, 125, 251–267. [Google Scholar] [CrossRef]
- Hale, G.E.; Ellerman, F.; Nicholson, S.B.; Joy, A.H. The Magnetic Polarity of Sun-Spots. Astrophys. J. Lett. 1919, 49, 153. [Google Scholar] [CrossRef]
- Hale, G.E.; Nicholson, S.B. Magnetic observations of sunspots, 1917–1924. Nature 1938, 144, 266–267. [Google Scholar]
- Yashiro, S.; Gopalswamy, N. Statistical relationship between solar flares and coronal mass ejections. Univers. Heliophys. Process. 2009, 257, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Pulkkinen, T. Space Weather: Terrestrial Perspective. Living Rev. Sol. Phys. 2007, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Thomson, N.R.; Rodger, C.J.; Clilverd, M.A. Large solar flares and their ionospheric D region enhancements. J. Geophys. Res. (Space Phys.) 2005, 110, A06306. [Google Scholar] [CrossRef] [Green Version]
- Tao, C.; Nishioka, M.; Saito, S.; Shiota, D.; Watanabe, K.; Nishizuka, N.; Tsugawa, T.; Ishii, M. Statistical analysis of short-wave fadeout for extreme space weather event estimation. Earth, Planets Space 2020, 72, 173. [Google Scholar] [CrossRef]
- Schwenn, R. Space Weather: The Solar Perspective. Living Rev. Sol. Phys. 2006, 3. [Google Scholar] [CrossRef]
- Garcia, H.A. Forecasting methods for occurrence and magnitude of proton storms with solar soft X-rays. Space Weather 2004, 2, S02002. [Google Scholar] [CrossRef]
- Garcia, H.A. Forecasting methods for occurrence and magnitude of proton storms with solar hard X-rays. Space Weather 2004, 2, 6003. [Google Scholar] [CrossRef]
- Belov, A. Properties of solar X-ray flares and proton event forecasting. Adv. Space Res. 2009, 43, 467–473. [Google Scholar] [CrossRef]
- Kahler, S.W.; Ling, A.G. Forecasting Solar Energetic Particle (SEP) events with Flare X-ray peak ratios. J. Space Weather Space Clim. 2018, 8, A47. [Google Scholar] [CrossRef] [Green Version]
- Núñez, M.; Nieves-Chinchilla, T.; Pulkkinen, A. Predicting well-connected SEP events from observations of solar EUVs and energetic protons. J. Space Weather Space Clim. 2019, 9, A27. [Google Scholar] [CrossRef]
- Barnes, G.; Leka, K.D.; Schumer, E.A.; Della-Rose, D.J. Probabilistic forecasting of solar flares from vector magnetogram data. Space Weather 2007, 5, S09002. [Google Scholar] [CrossRef]
- Leka, K.D.; Park, S.H.; Kusano, K.; Andries, J.; Barnes, G.; Bingham, S.; Bloomfield, D.S.; McCloskey, A.E.; Delouille, V.; Falconer, D.; et al. A Comparison of Flare Forecasting Methods. II. Benchmarks, Metrics, and Performance Results for Operational Solar Flare Forecasting Systems. Astrophys. J. Lett. Suppl. Ser. 2019, 243, 36. [Google Scholar] [CrossRef] [Green Version]
- Falco, M.; Costa, P.; Romano, P. Solar flare forecasting using photospheric active region properties. Nuovo Cimento C Geophys. Space Phys. C 2019, 42, 14. [Google Scholar] [CrossRef]
