E6 GUT and Baryon Asymmetry Generation in the E6CHM
Abstract
1. Introduction
2. Composite Higgs Models and ECHM
2.1. Composite Higgs Models—A Brief Review
2.2. ECHM
3. From Orbifold GUT to the ECHM
3.1. The Symmetry Breaking to
3.2. The Breakdown of to
4. Generation of Matter–Antimatter Asymmetry in the ECHM
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Georgi, H.; Glashow, S.L. Unity Of All Elementary Particle Forces. Phys. Rev. Lett. 1974, 32, 438. [Google Scholar] [CrossRef]
- Minkowski, P. μ→eγ at a Rate of One Out of 109 Muon Decays? Phys. Lett. B 1977, 67, 421. [Google Scholar] [CrossRef]
- Mohapatra, R.N.; Senjanovic, G. Neutrino Mass and Spontaneous Parity Nonconservation. Phys. Rev. Lett. 1980, 44, 912. [Google Scholar] [CrossRef]
- Witten, E. Dynamical Breaking of Supersymmetry. Nucl. Phys. B 1981, 188, 513. [Google Scholar] [CrossRef]
- Sakai, N. Naturalness in Supersymmetric GUTs. Z. Phys. C 1981, 11, 153. [Google Scholar] [CrossRef]
- Dimopoulos, S.; Georgi, H. Softly Broken Supersymmetry and SU(5). Nucl. Phys. B 1981, 193, 150. [Google Scholar] [CrossRef]
- Kaul, R.K.; Majumdar, P. Cancellation of Quadratically Divergent Mass Corrections in Globally Supersymmetric Spontaneously Broken Gauge Theories. Nucl. Phys. B 1982, 199, 36. [Google Scholar] [CrossRef]
- Gildener, E.; Weinberg, S. Symmetry Breaking and Scalar Bosons. Phys. Rev. D 1976, 13, 3333. [Google Scholar] [CrossRef]
- Gildener, E. Gauge Symmetry Hierarchies. Phys. Rev. D 1976, 14, 1667. [Google Scholar] [CrossRef]
- Chung, D.J.H.; Everett, L.L.; Kane, G.L.; King, S.F.; Lykken, J.; Wang, L.T. The soft supersymmetry-breaking Lagrangian: Theory and applications. Phys. Rept. 2005, 407, 1. [Google Scholar] [CrossRef]
- Ellis, J.R.; Kelley, S.; Nanopoulos, D.V. Probing the desert using gauge coupling unification. Phys. Lett. B 1991, 260, 131. [Google Scholar] [CrossRef]
- Langacker, P.; Luo, M.X. Implications of precision electroweak experiments for Mt, ρ0, sin2θW and grand unification. Phys. Rev. D 1991, 44, 817. [Google Scholar] [CrossRef] [PubMed]
- Amaldi, U.; de Boer, W.; Furstenau, H. Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP. Phys. Lett. B 1991, 260, 447. [Google Scholar] [CrossRef]
- Anselmo, F.; Cifarelli, L.; Peterman, A.; Zichichi, A. The Effective experimental constraints on M(susy) and M(gut). Nuovo Cim. A 1991, 104, 1817. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R. The Hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 1998, 429, 263. [Google Scholar] [CrossRef]
- Antoniadis, I.; Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R. New dimensions at a millimeter to a Fermi and superstrings at a TeV. Phys. Lett. B 1998, 436, 257. [Google Scholar] [CrossRef]
- Randall, L.; Sundrum, R. A Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 1999, 83, 3370. [Google Scholar] [CrossRef]
- Randall, L.; Sundrum, R. An Alternative to compactification. Phys. Rev. Lett. 1999, 83, 4690. [Google Scholar] [CrossRef]
- Dienes, K.R.; Dudas, E.; Gherghetta, T. Extra space-time dimensions and unification. Phys. Lett. B 1998, 436, 55. [Google Scholar] [CrossRef]
- Dienes, K.R.; Dudas, E.; Gherghetta, T. Grand unification at intermediate mass scales through extra dimensions. Nucl. Phys. B 1999, 537, 47. [Google Scholar] [CrossRef]
- Bellazzini, B.; Csáki, C.; Serra, J. Composite Higgses. Eur. Phys. J. C 2014, 74, 2766. [Google Scholar] [CrossRef]
- Terazawa, H.; Akama, K.; Chikashige, Y. Unified Model of the Nambu-Jona-Lasinio Type for All Elementary Particle Forces. Phys. Rev. D 1977, 15, 480. [Google Scholar] [CrossRef]
- Terazawa, H. Subquark Model of Leptons and Quarks. Phys. Rev. D 1980, 22, 184. [Google Scholar] [CrossRef]
- Dimopoulos, S.; Preskill, J. Massless Composites With Massive Constituents. Nucl. Phys. B 1982, 199, 206. [Google Scholar] [CrossRef]
- Kaplan, D.B.; Georgi, H. SU(2) × U(1) Breaking by Vacuum Misalignment. Phys. Lett. B 1984, 136, 183. [Google Scholar] [CrossRef]
- Kaplan, D.B.; Georgi, H.; Dimopoulos, S. Composite Higgs Scalars. Phys. Lett. B 1984, 136, 187. [Google Scholar] [CrossRef]
- Georgi, H.; Kaplan, D.B.; Galison, P. Calculation of the Composite Higgs Mass. Phys. Lett. B 1984, 143, 152. [Google Scholar] [CrossRef]
- Banks, T. Constraints on SU(2) × U(1) Breaking by Vacuum Misalignment. Nucl. Phys. B 1984, 243, 125. [Google Scholar] [CrossRef]
- Georgi, H.; Kaplan, D.B. Composite Higgs and Custodial SU(2). Phys. Lett. B 1984, 145, 216. [Google Scholar] [CrossRef]
- Dugan, M.J.; Georgi, H.; Kaplan, D.B. Anatomy of a Composite Higgs Model. Nucl. Phys. B 1985, 254, 299. [Google Scholar] [CrossRef]
- Georgi, H. A Tool Kit for Builders of Composite Models. Nucl. Phys. B 1986, 266, 274. [Google Scholar] [CrossRef]
- Nevzorov, R.; Thomas, A.W. E6 inspired composite Higgs model. Phys. Rev. D 2015, 92, 075007. [Google Scholar] [CrossRef]
- Nevzorov, R.; Thomas, A.W. LHC signatures of neutral pseudo-Goldstone boson in the E6CHM. J. Phys. G 2017, 44, 075003. [Google Scholar] [CrossRef]
- Nevzorov, R.; Thomas, A.W. E6 inspired composite Higgs model and 750 GeV diphoton excess. EPJ Web Conf. 2016, 125, 02021. [Google Scholar] [CrossRef]
- Nevzorov, R.; Thomas, A.W. Baryon asymmetry generation in the E6CHM. Phys. Lett. B 2017, 774, 123. [Google Scholar] [CrossRef]
- Nevzorov, R.; Thomas, A.W. Generation of baryon asymmetry in the E6CHM. EPJ Web Conf. 2018, 191, 02004. [Google Scholar] [CrossRef]
- Nevzorov, R.; Thomas, A.W. E6 Inspired Composite Higgs Model and Baryon Asymmetry Generation. Phys. Part. Nucl. 2020, 51, 709. [Google Scholar] [CrossRef]
- Khlopov, M.Y.; Shibaev, K.I. New physics from superstring phenomenology. Grav. Cosmol. Suppl. 2002, 8, 45. [Google Scholar]
