Mass Composition of UHECRs from Xmax Distributions Recorded by the Pierre Auger and Telescope Array Observatories
Abstract
:1. Introduction
2. Monte Carlo Templates
3. Fitting Fractions of Auger and TA Distributions
4. Auger vs. TA Mass Composition Compatibility
5. Discussions and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mollerach, S.; Roulet, E. Progress in high-energy cosmic ray physics. Prog. Part. Nucl. Phys. 2018, 98, 85–118. [Google Scholar] [CrossRef] [Green Version]
- Harari, D.; Mollerach, S.; Roulet, E. Angular distribution of cosmic rays from an individual source in a turbulent magnetic field. Phys. Rev. D 2016, 93, 063002. [Google Scholar] [CrossRef] [Green Version]
- Mollerach, S.; Roulet, E. Extragalactic cosmic rays diffusing from two populations of sources. Phys. Rev. D 2020, 101, 103024. [Google Scholar] [CrossRef]
- Thoudam, S.; Rachen, J.P.; van Vliet, A.; Achterberg, A.; Buitink, S.; Falcke, H.; Hörandel, J.R. Cosmic-ray energy spectrum and composition up to the ankle: The case for a second Galactic component. Astron. Astrophys. 2016, 595, A33. [Google Scholar] [CrossRef]
- Aloisio, R. Acceleration and propagation of ultra high energy cosmic rays. PTEP 2017, 2017, 12A102. [Google Scholar] [CrossRef] [Green Version]
- De Marco, D.; Stanev, T. On the shape of the ultrahigh energy cosmic ray spectrum. Phys. Rev. D 2005, 72, 081301. [Google Scholar] [CrossRef] [Green Version]
- Berezinsky, V.; Gazizov, A.; Grigorieva, S. On astrophysical solution to ultrahigh energy cosmic rays. Phys. Rev. D 2006, 74, 043005. [Google Scholar] [CrossRef] [Green Version]
- Aloisio, R.; Berezinsky, V.; Gazizov, A. Transition from galactic to extragalactic cosmic rays. Astropart. Phys. 2012, 39, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R.; et al. Energy spectrum of ultra-high energy cosmic rays observed with the Telescope Array using a hybrid technique. Astropart. Phys. 2015, 61, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Aab, A.; Abreu, P.; Aglietta, M.; Albury, J.M.; Allekotte, I.; Almela, A.; Castillo, J.A.; Alvarez-Muñiz, J.; Batista, R.A.; Anastasi, G.A.; et al. Features of the Energy Spectrum of Cosmic Rays above 2.5 × 1018 eV Using the Pierre Auger Observatory. Phys. Rev. Lett. 2020, 125, 121106. [Google Scholar] [CrossRef]
- Abbasi, R.U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R.; et al. Mass composition of ultrahigh-energy cosmic rays with the Telescope Array Surface Detector data. Phys. Rev. D 2019, 99, 022002. [Google Scholar] [CrossRef] [Green Version]
- Yushkov, A. Mass Composition of Cosmic Rays with Energies above 1017.2 eV from the Hybrid Data of the Pierre Auger Observatory. PoS 2020, ICRC2019, 482. [Google Scholar] [CrossRef]
- Aab, A.; Abreu, P.; Aglietta, M.A.R.C.O.; Al Samarai, I.; Albuquerque, I.F.M.; Allekotte, I.; Almela, A.; Castillo, J.A.; Alvarez-Muñiz, J.; Anastasi, G.A.; et al. Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory. JCAP 2017, 2017, 38. [Google Scholar] [CrossRef]
- Glushkov, A.V.; Saburov, A.V. Mass Composition of Cosmic Rays with Energies above 1017 eV According to the Data from the Muon Detectors of the Yakutsk EAS Array. JETP Lett. 2019, 109, 559–563. [Google Scholar] [CrossRef]