- Miteva, R. Eruptive versus confined X-class flares in solar cycles 23 and 24. Bulg. Astron. J. 2021, 35, 87. [Google Scholar]
- Veronig, A.; Temmer, M.; Hanslmeier, A.; Otruba, W.; Messerotti, M. Temporal aspects and frequency distributions of solar soft X-ray flares. Astron. Astrophys. 2002, 382, 1070–1080. [Google Scholar] [CrossRef] [Green Version]
- Kilcik, A.; Chowdhury, P.; Sarp, V.; Yurchyshyn, V.; Donmez, B.; Rozelot, J.P.; Ozguc, A. Temporal and Periodic Variation of the MCMESI for the Last Two Solar Cycles; Comparison with the Number of Different Class X-ray Solar Flares. Sol. Phys. 2020, 295, 159. [Google Scholar] [CrossRef]
- Gallagher, P.T.; Moon, Y.J.; Wang, H. Active-Region Monitoring and Flare Forecasting I. Data Processing and First Results. Sol. Phys. 2002, 209, 171–183. [Google Scholar] [CrossRef]
- Yashiro, S.; Gopalswamy, N.; Michalek, G.; St. Cyr, O.C.; Plunkett, S.P.; Rich, N.B.; Howard, R.A. A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. (Space Phys.) 2004, 109, A07105. [Google Scholar] [CrossRef]
- Cane, H.V.; Richardson, I.G.; von Rosenvinge, T.T. A study of solar energetic particle events of 1997-2006: Their composition and associations. J. Geophys. Res. (Space Phys.) 2010, 115, A08101. [Google Scholar] [CrossRef]
- Miteva, R.; Samwel, S.W.; Costa-Duarte, M.V. The Wind/EPACT Proton Event Catalog (1996–2016). Sol. Phys. 2018, 293, 27. [Google Scholar] [CrossRef] [Green Version]
- Samwel, S.W.; Miteva, R. Catalogue of in situ observed solar energetic electrons from ACE/EPAM instrument. Mon. Not. R. Astron. Soc. 2021, 505, 5212–5227. [Google Scholar] [CrossRef]
- Miteva, R. On the solar origin of in situ observed energetic protons. Bulg. Astron. J. 2019, 31, 51. [Google Scholar]
- Miteva, R.; Samwel, S.W.; Costa-Duarte, M.V.; Malandraki, O.E. Solar cycle dependence of Wind/EPACT protons, solar flares and coronal mass ejections. Sun Geosph. 2017, 12, 11–19. [Google Scholar]
- Kahler, S.W. The role of the big flare syndrome in correlations of solar energetic proton fluxes and associated microwave burst parameters. J. Geophys. Res. 1982, 87, 3439–3448. [Google Scholar] [CrossRef]
- Patel, B.D.; Joshi, B.; Cho, K.S.; Kim, R.S. DH Type II Radio Bursts During Solar Cycles 23 and 24: Frequency-Dependent Classification and Their Flare-CME Associations. Sol. Phys. 2021, 296, 142. [Google Scholar] [CrossRef]
- McCloskey, A.E.; Gallagher, P.T.; Bloomfield, D.S. Flare forecasting using the evolution of McIntosh sunspot classifications. J. Space Weather Space Clim. 2018, 8, A34. [Google Scholar] [CrossRef] [Green Version]
- Falco, M.; Costa, P.; Romano, P. Solar flare forecasting using morphological properties of sunspot groups. J. Space Weather Space Clim. 2019, 9, A22. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J. A Comparative Study between Eruptive X-Class Flares Associated with Coronal Mass Ejections and Confined X-Class Flares. Astrophys. J. Lett. 2007, 665, 1428–1438. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Zhang, J.; Ding, M.D.; Guo, Y.; Su, J.T. A Comparative Study of Confined and Eruptive Flares in NOAA AR 10720. Astrophys. J. Lett. 2011, 732, 87. [Google Scholar] [CrossRef] [Green Version]