- Khlopov, M.Y. What comes after the Standard model? Prog. Part. Nucl. Phys. 2021, 116, 103824. [Google Scholar] [CrossRef]
- Sakharov, A.D. Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. JETP Lett. 1967, 5, 24. [Google Scholar]
- Ignatiev, A.Y.; Krasnikov, N.V.; Kuzmin, V.A.; Tavkhelidze, A.N. Universal CP Noninvariant Superweak Interaction and Baryon Asymmetry of the Universe. Phys. Lett. B 1978, 76, 436. [Google Scholar] [CrossRef]
- Yoshimura, M. Unified Gauge Theories and the Baryon Number of the Universe. Phys. Rev. Lett. 1978, 41, 281. [Google Scholar] [CrossRef]
- Toussaint, D.; Treiman, S.B.; Wilczek, F.; Zee, A. Matter - Antimatter Accounting, Thermodynamics, and Black Hole Radiation. Phys. Rev. D 1979, 19, 1036. [Google Scholar] [CrossRef]
- Weinberg, S. Cosmological production of baryons. Phys. Rev. Lett. 1979, 42, 850. [Google Scholar] [CrossRef]
- Yoshimura, M. Origin of Cosmological Baryon Asymmetry. Phys. Lett. B 1979, 88, 294. [Google Scholar] [CrossRef]
- Barr, S.M.; Segre, G.; Weldon, H.A. The Magnitude of the Cosmological Baryon Asymmetry. Phys. Rev. D 1979, 20, 2494. [Google Scholar] [CrossRef]
- Nanopoulos, D.V.; Weinberg, S. Mechanisms for Cosmological Baryon Production. Phys. Rev. D 1979, 20, 2484. [Google Scholar] [CrossRef]
- Fukugita, M.; Yanagida, T. Baryogenesis Without Grand Unification. Phys. Lett. B 1986, 174, 45. [Google Scholar] [CrossRef]
- Affleck, I.; Dine, M. A New Mechanism for Baryogenesis. Nucl. Phys. B 1985, 249, 361. [Google Scholar] [CrossRef]
- Dine, M.; Randall, L.; Thomas, S.D. Baryogenesis from flat directions of the supersymmetric standard model. Nucl. Phys. B 1996, 458, 291. [Google Scholar] [CrossRef]
- Riotto, A.; Trodden, M. Recent progress in baryogenesis. Ann. Rev. Nucl. Part. Sci. 1999, 49, 35. [Google Scholar] [CrossRef]
- Agashe, K.; Contino, R.; Pomarol, A. The Minimal composite Higgs model. Nucl. Phys. B 2005, 719, 165. [Google Scholar] [CrossRef]
- Contino, R.; Nomura, Y.; Pomarol, A. Higgs as a holographic pseudoGoldstone boson. Nucl. Phys. B 2003, 671, 148. [Google Scholar] [CrossRef]
- Agashe, K.; Delgado, A.; May, M.J.; Sundrum, R. RS1, custodial isospin and precision tests. J. High Energy Phys. 2003, 308, 50. [Google Scholar] [CrossRef]
- Contino, R.; Kramer, T.; Son, M.; Sundrum, R. Warped/composite phenomenology simplified. J. High Energy Phys. 2007, 705, 74. [Google Scholar] [CrossRef]
- Kaplan, D.B. Flavor at SSC energies: A New mechanism for dynamically generated fermion masses. Nucl. Phys. B 1991, 365, 259. [Google Scholar] [CrossRef]
- Frigerio, M.; Serra, J.; Varagnolo, A. Composite GUTs: Models and expectations at the LHC. J. High Energy Phys. 2011, 1106, 29. [Google Scholar] [CrossRef]
- Agashe, K.; Contino, R. The Minimal composite Higgs model and electroweak precision tests. Nucl. Phys. B 2006, 742, 59. [Google Scholar] [CrossRef]
- Agashe, K.; Contino, R.; Da Rold, L.; Pomarol, A. A Custodial symmetry for Zb. Phys. Lett. B 2006, 641, 62. [Google Scholar] [CrossRef]
- Giudice, G.F.; Grojean, C.; Pomarol, A.; Rattazzi, R. The Strongly-Interacting Light Higgs. J. High Energy Phys. 2007, 706, 45. [Google Scholar] [CrossRef]
- Barbieri, R.; Bellazzini, B.; Rychkov, V.S.; Varagnolo, A. The Higgs boson from an extended symmetry. Phys. Rev. D 2007, 76, 115008. [Google Scholar] [CrossRef]
- Lodone, P. Vector-like quarks in a ‘composite’ Higgs model. J. High Energy Phys. 2008, 0812, 029. [Google Scholar] [CrossRef]
- Gillioz, M. A Light composite Higgs boson facing electroweak precision tests. Phys. Rev. D 2009, 80, 055003. [Google Scholar] [CrossRef]
- Anastasiou, C.; Furlan, E.; Santiago, J. Realistic Composite Higgs Models. Phys. Rev. D 2009, 79, 075003. [Google Scholar] [CrossRef]
- Panico, G.; Wulzer, A. The Discrete Composite Higgs Model. J. High Energy Phys. 2011, 1109, 135. [Google Scholar] [CrossRef]
- De Curtis, S.; Redi, M.; Tesi, A. The 4D Composite Higgs. J. High Energy Phys. 2012, 1204, 42. [Google Scholar] [CrossRef]
- Marzocca, D.; Serone, M.; Shu, J. General Composite Higgs Models. J. High Energy Phys. 2012, 1208, 013. [Google Scholar] [CrossRef]
- Orgogozo, A.; Rychkov, S. The S parameter for a Light Composite Higgs: A Dispersion Relation Approach. J. High Energy Phys. 2013, 1306, 14. [Google Scholar] [CrossRef]
- Grojean, C.; Matsedonskyi, O.; Giuliano, P. Light top partners and precision physics. J. High Energy Phys. 2013, 1310, 160. [Google Scholar] [CrossRef]
- Carena, M.; Ponton, E.; Santiago, J.; Wagner, C.E.M. Light Kaluza Klein States in Randall-Sundrum Models with Custodial SU(2). Nucl. Phys. B 2006, 759, 202. [Google Scholar] [CrossRef]
- Pomarol, A.; Serra, J. Top Quark Compositeness: Feasibility and Implications. Phys. Rev. D 2008, 78, 074026. [Google Scholar] [CrossRef]
- Pappadopulo, D.; Thamm, A.; Torre, R. A minimally tuned composite Higgs model from an extra dimension. J. High Energy Phys. 2013, 1307, 58. [Google Scholar] [CrossRef]
- Bellazzini, B.; Csaki, C.; Hubisz, J.; Serra, J.; Terning, J. Composite Higgs Sketch. J. High Energy Phys. 2012, 1211, 3. [Google Scholar] [CrossRef]
- Gillioz, M.; Grober, R.; Grojean, C.; Muhlleitner, M.; Salvioni, E. Higgs Low-Energy Theorem (and its corrections) in Composite Models. J. High Energy Phys. 2012, 1210, 4. [Google Scholar] [CrossRef]
- Azatov, A.; Galloway, J. Electroweak Symmetry Breaking and the Higgs Boson: Confronting Theories at Colliders. Int. J. Mod. Phys. A 2013, 28, 1330004. [Google Scholar] [CrossRef]
- Falkowski, A.; Riva, F.; Urbano, A. Higgs at last. J. High Energy Phys. 2013, 1311, 111. [Google Scholar] [CrossRef]
- Azatov, A.; Contino, R.; Di Iura, A.; Galloway, J. New Prospects for Higgs Compositeness in h→Zγ. Phys. Rev. D 2013, 88, 075019. [Google Scholar] [CrossRef]