- Aab, A.; Abreu, P.; Aglietta, M.; Al Samarai, I.; Albuquerque, I.F.M.; Allekotte, I.; Almela, A.; Castillo, J.A.; Alvarez-Muñiz, J.; Anastasi, G.A.; et al. Observation of a Large-scale Anisotropy in the Arrival Directions of Cosmic Rays above 8 × 1018 eV. Science 2017, 357, 1266–1270. [Google Scholar] [CrossRef] [Green Version]
- Aab, A.; Abreu, P.; Aglietta, M.; Albuquerque, I.F.M.; Allekotte, I.; Almela, A.; Castillo, J.A.; Alvarez-Muñiz, J.; Anastasi, G.A.; Anchordoqui, L.; et al. An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources. Astrophys. J. 2018, 853, L29. [Google Scholar] [CrossRef]
- Aab, A.; Abreu, P.; Aglietta, M. The Pierre Auger Cosmic Ray Observatory. Nucl. Instrum. Meth. 2015, A798, 172–213. [Google Scholar] [CrossRef]
- Tokuno, H.; Tameda, Y.; Takeda, M.; Kadota, K.; Ikeda, D.; Chikawa, M.; Fujii, T.; Fukushima, M.; Honda, K.; Inoue, N.; et al. New air fluorescence detectors employed in the Telescope Array experiment. Nucl. Instrum. Meth. 2012, A676, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Aab, A.; Abreu, P.; Aglietta, M.A.R.C.O.; Ahn, E.J.; Al Samarai, I.; Albuquerque, I.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; et al. Depth of Maximum of Air-Shower Profiles at the Pierre Auger Observatory: Measurements at Energies above 1017.8 eV. Phys. Rev. D 2014, 90, 122005. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, R.U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R.; et al. Depth of Ultra High Energy Cosmic Ray Induced Air Shower Maxima Measured by the Telescope Array Black Rock and Long Ridge FADC Fluorescence Detectors and Surface Array in Hybrid Mode. Astrophys. J. 2018, 858, 76. [Google Scholar] [CrossRef] [Green Version]
- Aab, A.; Abreu, P.; Aglietta, M.A.R.C.O.; Ahlers, M.; Ahn, E.J.; Al Samarai, I.; Albuquerque, I.F.M.; Allekotte, I.; Allen, J.; Allison, P.; et al. Muons in Air Showers at the Pierre Auger Observatory: Measurement of Atmospheric Production Depth. Phys. Rev. D 2014, 90, 012012. [Google Scholar] [CrossRef] [Green Version]
- Aab, A.; Abreu, P.; Aglietta, M.A.R.C.O.; Ahn, E.J.; Al Samarai, I.; Albuquerque, I.F.M.; Allekotte, I.; Allison, P.; Almela, A.; Castillo, J.A.; et al. Azimuthal Asymmetry in the Risetime of the Surface Detector Signals of the Pierre Auger Observatory. Phys. Rev. D 2016, 93, 072006. [Google Scholar] [CrossRef] [Green Version]
- Knurenko, S.P.; Petrov, I.S. Mass composition of cosmic rays determined by the muon fraction with ϵthr ≥ 1 GeV in air showers with energy greater than 5 EeV. Phys. Rev. D 2020, 102, 023036. [Google Scholar] [CrossRef]
- Gaisser, T.; Hillas, A. Reliability of the Method of Constant Intensity Cuts for Reconstructing the Average Development of Vertical Showers. In Proceedings of the International Cosmic Ray Conference, Plovdiv, Bulgaria, 13–26 August 1977. [Google Scholar]
- Bellido, J. Depth of maximum of air-shower profiles at the Pierre Auger Observatory: Measurements above 1017.2 eV and Composition Implications. PoS 2018, ICRC2017, 506. [Google Scholar] [CrossRef]