- Tschernitz, J.; Veronig, A.M.; Thalmann, J.K.; Hinterreiter, J.; Pötzi, W. Reconnection Fluxes in Eruptive and Confined Flares and Implications for Superflares on the Sun. Astrophys. J. Lett. 2018, 853, 41. [Google Scholar] [CrossRef] [Green Version]
- Baumgartner, C.; Thalmann, J.K.; Veronig, A.M. On the Factors Determining the Eruptive Character of Solar Flares. Astrophys. J. Lett. 2018, 853, 105. [Google Scholar] [CrossRef]
- Belov, A.; Garcia, H.; Kurt, V.; Mavromichalaki, H.; Gerontidou, M. Proton Enhancements and Their Relation to the X-Ray Flares During the Three Last Solar Cycles. Sol. Phys. 2005, 229, 135–159. [Google Scholar] [CrossRef]
- Helmboldt, J.F.; Kassim, N.E.; Teare, S.W. Observations of the ionospheric impact of M-class solar flares on local and hemispheric scales. Earth Space Sci. 2015, 2, 387–402. [Google Scholar] [CrossRef]
- Yasyukevich, Y.V.; Voeykov, S.V.; Zhivetiev, I.V.; Kosogorov, E.A. Ionospheric response to solar flares of C and M classes in January-February 2010. Cosm. Res. 2013, 51, 114–123. [Google Scholar] [CrossRef]
- Kumar, R.; Chandra, R.; Pande, B.; Pande, S. Characteristics of SEPs during solar cycles 21-24. J. Astrophys. Astron. 2020, 41, 7. [Google Scholar] [CrossRef]
- Kiplinger, A.L. Comparative Studies of Hard X-Ray Spectral Evolution in Solar Flares with High-Energy Proton Events Observed at Earth. Astrophys. J. Lett. 1995, 453, 973. [Google Scholar] [CrossRef]
- Laurenza, M.; Cliver, E.W.; Hewitt, J.; Storini, M.; Ling, A.G.; Balch, C.C.; Kaiser, M.L. A technique for short-term warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape. Space Weather 2009, 7, S04008. [Google Scholar] [CrossRef] [Green Version]
- Zucca, P.; Núñez, M.; Klein, K. Exploring the potential of microwave diagnostics in SEP forecasting: The occurrence of SEP events. J. Space Weather Space Clim. 2017, 7, A13. [Google Scholar] [CrossRef]
- Núñez, M.; Paul-Pena, D. Predicting >10 MeV SEP Events from Solar Flare and Radio Burst Data. Universe 2020, 6, 161. [Google Scholar] [CrossRef]
- Bain, H.M.; Steenburgh, R.A.; Onsager, T.G.; Stitely, E.M. A Summary of National Oceanic and Atmospheric Administration Space Weather Prediction Center Proton Event Forecast Performance and Skill. Space Weather 2021, 19, e2020SW002670. [Google Scholar] [CrossRef]
- Kahler, S.W.; Cliver, E.W.; Ling, A.G. Validating the proton prediction system (PPS). J. Atmos. Sol.-Terr. Phys. 2007, 69, 43–49. [Google Scholar] [CrossRef]
- Núñez, M. Predicting solar energetic proton events (E > 10 MeV). Space Weather 2011, 9. [Google Scholar] [CrossRef]