- Gillioz, M.; Gröber, R.; Kapuvari, A.; Mühlleitner, M. Vector-like Bottom Quarks in Composite Higgs Models. J. High Energy Phys. 2014, 1403, 37. [Google Scholar] [CrossRef]
- Barbieri, R.; Isidori, G.; Pappadopulo, D. Composite fermions in Electroweak Symmetry Breaking. J. High Energy Phys. 2009, 902, 29. [Google Scholar] [CrossRef]
- Matsedonskyi, O. On Flavour and Naturalness of Composite Higgs Models. J. High Energy Phys. 2015, 1502, 154. [Google Scholar] [CrossRef]
- Barbieri, R.; Buttazzo, D.; Sala, F.; Straub, D.M.; Tesi, A. A 125 GeV composite Higgs boson versus flavour and electroweak precision tests. J. High Energy Phys. 2013, 1305, 69. [Google Scholar] [CrossRef]
- Csaki, C.; Falkowski, A.; Weiler, A. The Flavor of the Composite Pseudo-Goldstone Higgs. J. High Energy Phys. 2008, 809, 8. [Google Scholar] [CrossRef]
- Agashe, K.; Azatov, A.; Zhu, L. Flavor Violation Tests of Warped/Composite SM in the Two-Site Approach. Phys. Rev. D 2009, 79, 056006. [Google Scholar] [CrossRef]
- Vignaroli, N. Δ F=1 constraints on composite Higgs models with LR parity. Phys. Rev. D 2012, 86, 115011. [Google Scholar] [CrossRef]
- Sikivie, P.; Susskind, L.; Voloshin, M.B.; Zakharov, V.I. Isospin Breaking in Technicolor Models. Nucl. Phys. B 1980, 173, 189. [Google Scholar] [CrossRef]
- Peskin, M.E.; Takeuchi, T. Estimation of oblique electroweak corrections. Phys. Rev. D 1992, 46, 381. [Google Scholar] [CrossRef]
- Agashe, K.; Perez, G.; Soni, A. Flavor structure of warped extra dimension models. Phys. Rev. D 2005, 71, 016002. [Google Scholar] [CrossRef]
- Glashow, S.L.; Iliopoulos, J.; Maiani, L. Weak Interactions with Lepton-Hadron Symmetry. Phys. Rev. D 1970, 2, 1285. [Google Scholar] [CrossRef]
- Redi, M.; Weiler, A. Flavor and CP Invariant Composite Higgs Models. J. High Energy Phys. 2011, 1111, 108. [Google Scholar] [CrossRef]
- Blanke, M.; Buras, A.J.; Duling, B.; Gori, S.; Weiler, A. Δ F = 2 Observables and Fine-Tuning in a Warped Extra Dimension with Custodial Protection. J. High Energy Phys. 2009, 903, 1. [Google Scholar] [CrossRef]
- Gedalia, O.; Isidori, G.; Perez, G. Combining Direct & Indirect Kaon CP Violation to Constrain the Warped KK Scale. Phys. Lett. B 2009, 682, 200. [Google Scholar]
- Barbieri, R.; Buttazzo, D.; Sala, F.; Straub, D.M. Flavour physics from an approximate U(2)3 symmetry. J. High Energy Phys. 2012, 1207, 181. [Google Scholar] [CrossRef]
- Redi, M. Leptons in Composite MFV. J. High Energy Phys. 2013, 1309, 60. [Google Scholar] [CrossRef]
- Agashe, K.; Blechman, A.E.; Petriello, F. Probing the Randall-Sundrum geometric origin of flavor with lepton flavor violation. Phys. Rev. D 2006, 74, 053011. [Google Scholar] [CrossRef]
- Csaki, C.; Grossman, Y.; Tanedo, P.; Tsai, Y. Warped penguin diagrams. Phys. Rev. D 2011, 83, 073002. [Google Scholar] [CrossRef]
- Csaki, C.; Delaunay, C.; Grojean, C.; Grossman, Y. A Model of Lepton Masses from a Warped Extra Dimension. J. High Energy Phys. 2008, 0810, 055. [Google Scholar] [CrossRef]
- del Aguila, F.; Carmona, A.; Santiago, J. Neutrino Masses from an A4 Symmetry in Holographic Composite Higgs Models. J. High Energy Phys. 2010, 1008, 127. [Google Scholar] [CrossRef]
- Cacciapaglia, G.; Csaki, C.; Galloway, J.; Marandella, G.; Terning, J.; Weiler, A. A GIM Mechanism from Extra Dimensions. J. High Energy Phys. 2008, 804, 6. [Google Scholar] [CrossRef]
- Redi, M. Composite MFV and Beyond. Eur. Phys. J. C 2012, 72, 2030. [Google Scholar] [CrossRef]
- König, M.; Neubert, M.; Straub, D.M. Dipole operator constraints on composite Higgs models. Eur. Phys. J. C 2014, 74, 2945. [Google Scholar] [CrossRef]
- Gripaios, B.; Pomarol, A.; Riva, F.; Serra, J. Beyond the Minimal Composite Higgs Model. J. High Energy Phys. 2009, 904, 70. [Google Scholar] [CrossRef]
- Mrazek, J.; Pomarol, A.; Rattazzi, R.; Redi, M.; Serra, J.; Wulzer, A. The Other Natural Two Higgs Doublet Model. Nucl. Phys. B 2011, 853, 1. [Google Scholar] [CrossRef]
- Redi, M.; Tesi, A. Implications of a Light Higgs in Composite Models. J. High Energy Phys. 2012, 1210, 166. [Google Scholar] [CrossRef]
- Bertuzzo, E.; Ray, T.S.; de Sandes, H.; Savoy, C.A. On Composite Two Higgs Doublet Models. J. High Energy Phys. 2013, 1305, 153. [Google Scholar] [CrossRef]
- Montull, M.; Riva, F. Higgs discovery: The beginning or the end of natural EWSB? J. High Energy Phys. 2012, 1211, 18. [Google Scholar] [CrossRef]
- Chala, M. h→γγ excess and Dark Matter from Composite Higgs Models. J. High Energy Phys. 2013, 1301, 122. [Google Scholar] [CrossRef]
- Frigerio, M.; Pomarol, A.; Riva, F.; Urbano, A. Composite Scalar Dark Matter. J. High Energy Phys. 2012, 1207, 15. [Google Scholar] [CrossRef]
- Contino, R.; Grojean, C.; Moretti, M.; Piccinini, F.; Rattazzi, R. Strong Double Higgs Production at the LHC. J. High Energy Phys. 2010, 1005, 89. [Google Scholar] [CrossRef]
- Low, I.; Vichi, A. On the production of a composite Higgs boson. Phys. Rev. D 2011, 84, 045019. [Google Scholar] [CrossRef]
- Contino, R.; Marzocca, D.; Pappadopulo, D.; Rattazzi, R. On the effect of resonances in composite Higgs phenomenology. J. High Energy Phys. 2011, 1110, 81. [Google Scholar] [CrossRef]
- Azatov, A.; Galloway, J. Light Custodians and Higgs Physics in Composite Models. Phys. Rev. D 2012, 85, 055013. [Google Scholar] [CrossRef]
- Contino, R.; Ghezzi, M.; Moretti, M.; Panico, G.; Piccinini, F.; Wulzer, A. Anomalous Couplings in Double Higgs Production. J. High Energy Phys. 2012, 1208, 154. [Google Scholar] [CrossRef]
- Contino, R.; Ghezzi, M.; Grojean, C.; Muhlleitner, M.; Spira, M. Effective Lagrangian for a light Higgs-like scalar. J. High Energy Phys. 2013, 1307, 35. [Google Scholar] [CrossRef]