- Abbasi, R.U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; et al. Study of Ultra-High Energy Cosmic Ray composition using Telescope Array’s Middle Drum detector and surface array in hybrid mode. Astropart. Phys. 2015, 64, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Aab, A.; Abreu, P.; Aglietta, M.A.R.C.O.; Ahn, E.J.; Al Samarai, I.; Albuquerque, I.F.M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; et al. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications. Phys. Rev. D 2014, 90, 122006. [Google Scholar] [CrossRef] [Green Version]
- De Souza, V. Testing the agreement between the Xmax distributions measured by the Pierre Auger and Telescope Array Observatories. PoS 2018, ICRC2017, 522. [Google Scholar] [CrossRef]
- Arsene, N.; Sima, O. UHECRs mass composition from Xmax distributions. Eur. Phys. J. C 2020, 80, 48. [Google Scholar] [CrossRef]
- Werner, K.; Liu, F.M.; Pierog, T. Parton ladder splitting and the rapidity dependence of transverse momentum spectra in deuteron-gold collisions at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 2006, 74, 044902. [Google Scholar] [CrossRef] [Green Version]
- Ostapchenko, S. Nonlinear screening effects in high energy hadronic interactions. Phys. Rev. D 2006, 74, 014026. [Google Scholar] [CrossRef] [Green Version]
- Ahn, E.J.; Engel, R.; Gaisser, T.K.; Lipari, P.; Stanev, T. Cosmic ray interaction event generator SIBYLL 2.1. Phys. Rev. D 2009, 80, 094003. [Google Scholar] [CrossRef]
- Pierog, T.; Alekseeva, M.K.; Bergmann, T.; Chernatkin, V.; Engel, R.; Heck, D.; Kalmykov, N.N.; Moyon, J.; Ostapchenko, S.; Thouw, T.; et al. First Results of Fast One-dimensional Hybrid Simulation of EAS Using CONEX. Nucl. Phys. Proc. Suppl. 2006, 151, 159–162. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, T.; Engel, R.; Heck, D.; Kalmykov, N.N.; Ostapchenko, S.; Pierog, T.; Thouw, T.; Werner, K. One-dimensional hybrid approach to extensive air shower simulation. Astropart. Phys. 2007, 26, 420–432. [Google Scholar] [CrossRef] [Green Version]
- Baker, S.; Cousins, R.D. Clarification of the Use of Chi Square and Likelihood Functions in Fits to Histograms. Nucl. Instrum. Meth. 1984, 221, 437–442. [Google Scholar] [CrossRef]
- Eadie, W. Statistical Methods in Experimental Physics; North-Holland: Amsterdam, The Netherlands, 1971. [Google Scholar]
- Yushkov, A.; Bellido, J.; Belz, J.; de Souza, V.; Hanlon, W.; Ikeda, D.; Sokolsky, P.; Tsunesada, Y.; Unger, M. Depth of maximum of air-shower profiles: Testing the compatibility of measurements performed at the Pierre Auger Observatory and the Telescope Array experiment. EPJ Web Conf. 2019, 210, 01009. [Google Scholar] [CrossRef]
p | He | C | N | O | Ne | Si | Fe | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
lgE (eV) | bias | res | bias | res | bias | res | bias | res | bias | res | bias | res | bias | res | bias | res |
[18.2–18.3] | −6.17 | 17.2 | −5.62 | 15.7 | −4.04 | 14.43 | −3.7 | 14.2 | −3.41 | 13.75 | −2.87 | 13.18 | −2.03 | 12.39 | −1.78 | 13.2 |
[18.3–18.4] | −6.21 | 17.2 | −5.56 | 15.7 | −4.04 | 14.43 | −3.72 | 14.2 | −3.41 | 13.75 | −2.87 | 13.18 | −2.03 | 12.39 | −1.78 | 13.2 |
[18.4–18.5] | −11.07 | 17.2 | −8.65 | 15.7 | −3.27 | 14.43 | −2.17 | 14.2 | −1.17 | 13.75 | −0.55 | 13.18 | −0.81 | 12.39 | −1.54 | 13.2 |