- Posner, A. Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather 2007, 5, S05001. [Google Scholar] [CrossRef] [Green Version]
Hale Type | Reported | Uncertain/Visual/on Next Day |
---|---|---|
76 (3%) | 50 (2%) | |
546 (25%) | 109 (5%) | |
6 | − | |
- | 459 (21%) | 22 (1%) |
– | − | |
- | 48 (2%) | – |
-- | 661 (30%) | 2 |
- | 4 | – |
no sunspots | 51 (2%) | − |
uncertain | 135 (6%) | − |
Solar Event | SCs23 + 24 | SC23 | SC24 | % Change |
---|---|---|---|---|
SFs | 2177 (100%) | 1428 (66%) | 749 (34%) | |
CMEs | 889 (41%) | 562 (63%) | 327 (37%) | |
655 (30%) | 467 (71%) | 188 (29%) | ||
- | 481 (22%) | 298 (62%) | 183 (38%) | |
-- | 663 (30%) | 385 (58%) | 278 (42%) | |
SEPs | 133 (6%) | 88 (66%) | 45 (34%) | |
SEEs | 247 (11%) | 175 (71%) | 72 (29%) | |
IP-III | 1078 (50%) | 734 (68%) | 344 (32%) | |
IP-II | 148 (7%) | 98 (66%) | 50 (34%) |
M- | Rise&Decline | Longitude | Latitude | CME Speed | CME AW | IP IIs | IP IIIs |
---|---|---|---|---|---|---|---|
Class | [min] | [Degrees] | [Degrees] | [km s] | [Degrees] | % | % |
SCs23 + 24 | |||||||
M1 | 16/10 & 13/9 (1291) | W03/W04 (1224) | S03/S08 (1193) | 600/522 (447) | 128/93 (448) | 4% (50) | 44% (575) |
M2 | 16/11 & 13/8 (365) | W01/W01 (357) | S01/S07 (351) | 681/555 (169) | 135/97 (169) | 7% (27) | 54% (196) |
M3 | 16/12 & 13/9 (197) | W08/W06 (186) | S02/S08 (185) | 706/599 (86) | 156/108 (87) | 7% (14) | 53% (105) |
M4 | 17/11 & 12/7 (93) | E07/E15 (90) | S03/S08 (89) | 757/658 (49) | 146/96 (49) | 16% (15) | 60% (56) |
M5 | 16/12 & 13/8 (88) | W04/W07 (87) | 0/N06 (87) | 863/776 (50) | 214/210 (49) | 15% (13) | 60% (56) |
M6 | 17/13 & 14/9 (60) | W06/E03 (60) | S03/S10 (58) | 854/790 (39) | 210/170 (39) | 18% (11) | 58% (35) |
M7 | 25/16 & 18/12 (26) | W16/W30 (36) | 0/N01 (35) | 1128/1109 (21) | 211/178 (21) | 25% (9) | 64% (23) |
M8/9 | 20/12 & 14/9 (47) | W05/E02 (46) | 0/0 (46) | 1163/1102 (28) | 211/178 (28) | 19% (9) | 68% (32) |
SC23 | |||||||
M1 | 16/10 & 14/9 (840) | W04/W03 (773) | S01/S06 (743) | 630/531 (284) | 118/93 (285) | 4% (36) | 47% (397) |
M2 | 16/11 & 13/8 (240) | W05/W03 (233) | 0/N03 (227) | 707/617 (108) | 125/97 (108) | 8% (19) | 56% (134) |
M3 | 16/12 & 13/9 (137) | W13/W11 (126) | S02/S09 (125) | 714/600 (54) | 138/108 (55) | 6% (8) | 50% (68) |
M4 | 17/11 & 13/8 (62) | E09/E16 (59) | S03/S05 (58) | 856/733 (34) | 157/96 (34) | 19% (12) | 65% (40) |
M5 | 18/14 & 15/9 (56) | W01/E08 (55) | N01/N09 (55) | 946/952 (31) | 222/210 (30) | 13% (7) | 68% (38) |
M6 | 17/11 & 14/8 (37) | W12/W13 (37) | S01/S06 (35) | 878/738 (22) | 162/170 (22) | 14% (5) | 54% (20) |
M7 | 25/14 & 14/10 (23) | W10/W04 (23) | N01/N05 (22) | 1161/1109 (11) | 188/178 (11) | 22% (5) | 61% (14) |
M8/9 | 21/12 & 13/9 (33) | W04/E02 (32) | S01/N02 (32) | 1312/1262 (18) | 188/178 (18) | 18% (6) | 70% (23) |
SC24 | |||||||
M1 | 16/9 & 12/8 (451) | W01/W06 (451) | S05/S11 (450) | 549/510 (163) | 143/109 (163) | 3% (14) | 39% (178) |