- Delaunay, C.; Grojean, C.; Perez, G. Modified Higgs Physics from Composite Light Flavors. J. High Energy Phys. 2013, 1309, 90. [Google Scholar] [CrossRef]
- Banfi, A.; Martin, A.; Sanz, V. Probing top-partners in Higgs+jets. J. High Energy Phys. 2014, 1408, 53. [Google Scholar] [CrossRef]
- Montull, M.; Riva, F.; Salvioni, E.; Torre, R. Higgs Couplings in Composite Models. Phys. Rev. D 2013, 88, 095006. [Google Scholar] [CrossRef]
- Contino, R.; Grojean, C.; Pappadopulo, D.; Rattazzi, R.; Thamm, A. Strong Higgs Interactions at a Linear Collider. J. High Energy Phys. 2014, 1402, 6. [Google Scholar] [CrossRef]
- Flacke, T.; Kim, J.H.; Lee, S.J.; Lim, S.H. Constraints on composite quark partners from Higgs searches. J. High Energy Phys. 2014, 1405, 123. [Google Scholar] [CrossRef]
- Grojean, C.; Salvioni, E.; Schlaffer, M.; Weiler, A. Very boosted Higgs in gluon fusion. J. High Energy Phys. 2014, 1405, 22. [Google Scholar] [CrossRef]
- Carena, M.; Da Rold, L.; Pontón, E. Minimal Composite Higgs Models at the LHC. J. High Energy Phys. 2014, 1406, 159. [Google Scholar] [CrossRef]
- Carmona, A.; Goertz, F. A naturally light Higgs without light Top Partners. J. High Energy Phys. 2015, 1505, 2. [Google Scholar] [CrossRef]
- Buchalla, G.; Cata, O.; Krause, C. A Systematic Approach to the SILH Lagrangian. Nucl. Phys. B 2015, 894, 602. [Google Scholar] [CrossRef]
- Pomarol, A.; Riva, F. The Composite Higgs and Light Resonance Connection. J. High Energy Phys. 2012, 1208, 135. [Google Scholar] [CrossRef]
- Matsedonskyi, O.; Panico, G.; Wulzer, A. Light Top Partners for a Light Composite Higgs. J. High Energy Phys. 2013, 1301, 164. [Google Scholar] [CrossRef]
- Agashe, K.; Delgado, A.; Sundrum, R. Grand unification in RS1. Ann. Phys. 2003, 304, 145. [Google Scholar] [CrossRef]
- Gherghetta, T. Partly supersymmetric grand unification. Phys. Rev. D 2005, 71, 065001. [Google Scholar] [CrossRef]
- Barnard, J.; Gherghetta, T.; Ray, T.S.; Spray, A. The Unnatural Composite Higgs. J. High Energy Phys. 2015, 1501, 67. [Google Scholar] [CrossRef]
- Asano, M.; Kitano, R. Partially Composite Dark Matter. J. High Energy Phys. 2014, 1409, 171. [Google Scholar] [CrossRef]
- Agashe, K.; Belyaev, A.; Krupovnickas, T.; Perez, G.; Virzi, J. LHC Signals from Warped Extra Dimensions. Phys. Rev. D 2008, 77, 015003. [Google Scholar] [CrossRef]
- Lillie, B.; Randall, L.; Wang, L.T. The Bulk RS KK-gluon at the LHC. J. High Energy Phys. 2007, 0709, 074. [Google Scholar] [CrossRef]
- Agashe, K.; Davoudiasl, H.; Gopalakrishna, S.; Han, T.; Huang, G.Y.; Perez, G.; Si, Z.G.; Soni, A. LHC Signals for Warped Electroweak Neutral Gauge Bosons. Phys. Rev. D 2007, 76, 115015. [Google Scholar] [CrossRef]
- Carena, M.; Medina, A.D.; Panes, B.; Shah, N.R.; Wagner, C.E.M. Collider phenomenology of gauge-Higgs unification scenarios in warped extra dimensions. Phys. Rev. D 2008, 77, 076003. [Google Scholar] [CrossRef]
- Contino, R.; Servant, G. Discovering the top partners at the LHC using same-sign dilepton final states. J. High Energy Phys. 2008, 0806, 026. [Google Scholar] [CrossRef]
- Agashe, K.; Gopalakrishna, S.; Han, T.; Huang, G.Y.; Soni, A. LHC Signals for Warped Electroweak Charged Gauge Bosons. Phys. Rev. D 2009, 80, 075007. [Google Scholar] [CrossRef]
- Aguilar-Saavedra, J.A. Identifying top partners at LHC. J. High Energy Phys. 2009, 0911, 030. [Google Scholar] [CrossRef]
- Mrazek, J.; Wulzer, A. A Strong Sector at the LHC: Top Partners in Same-Sign Dileptons. Phys. Rev. D 2010, 81, 075006. [Google Scholar] [CrossRef]
- Agashe, K.; Azatov, A.; Han, T.; Li, Y.; Si, Z.G.; Zhu, L. LHC Signals for Coset Electroweak Gauge Bosons in Warped/Composite PGB Higgs Models. Phys. Rev. D 2010, 81, 096002. [Google Scholar] [CrossRef]
- Dissertori, G.; Furlan, E.; Moortgat, F.; Nef, P. Discovery potential of top-partners in a realistic composite Higgs model with early LHC data. J. High Energy Phys. 2010, 1009, 19. [Google Scholar] [CrossRef]
- Vignaroli, N. Early discovery of top partners and test of the Higgs nature. Phys. Rev. D 2012, 86, 075017. [Google Scholar] [CrossRef]
- Cacciapaglia, G.; Deandrea, A.; Panizzi, L.; Perries, S.; Sordini, V. Heavy Vector-like quark with charge 5/3 at the LHC. J. High Energy Phys. 2013, 1303, 4. [Google Scholar] [CrossRef]
- De Simone, A.; Matsedonskyi, O.; Rattazzi, R.; Wulzer, A. A First Top Partner Hunter’s Guide. J. High Energy Phys. 2013, 1304, 4. [Google Scholar] [CrossRef]
- Li, J.; Liu, D.; Shu, J. Towards the fate of natural composite Higgs model through single t′ search at the 8 TeV LHC. J. High Energy Phys. 2013, 1311, 47. [Google Scholar] [CrossRef]
- Redi, M.; Sanz, V.; de Vries, M.; Weiler, A. Strong Signatures of Right-Handed Compositeness. J. High Energy Phys. 2013, 1308, 8. [Google Scholar] [CrossRef]
- Delaunay, C.; Flacke, T.; Gonzalez-Fraile, J.; Lee, S.J.; Panico, G.; Perez, G. Light Non-degenerate Composite Partners at the LHC. J. High Energy Phys. 2014, 1402, 55. [Google Scholar] [CrossRef]
- Matsedonskyi, O.; Riva, F.; Vantalon, T. Composite Charge 8/3 Resonances at the LHC. J. High Energy Phys. 2014, 1404, 59. [Google Scholar] [CrossRef]
- Cheng, H.C.; Gu, J. Top seesaw with a custodial symmetry, and the 126 GeV Higgs. J. High Energy Phys. 2014, 1410, 2. [Google Scholar] [CrossRef]
- Gripaios, B.; Müller, T.; Parker, M.A.; Sutherland, D. Search Strategies for Top Partners in Composite Higgs models. J. High Energy Phys. 2014, 1408, 171. [Google Scholar] [CrossRef]
- Azatov, A.; Panico, G.; Perez, G.; Soreq, Y. On the Flavor Structure of Natural Composite Higgs Models & Top Flavor Violation. J. High Energy Phys. 2014, 1412, 82. [Google Scholar]