[18.5–18.6] | −9.22 | 17.2 | −7.68 | 15.7 | −4.23 | 14.43 | −3.51 | 14.2 | −2.85 | 13.75 | −1.7 | 13.18 | −0.1 | 12.39 | −1.8 | 13.2 |
[18.6–18.7] | −9.31 | 17.2 | −7.13 | 15.7 | −2.33 | 14.43 | −1.37 | 14.2 | −0.49 | 13.75 | −0.99 | 13.18 | −0.83 | 12.39 | −2.34 | 13.2 |
[18.7–18.8] | −7.75 | 17.2 | −6.4 | 15.7 | −3.42 | 14.43 | −2.81 | 14.2 | −2.27 | 13.75 | −1.34 | 13.18 | −0.17 | 12.39 | −3.18 | 13.2 |
[18.8–18.9] | −7.75 | 17.2 | −6.4 | 15.7 | −3.42 | 14.43 | −2.81 | 14.2 | −2.27 | 13.75 | −1.34 | 13.18 | −0.17 | 12.39 | −3.18 | 13.2 |
[18.9–19.0] | −7.17 | 17.2 | −6.09 | 15.7 | −3.66 | 14.43 | −3.16 | 14.2 | −2.7 | 13.75 | −1.92 | 13.18 | −0.87 | 12.39 | −2.63 | 13.2 |
Model | lg | p- | p- | ||||
---|---|---|---|---|---|---|---|
[18.2–18.3] | < | < | < | < | < | < | |
[18.3–18.4] | < | < | < | < | < | < | |
[18.4–18.5] | < | < | < | < | < | < | |
EPOS-LHC | [18.5–18.6] | < | < | < | < | ||
[18.6–18.7] | < | < | |||||
[18.7–18.8] | < | < | < | < | < | ||
[18.8–18.9] | |||||||
[18.9–19.0] | |||||||
[18.2–18.3] | < | < | < | < | < | < | |
[18.3–18.4] | < | < | < | < | < | < | |
[18.4–18.5] | < | < | |||||
QGSJETII-04 | [18.5–18.6] | < | < | < | < | ||
[18.6–18.7] | < | ||||||
[18.7–18.8] | < | < | < | < | |||
[18.8–18.9] | < | < | < | ||||
[18.9–19.0] | |||||||
[18.2–18.3] | < | < | < | < | < | < | |
[18.3–18.4] | < | < | < | < | < | < | |
[18.4–18.5] | < | < | < | < | |||
Sibyll 2.1 | [18.5–18.6] | < | < | < | < | ||
[18.6–18.7] | < | < | < | < | |||
[18.7–18.8] | < | < | < | < | |||
[18.8–18.9] | < | < | < | ||||
[18.9–19.0] |
Model | lg | p- | p- | ||||
---|---|---|---|---|---|---|---|
[18.2–18.3] | < | < | < | < | < | < | |
[18.3–18.4] | < | < | < | < | < | < | |
[18.4–18.5] | < | ||||||
EPOS-LHC | [18.5–18.6] | ||||||
[18.6–18.7] | |||||||
[18.7–18.8] | < | ||||||
[18.8–18.9] | |||||||
[18.9–19.0] | |||||||
[18.2–18.3] | < | < | < | < | < | < | |
[18.3–18.4] | < | < | < | < | < | < | |
[18.4–18.5] | < | < | |||||
QGSJETII-04 | [18.5–18.6] | < | |||||
[18.6–18.7] | |||||||
[18.7–18.8] | < | ||||||
[18.8–18.9] | |||||||
[18.9–19.0] | |||||||
[18.2–18.3] | < | < | < | ||||
[18.3–18.4] | < | < | < | < | < | < | |
[18.4–18.5] | |||||||
Sibyll 2.1 | [18.5–18.6] | ||||||
[18.6–18.7] | |||||||
[18.7–18.8] | |||||||
[18.8–18.9] | |||||||
[18.9–19.0] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arsene, N. Mass Composition of UHECRs from Xmax Distributions Recorded by the Pierre Auger and Telescope Array Observatories. Universe 2021, 7, 321. https://doi.org/10.3390/universe7090321
Arsene N. Mass Composition of UHECRs from Xmax Distributions Recorded by the Pierre Auger and Telescope Array Observatories. Universe. 2021; 7(9):321. https://doi.org/10.3390/universe7090321
Chicago/Turabian StyleArsene, Nicusor. 2021. "Mass Composition of UHECRs from Xmax Distributions Recorded by the Pierre Auger and Telescope Array Observatories" Universe 7, no. 9: 321. https://doi.org/10.3390/universe7090321
APA StyleArsene, N. (2021). Mass Composition of UHECRs from Xmax Distributions Recorded by the Pierre Auger and Telescope Array Observatories. Universe, 7(9), 321. https://doi.org/10.3390/universe7090321