M2 | 16/11 & 13/8 (125) | E06/E14 (124) | S03/S09 (124) | 635/487 (61) | 151/114 (61) | 6% (8) | 50% (62) |
M3 | 17/11 & 14/8 (60) | E02/E03 (60) | S01/S08 (60) | 692/952 (32) | 188/176 (32) | 10% (6) | 62% (37) |
M4 | 15/10 & 9/5 (31) | E02/E06 (31) | S04/S11 (31) | 533/516 (15) | 121/82 (15) | 10% (3) | 65% (20) |
M5 | 13/9 & 10/8 (32) | W09/W12 (32) | S02/S03 (32) | 729/641 (19) | 202/150 (19) | 19% (6) | 56% (18) |
M6 | 18/14 & 14/10 (23) | E04/E04 (23) | S06/S13 (23) | 823/851 (17) | 271/360 (17) | 26% (6) | 65% (15) |
M7 | 26/19 & 23/15 (13) | W26/W42 (13) | S02/S09 (13) | 1092/1019 (10) | 236/271 (10) | 31% (4) | 69% (9) |
M8/9 | 17/11 & 16/8 (14) | W07/W07 (14) | N01/S10 (14) | 896/676 (10) | 299/360 (10) | 21% (3) | 64% (9) |
Hale | M- | Rise & Decline | Longitude | Latitude | CME Speed | CME AW | IP IIs | IP IIIs |
---|---|---|---|---|---|---|---|---|
Type | Class | [min] | [Degrees] | [Degrees] | [km s] | [Degrees] | % | % |
SCs23 + 24 | ||||||||
M1.9/M1.6 (655) | 15/11 & 13/8 | W03/E07 (546) | S02/S07 (543) | 677/588 (253) | 153/113 (254) | 7% (39) | 58% (317) | |
- | M1.9/M1.6 (481) | 16/10 & 12/8 | W11/W07 (459) | S02/S07 (458) | 638/522 (177) | 154/109 (177) | 7% (31) | 49% (225) |
-- | M2.1/M1.8 (663) | 15/10 & 12/8 | W20/W25 (660) | S03/S10 (660) | 678/549 (224) | 144/93 (224) | 6% (42) | 42% (280) |
SC23 | ||||||||
M1.9/M1.6 (467) | 15/11 & 13/8 | W02/E09 (397) | S01/S07 (394) | 698/603 (183) | 144/113 (184) | 7% (27) | 62% (245) | |
- | M2.4/M1.7 (298) | 15/10 & 12/9 | W14/W09 (289) | S02/S07 (288) | 644/525 (100) | 142/109 (100) | 5% (14) | 47% (137) |
-- | M2.1/M1.8 (385) | 15/10 & 12/8 | W22/W26 (385) | 0/0 (385) | 727/628 (131) | 134/93 (131) | 8% (29) | 44% (170) |
SC24 | ||||||||
M1.9/M1.6 (188) | 16/11 & 13/8 | W05/W19 (149) | S03/S08 (149) | 622/512 (70) | 177/130 (70) | 8% (12) | 48% (72) | |
- | M2.3/M1.6 (183) | 17/10 & 12/7 | W07/W04 (170) | S02/S09 (170) | 629/522 (77) | 169/132 (77) | 10% (17) | 52% (88) |
-- | M2.1/M1.8 (278) | 15/9 & 12/7 | W16/W24 (275) | S07/S13 (275) | 608/510 (93) | 159/101 (93) | 5% (13) | 40% (110) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miteva, R.; Samwel, S.W. M-Class Solar Flares in Solar Cycles 23 and 24: Properties and Space Weather Relevance. Universe 2022, 8, 39. https://doi.org/10.3390/universe8010039
Miteva R, Samwel SW. M-Class Solar Flares in Solar Cycles 23 and 24: Properties and Space Weather Relevance. Universe. 2022; 8(1):39. https://doi.org/10.3390/universe8010039
Chicago/Turabian StyleMiteva, Rositsa, and Susan W. Samwel. 2022. "M-Class Solar Flares in Solar Cycles 23 and 24: Properties and Space Weather Relevance" Universe 8, no. 1: 39. https://doi.org/10.3390/universe8010039
APA StyleMiteva, R., & Samwel, S. W. (2022). M-Class Solar Flares in Solar Cycles 23 and 24: Properties and Space Weather Relevance. Universe, 8(1), 39. https://doi.org/10.3390/universe8010039