- Backović, M.; Flacke, T.; Kim, J.H.; Lee, S.J. Boosted Event Topologies from TeV Scale Light Quark Composite Partners. J. High Energy Phys. 2015, 1504, 82. [Google Scholar] [CrossRef]
- Kanemura, S.; Kaneta, K.; Machida, N.; Shindou, T. New resonance scale and fingerprint identification in minimal composite Higgs models. Phys. Rev. D 2015, 91, 115016. [Google Scholar] [CrossRef]
- Thamm, A.; Torre, R.; Wulzer, A. Future tests of Higgs compositeness: Direct vs indirect. J. High Energy Phys. 2015, 1507, 100. [Google Scholar] [CrossRef]
- Azatov, A.; Chowdhury, D.; Ghosh, D.; Ray, T.S. Same sign di-lepton candles of the composite gluons. J. High Energy Phys. 2015, 1508, 140. [Google Scholar] [CrossRef]
- Serra, J. Beyond the Minimal Top Partner Decay. J. High Energy Phys. 2015, 1509, 176. [Google Scholar] [CrossRef]
- Barnard, J.; Gherghetta, T.; Ray, T.S. UV descriptions of composite Higgs models without elementary scalars. J. High Energy Phys. 2014, 1402, 2, [arXiv:1311.6562 [hep-ph]]. [Google Scholar] [CrossRef]
- Ferretti, G.; Karateev, D. Fermionic UV completions of Composite Higgs models. J. High Energy Phys. 2014, 1403, 077. [Google Scholar] [CrossRef]
- Cacciapaglia, G.; Sannino, F. Fundamental Composite (Goldstone) Higgs Dynamics. J. High Energy Phys. 2014, 1404, 111. [Google Scholar] [CrossRef]
- Hietanen, A.; Lewis, R.; Pica, C.; Sannino, F. Fundamental Composite Higgs Dynamics on the Lattice: SU(2) with Two Flavors. J. High Energy Phys. 2014, 1407, 116. [Google Scholar] [CrossRef]
- Ferretti, G. UV Completions of Partial Compositeness: The Case for a SU(4) Gauge Group. J. High Energy Phys. 2014, 1406, 142. [Google Scholar] [CrossRef]
- Parolini, A. Phenomenological aspects of supersymmetric composite Higgs models. Phys. Rev. D 2014, 90, 115026. [Google Scholar] [CrossRef]
- Geller, M.; Telem, O. Holographic Twin Higgs Model. Phys. Rev. Lett. 2015, 114, 191801. [Google Scholar] [CrossRef]
- Gripaios, B.; Nardecchia, M.; Renner, S.A. Composite leptoquarks and anomalies in B-meson decays. J. High Energy Phys. 2015, 1505, 6. [Google Scholar] [CrossRef]
- Low, M.; Tesi, A.; Wang, L.T. Twin Higgs mechanism and a composite Higgs boson. Phys. Rev. D 2015, 91, 095012. [Google Scholar] [CrossRef]
- Golterman, M.; Shamir, Y. Top quark induced effective potential in a composite Higgs model. Phys. Rev. D 2015, 91, 094506. [Google Scholar] [CrossRef]
- Agashe, K.; Contino, R.; Sundrum, R. Top compositeness and precision unification. Phys. Rev. Lett. 2005, 95, 171804. [Google Scholar] [CrossRef]
- Kawamura, Y. Triplet doublet splitting, proton stability and extra dimension. Prog. Theor. Phys. 2001, 105, 999. [Google Scholar] [CrossRef]
- Altarelli, G.; Feruglio, F. SU(5) grand unification in extra dimensions and proton decay. Phys. Lett. B 2001, 511, 257. [Google Scholar] [CrossRef]
- Hebecker, A.; March-Russell, J. A Minimal S1/(Z2 × ) orbifold GUT. Nucl. Phys. B 2001, 613, 3. [Google Scholar] [CrossRef]
- Barbieri, R.; Hall, L.J.; Nomura, Y. Softly broken supersymmetric desert from orbifold compactification. Phys. Rev. D 2002, 66, 045025. [Google Scholar] [CrossRef]
- Haba, N.; Shimizu, Y.; Suzuki, T.; Ukai, K. Fermion mass hierarchy in the grand unified theory on S1/(Z2 × ) orbifold. Prog. Theor. Phys. 2002, 107, 151. [Google Scholar] [CrossRef]
- Barr, S.M.; Dorsner, I. Unifying flipped SU(5) in five-dimensions. Phys. Rev. D 2002, 66, 065013. [Google Scholar] [CrossRef]
- Hebecker, A.; March-Russell, J. The Flavor hierarchy and seesaw neutrinos from bulk masses in 5-d orbifold GUTs. Phys. Lett. B 2002, 541, 338. [Google Scholar] [CrossRef]
- Paccetti Correia, F.; Schmidt, M.G.; Tavartkiladze, Z. 5-D SUSY orbifold SU(6) GUT and pseudoGoldstone Higgs doublets. Phys. Lett. B 2002, 545, 153. [Google Scholar] [CrossRef]
- Hebecker, A.; March-Russell, J.; Yanagida, T. Higher dimensional origin of heavy sneutrino domination and low scale leptogenesis. Phys. Lett. B 2003, 552, 229. [Google Scholar] [CrossRef]
- Kim, H.D.; Raby, S. Neutrinos in 5-D SO(10) unification. J. High Energy Phys. 2003, 0307, 14. [Google Scholar] [CrossRef]
- Bhattacharyya, G.; Branco, G.C.; Silva-Marcos, J.I. CP Violation and Flavour Mixings in Orbifold GUTs. Phys. Rev. D 2008, 77, 011901. [Google Scholar] [CrossRef]
- Kobakhidze, A.B. Proton stability in TeV scale GUTs. Phys. Lett. B 2001, 514, 131. [Google Scholar] [CrossRef]
- Hebecker, A.; March-Russell, J. Proton decay signatures of orbifold GUTs. Phys. Lett. B 2002, 539, 119. [Google Scholar] [CrossRef]
- Shafi, Q.; Tavartkiladze, Z. Neutrino democracy and other phenomenology from 5-D SO(10). Nucl. Phys. B 2003, 665, 469. [Google Scholar] [CrossRef]
- Hall, L.J.; Nomura, Y. Gauge unification in higher dimensions. Phys. Rev. D 2001, 64, 055003. [Google Scholar] [CrossRef]
- Nomura, Y. Strongly coupled grand unification in higher dimensions. Phys. Rev. D 2002, 65, 085036. [Google Scholar] [CrossRef]
- Hall, L.J.; Nomura, Y. Gauge coupling unification from unified theories in higher dimensions. Phys. Rev. D 2002, 65, 125012. [Google Scholar] [CrossRef]
- Dermisek, R.; Mafi, A. SO(10) grand unification in five-dimensions: Proton decay and the mu problem. Phys. Rev. D 2002, 65, 055002. [Google Scholar] [CrossRef]
- Hall, L.J.; Nomura, Y. A Complete theory of grand unification in five-dimensions. Phys. Rev. D 2002, 66, 075004. [Google Scholar] [CrossRef]
- Kim, H.D.; Raby, S. Unification in 5-D SO(10). J. High Energy Phys. 2003, 0301, 56. [Google Scholar] [CrossRef]
- Dorsner, I. Flipping SU(5) towards five-dimensional unification. Phys. Rev. D 2004, 69, 056003. [Google Scholar] [CrossRef]
- Kim, H.-D.; Kim, J.E.; Lee, H.M. Top - bottom mass hierarchy, s - mu puzzle and gauge coupling unification with split multiplets. Eur. Phys. J. C 2002, 24, 159. [Google Scholar] [CrossRef]
- Correia, F.P.; Schmidt, M.G.; Tavartkiladze, Z. Gauge coupling unification and phenomenology of selected orbifold 5-D N=1 SUSY models. Nucl. Phys. B 2003, 649, 39. [Google Scholar] [CrossRef]
- Hall, L.J.; Nomura, Y.; Tucker-Smith, D. Gauge Higgs unification in higher dimensions. Nucl. Phys. B 2002, 639, 307. [Google Scholar] [CrossRef]
- Hall, L.J.; March-Russell, J.; Okui, T.; Tucker-Smith, D. Towards a theory of flavor from orbifold GUTs. J. High Energy Phys. 2004, 0409, 26. [Google Scholar] [CrossRef]
- Babu, K.S.; Barr, S.M.; Kyae, B.-S. Family unification in five-dimensions and six-dimensions. Phys. Rev. D 2002, 65, 115008. [Google Scholar] [CrossRef]
- Kim, H.D.; Raby, S.; Schradin, L. Quark and lepton masses in 5-D SO(10). J. High Energy Phys. 2005, 0505, 36. [Google Scholar] [CrossRef]
- Forste, S.; Nilles, H.P.; Wingerter, A. Geometry of rank reduction. Phys. Rev. D 2005, 72, 026001. [Google Scholar] [CrossRef]
- Braam, F.; Knochel, A.; Reuter, J. An Exceptional SSM from E6 Orbifold GUTs with intermediate LR symmetry. J. High Energy Phys. 2010, 1006, 13. [Google Scholar] [CrossRef]
- Li, T.-J. GUT breaking on M4 × T2/(Z2 × Z2′). Phys. Lett. B 2001, 520, 377. [Google Scholar] [CrossRef]
- Asaka, T.; Buchmuller, W.; Covi, L. Gauge unification in six-dimensions. Phys. Lett. B 2001, 523, 199. [Google Scholar] [CrossRef]
- Li, T.-J. N=2 supersymmetric GUT breaking on T2 orbifolds. Nucl. Phys. B 2001, 619, 75. [Google Scholar] [CrossRef]
- Haba, N.; Kondo, T.; Shimizu, Y. Fermion mass hierarchy in six-dimensional SO(10) grand unified theory on a T2/Z2 orbifold. Phys. Lett. B 2002, 531, 245. [Google Scholar] [CrossRef]
- Watari, T.; Yanagida, T. Higher dimensional supersymmetry as an origin of the three families for quarks and leptons. Phys. Lett. B 2002, 532, 252. [Google Scholar] [CrossRef]
- Haba, N.; Kondo, T.; Shimizu, Y. Fermion mass hierarchy in six- dimensional SO(10) SUSY GUT. Phys. Lett. B 2002, 535, 271. [Google Scholar] [CrossRef]
- Watari, T.; Yanagida, T. Geometric origin of large lepton mixing in a higher dimensional space-time. Phys. Lett. B 2002, 544, 167. [Google Scholar] [CrossRef]
- Asaka, T.; Buchmuller, W.; Covi, L. Exceptional coset spaces and unification in six-dimensions. Phys. Lett. B 2002, 540, 295. [Google Scholar] [CrossRef]
- Hebecker, A.; Ratz, M. Group theoretical aspects of orbifold and conifold GUTs. Nucl. Phys. B 2003, 670, 3. [Google Scholar] [CrossRef]
- Asaka, T.; Buchmuller, W.; Covi, L. Quarks and leptons between branes and bulk. Phys. Lett. B 2003, 563, 209. [Google Scholar] [CrossRef]
- Buchmuller, W.; Kersten, J.; Schmidt-Hoberg, K. Squarks and sleptons between branes and bulk. J. High Energy Phys. 2006, 0602, 69. [Google Scholar] [CrossRef]
- Buchmuller, W.; Covi, L.; Emmanuel-Costa, D.; Wiesenfeldt, S. CP Violation and Neutrino Masses and Mixings from Quark Mass Hierarchies. J. High Energy Phys. 2007, 0712, 30. [Google Scholar] [CrossRef]
- Hall, L.J.; Nomura, Y.; Okui, T.; Tucker-Smith, D. SO(10) unified theories in six-dimensions. Phys. Rev. D 2002, 65, 035008. [Google Scholar] [CrossRef]
- Lee, H.M. Gauge coupling unification in six dimensions. Phys. Rev. D 2007, 75, 065009. [Google Scholar] [CrossRef]
- Buchmuller, W.; Covi, L.; Emmanuel-Costa, D.; Wiesenfeldt, S. Flavour structure and proton decay in 6D orbifold GUTs. J. High Energy Phys. 2004, 0409, 4. [Google Scholar] [CrossRef]
- Candelas, P.; Horowitz, G.T.; Strominger, A.; Witten, E. Vacuum Configurations for Superstrings. Nucl. Phys. B 1985, 258, 46. [Google Scholar] [CrossRef]
- Witten, E. Symmetry Breaking Patterns in Superstring Models. Nucl. Phys. B 1985, 258, 75. [Google Scholar] [CrossRef]
- Dixon, L.J.; Harvey, J.A.; Vafa, C.; Witten, E. Strings on Orbifolds. Nucl. Phys. B 1985, 261, 678. [Google Scholar] [CrossRef]
- Breit, J.D.; Ovrut, B.A.; Segre, G.C. E6 Symmetry Breaking in the Superstring Theory. Phys. Lett. B 1985, 158, 33. [Google Scholar] [CrossRef]
- Dixon, L.J.; Harvey, J.A.; Vafa, C.; Witten, E. Strings on Orbifolds 2. Nucl. Phys. B 1986, 274, 285. [Google Scholar] [CrossRef]
- Sen, A. Naturally Light Higgs Doublet in Supersymmetric E6 Grand Unified Theory. Phys. Rev. Lett. 1985, 55, 33. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, L.E.; Kim, J.E.; Nilles, H.P.; Quevedo, F. Orbifold Compactifications with Three Families of SU(3) × SU(2) × U(1)n. Phys. Lett. B 1987, 191, 282. [Google Scholar] [CrossRef]
- Kobayashi, T.; Raby, S.; Zhang, R.-J. Constructing 5-D orbifold grand unified theories from heterotic strings. Phys. Lett. B 2004, 593, 262. [Google Scholar] [CrossRef]
- Kobayashi, T.; Raby, S.; Zhang, R.-J. Searching for realistic 4d string models with a Pati-Salam symmetry: Orbifold grand unified theories from heterotic string compactification on a Z(6) orbifold. Nucl. Phys. B 2005, 704, 3. [Google Scholar] [CrossRef]
- Buchmuller, W.; Hamaguchi, K.; Lebedev, O.; Ratz, M. Supersymmetric standard model from the heterotic string. Phys. Rev. Lett. 2006, 96, 121602. [Google Scholar] [CrossRef] [PubMed]
- Lebedev, O.; Nilles, H.P.; Raby, S.; Ramos-Sanchez, S.; Ratz, M.; Vaudrevange, P.K.S.; Wingerter, A. A Mini-landscape of exact MSSM spectra in heterotic orbifolds. Phys. Lett. B 2007, 645, 88. [Google Scholar] [CrossRef]
- Buchmuller, W.; Hamaguchi, K.; Lebedev, O.; Ratz, M. Supersymmetric Standard Model from the Heterotic String (II). Nucl. Phys. B 2007, 785, 149. [Google Scholar] [CrossRef]
- Buchmuller, W.; Ludeling, C.; Schmidt, J. Local SU(5) Unification from the Heterotic String. J. High Energy Phys. 2007, 0709, 113. [Google Scholar] [CrossRef]
- Lebedev, O.; Nilles, H.P.; Raby, S.; Ramos-Sanchez, S.; Ratz, M.; Vaudrevange, P.K.S.; Wingerter, A. The Heterotic Road to the MSSM with R parity. Phys. Rev. D 2008, 77, 046013. [Google Scholar] [CrossRef]
- Chaichian, M.; Chkareuli, J.L.; Kobakhidze, A. Composite quarks and leptons in higher space-time dimensions. Phys. Rev. D 2002, 66, 095013. [Google Scholar] [CrossRef]
- Ma, E. Neutrino masses in an extended gauge model with E6 particle content. Phys. Lett. B 1996, 380, 286. [Google Scholar] [CrossRef]
- Keith, E.; Ma, E. Generic consequences of a supersymmetric U(1) gauge factor at the TeV scale. Phys. Rev. D 1997, 56, 7155. [Google Scholar] [CrossRef]
- Suematsu, D. Neutralino decay in the μ problem solvable extra U(1) models. Phys. Rev. D 1998, 57, 1738. [Google Scholar] [CrossRef]
- Daikoku, Y.; Suematsu, D. Mass bound of the lightest neutral Higgs scalar in the extra U(1) models. Phys. Rev. D 2000, 62, 095006. [Google Scholar] [CrossRef]
- King, S.F.; Moretti, S.; Nevzorov, R. Theory and phenomenology of an exceptional supersymmetric standard model. Phys. Rev. D 2006, 73, 035009. [Google Scholar] [CrossRef]
- King, S.F.; Moretti, S.; Nevzorov, R. Exceptional supersymmetric standard model. Phys. Lett. B 2006, 634, 278. [Google Scholar] [CrossRef]
- King, S.F.; Moretti, S.; Nevzorov, R. Gauge coupling unification in the exceptional supersymmetric standard model. Phys. Lett. B 2007, 650, 57. [Google Scholar] [CrossRef]
- King, S.F.; Moretti, S.; Nevzorov, R. E6SSM. AIP Conf. Proc. 2007, 881, 138. [Google Scholar]
- Athron, P.; King, S.F.; Miller, D.J.; Moretti, S.; Nevzorov, R. Predictions of the Constrained Exceptional Supersymmetric Standard Model. Phys. Lett. B 2009, 681, 448. [Google Scholar] [CrossRef]
- Athron, P.; King, S.F.; Miller, D.J.; Moretti, S.; Nevzorov, R. The Constrained Exceptional Supersymmetric Standard Model. Phys. Rev. D 2009, 80, 035009. [Google Scholar] [CrossRef]
- Athron, P.; Hall, J.P.; Howl, R.; King, S.F.; Miller, D.J.; Moretti, S.; Nevzorov, R. Aspects of the exceptional supersymmetric standard model. Nucl. Phys. Proc. Suppl. 2010, 200–202, 120. [Google Scholar] [CrossRef]
- Hall, J.P.; King, S.F.; Nevzorov, R.; Pakvasa, S.; Sher, M. Novel Higgs Decays and Dark Matter in the E6SSM. Phys. Rev. D 2011, 83, 075013. [Google Scholar] [CrossRef]
- Athron, P.; King, S.F.; Miller, D.J.; Moretti, S.; Nevzorov, R. LHC Signatures of the Constrained Exceptional Supersymmetric Standard Model. Phys. Rev. D 2011, 84, 055006. [Google Scholar] [CrossRef]
- Athron, P.; King, S.F.; Miller, D.J.; Moretti, S.; Nevzorov, R. Constrained Exceptional Supersymmetric Standard Model with a Higgs Near 125 GeV. Phys. Rev. D 2012, 86, 095003. [Google Scholar] [CrossRef]
- Nevzorov, R. E6 inspired supersymmetric models with exact custodial symmetry. Phys. Rev. D 2013, 87, 015029. [Google Scholar] [CrossRef]
- Nevzorov, R. Quasifixed point scenarios and the Higgs mass in the E6 inspired supersymmetric models. Phys. Rev. D 2014, 89, 055010. [Google Scholar] [CrossRef]
- Nevzorov, R.; Pakvasa, S. Exotic Higgs decays in the E6 inspired SUSY models. Phys. Lett. B 2014, 728, 210. [Google Scholar] [CrossRef]
- Athron, P.; Mühlleitner, M.; Nevzorov, R.; Williams, A.G. Non-Standard Higgs Decays in U(1) Extensions of the MSSM. J. High Energy Phys. 2015, 1501, 153. [Google Scholar] [CrossRef]
- Athron, P.; Harries, D.; Nevzorov, R.; Williams, A.G. E6 Inspired SUSY benchmarks, dark matter relic density and a 125 GeV Higgs. Phys. Lett. B 2016, 760, 19. [Google Scholar] [CrossRef]
- Nevzorov, R.; Pakvasa, S. Nonstandard Higgs decays in the E6 inspired SUSY models. Nucl. Part. Phys. Proc. 2016, 273-275, 690. [Google Scholar] [CrossRef]
- King, S.F.; Nevzorov, R. 750 GeV Diphoton Resonance from Singlets in an Exceptional Supersymmetric Standard Model. J. High Energy Phys. 2016, 1603, 139. [Google Scholar] [CrossRef]
- Athron, P.; Harries, D.; Nevzorov, R.; Williams, A.G. Dark matter in a constrained E6 inspired SUSY model. J. High Energy Phys. 2016, 1612, 128. [Google Scholar] [CrossRef]
- Nevzorov, R. Leptogenesis as an origin of hot dark matter and baryon asymmetry in the E6 inspired SUSY models. Phys. Lett. B 2018, 779, 223. [Google Scholar] [CrossRef]
- Nevzorov, R. E6 inspired SUSY models with custodial symmetry. Int. J. Mod. Phys. A 2018, 33, 1844007. [Google Scholar] [CrossRef]
- King, S.F.; Moretti, S.; Nevzorov, R. A Review of the Exceptional Supersymmetric Standard Model. Symmetry 2020, 12, 557. [Google Scholar] [CrossRef]
- Nevzorov, R. Higgs Boson with Mass around 125 GeV in SUSY Extensions of the SM. Phys. Atom. Nucl. 2020, 83, 338. [Google Scholar] [CrossRef]
- King, S.F.; Luo, R.; Miller, D.J.; Nevzorov, R. Leptogenesis in the Exceptional Supersymmetric Standard Model: Flavour dependent lepton asymmetries. J. High Energy Phys. 2008, 0812, 042. [Google Scholar] [CrossRef]
- Asaka, T.; Buchmuller, W.; Covi, L. Bulk and brane anomalies in six-dimensions. Nucl. Phys. B 2003, 648, 231. [Google Scholar] [CrossRef]
- von Gersdorff, G.; Quiros, M. Localized anomalies in orbifold gauge theories. Phys. Rev. D 2003, 68, 105002. [Google Scholar] [CrossRef]
- Scrucca, C.A.; Serone, M. Anomalies in field theories with extra dimensions. Int. J. Mod. Phys. A 2004, 19, 2579. [Google Scholar] [CrossRef]
- Borghini, N.; Gouverneur, Y.; Tytgat, M.H.G. Anomalies and fermion content of grand unified theories in extra dimensions. Phys. Rev. D 2002, 65, 025017. [Google Scholar] [CrossRef]
- von Gersdorff, G. Anomalies on Six Dimensional Orbifolds. J. High Energy Phys. 2007, 703, 83. [Google Scholar] [CrossRef]
- Adler, S.L. Axial vector vertex in spinor electrodynamics. Phys. Rev. 1969, 177, 2426. [Google Scholar] [CrossRef]
- Adler, S.L.; Bardeen, W.A. Absence of higher order corrections in the anomalous axial vector divergence equation. Phys. Rev. 1969, 182, 1517. [Google Scholar] [CrossRef]
- Bell, J.S.; Jackiw, R. A PCAC puzzle: Pi0 –> gamma gamma in the sigma model. Nuovo Cim. A 1969, 60, 47. [Google Scholar] [CrossRef]
- Green, M.B.; Schwarz, J.H. Anomaly Cancellation in Supersymmetric D=10 Gauge Theory and Superstring Theory. Phys. Lett. B 1984, 149, 117. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Cohen, A.G.; Georgi, H. Anomalies on orbifolds. Phys. Lett. B 2001, 516, 395. [Google Scholar] [CrossRef]
- Scrucca, C.A.; Serone, M.; Silvestrini, L.; Zwirner, F. Anomalies in orbifold field theories. Phys. Lett. B 2002, 525, 169. [Google Scholar] [CrossRef]
- Barbieri, R.; Contino, R.; Creminelli, P.; Rattazzi, R.; Scrucca, C.A. Anomalies, Fayet-Iliopoulos terms and the consistency of orbifold field theories. Phys. Rev. D 2002, 66, 024025. [Google Scholar] [CrossRef]
- Phillips, D.G., II; Snow, W.M.; Babu, K.; Banerjee, S.; Baxter, D.V.; Berezhiani, Z.; Bergevin, M.; Bhattacharya, S.; Brooijmans, G.; Castellanos, L. Neutron-Antineutron Oscillations: Theoretical Status and Experimental Prospects. Phys. Rept. 2016, 612, 1. [Google Scholar] [CrossRef]
- Kronfeld, A.S.; Tschirhart, R.S.; Al-Binni, U.; Altmannshofer, W.; Ankenbrandt, C.; Babu, K.; Banerjee, S.; Bass, M.; Batell, B.; Baxter, D.V. Project X: Physics Opportunities. arXiv 2013, arXiv:1306.5009. [Google Scholar]
- The ATLAS collaboration. A search for pair-produced resonances in four-jet final states at = 13 TeV with the ATLAS detector. Eur. Phys. J. C 2018, 78, 250. [Google Scholar]
- Cline, J.M.; Raby, S. Gravitino induced baryogenesis: A Problem made a virtue. Phys. Rev. D 1991, 43, 1781. [Google Scholar] [CrossRef]
- Scherrer, R.J.; Cline, J.M.; Raby, S.; Seckel, D. Gravitino induced baryogenesis, primordial nucleosynthesis, and the Tremaine-Gunn limit. Phys. Rev. D 1991, 44, 3760. [Google Scholar] [CrossRef] [PubMed]
- Ma, E.; Raidal, M. Three active and two sterile neutrinos in an E6 model of diquark baryogenesis. J. Phys. G 2002, 28, 95. [Google Scholar] [CrossRef][Green Version]
- Ma, E. Multiplicative conservation of baryon number and baryogenesis. Phys. Lett. B 2008, 661, 273. [Google Scholar] [CrossRef]
- Ma, E. Common Origin of (−)L, (−)3B, and Strong CP Conservation. Phys. Rev. D 2008, 78, 047701. [Google Scholar] [CrossRef]
- Ma, E. Axionic Extensions of the Supersymmetric Standard Model. Mod. Phys. Lett. A 2009, 24, 1335. [Google Scholar] [CrossRef]
- Kohri, K.; Mazumdar, A.; Sahu, N. Inflation, baryogenesis and gravitino dark matter at ultra low reheat temperatures. Phys. Rev. D 2009, 80, 103504. [Google Scholar] [CrossRef]
- Cui, Y.; Sundrum, R. Baryogenesis for weakly interacting massive particles. Phys. Rev. D 2013, 87, 116013. [Google Scholar] [CrossRef]
- Krauss, L.M.; Long, A.J.; Sabharwal, S. Gravitino Leptogenesis. Phys. Rev. D 2014, 89, 043503. [Google Scholar] [CrossRef]
- Rompineve, F. Weak Scale Baryogenesis in a Supersymmetric Scenario with R-parity violation. J. High Energy Phys. 2014, 1408, 014. [Google Scholar] [CrossRef]
- Boucenna, S.M.; Morisi, S. Theories relating baryon asymmetry and dark matter: A mini review. Front. Phys. 2014, 1, 33. [Google Scholar] [CrossRef]
- Ishiwata, K.; Jeong, K.S.; Takahashi, F. Moduli-induced Baryogenesis. J. High Energy Phys. 2014, 1402, 62. [Google Scholar] [CrossRef]
- Dhuria, M.; Hati, C.; Sarkar, U. Explaining the CMS excesses, baryogenesis and neutrino masses in E6 motivated U(1)N model. Phys. Rev. D 2016, 93, 015001. [Google Scholar] [CrossRef]
- Cui, Y. A Review of WIMP Baryogenesis Mechanisms. Mod. Phys. Lett. A 2015, 30, 1530028. [Google Scholar] [CrossRef]
- Farina, M.; Monteux, A.; Shin, C.S. Twin mechanism for baryon and dark matter asymmetries. Phys. Rev. D 2016, 94, 035017. [Google Scholar] [CrossRef]
- Cui, Y.; Okui, T.; Yunesi, A. LHC Signatures of WIMP-triggered Baryogenesis. Phys. Rev. D 2016, 94, 115022. [Google Scholar] [CrossRef]
- Luty, M.A. Baryogenesis Via Leptogenesis. Phys. Rev. D 1992, 45, 455. [Google Scholar] [CrossRef] [PubMed]
- Flanz, M.; Paschos, E.A.; Sarkar, U. Baryogenesis from a lepton asymmetric universe. Phys. Lett. B 1995, 345, 248. [Google Scholar] [CrossRef]
- Plumacher, M. Baryogenesis and lepton number violation. Z. Phys. C 1997, 74, 549. [Google Scholar] [CrossRef]
- Buchmuller, W.; Plumacher, M. CP asymmetry in Majorana neutrino decays. Phys. Lett. B 1998, 431, 354. [Google Scholar] [CrossRef]
- Davidson, S.; Nardi, E.; Nir, Y. Leptogenesis. Phys. Rept. 2008, 466, 105. [Google Scholar] [CrossRef]
q | ℓ | h | s | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
+ | − | + | − | + | − | + | − | + | − | − | |
− | + | + | − | + | + | − | − | + | + | + | |
− | − | + | + | + | − | − | + | + | − | − | |
+ | + | + | + | + | + | + | + | + | + | + |
q | ℓ | h | s | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 4 | 1 | 1 | 1 | 1 | |||||
1 | 2 | 0 | 0 | 3 | 0 | 3 | |||||
1 | 2 | 1 | 2 | 1 | 0 | 5 | |||||
1 | 0 | 0 |
, , | , , | , | , , | , | , , | , , | , | , , | , | |
, | , | |||||||||
, | , | , , | , | , | , | , , | , | |||
, | , | |||||||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nevzorov, R. E6 GUT and Baryon Asymmetry Generation in the E6CHM. Universe 2022, 8, 33. https://doi.org/10.3390/universe8010033
Nevzorov R. E6 GUT and Baryon Asymmetry Generation in the E6CHM. Universe. 2022; 8(1):33. https://doi.org/10.3390/universe8010033
Chicago/Turabian StyleNevzorov, Roman. 2022. "E6 GUT and Baryon Asymmetry Generation in the E6CHM" Universe 8, no. 1: 33. https://doi.org/10.3390/universe8010033
APA StyleNevzorov, R. (2022). E6 GUT and Baryon Asymmetry Generation in the E6CHM. Universe, 8(1), 33. https://doi.org/10.3390/universe8010033