Interpretation of the Spectral Inhomogeneity in the 10 TV Region in Terms of a Close Source
Abstract
:1. Introduction
2. Calculation Model
3. Experimental Data Approximation
4. Penalty Method
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CR | Cosmic Rays |
GCR | Galactic cosmic rays |
References
- Hörandel, J.R. Cosmic-ray composition and its relation to shock acceleration by supernova remnants. Adv. Space Res. 2008, 41, 442–463. [Google Scholar] [CrossRef] [Green Version]
- Panov, A.D.; Atkin, E.V.; Bulatov, V.L.; Vasiliev, O.A.; Voronin, A.G.; Gorbunov, N.V.; Grebenyuk, V.M.; Dorokhov, V.S.; Karmanov, D.E.; Kovalev, I.M.; et al. Review of the Results from the NUCLEON Space Experiment. Bull. Russ. Acad. Sci. Phys. 2019, 83, 980–982. [Google Scholar] [CrossRef]
- Adriani, O.; Akaike, Y.; Asano, K.; Asaoka, Y.; Bagliesi, M.G.; Berti, E.; Bigongiari, G.; Binns, W.R.; Bonechi, S.; Bongi, M.; et al. Direct Measurement of the Cosmic-Ray Proton Spectrum from 50 GeV to 10 TeV with the Calorimetric Electron Telescope on the International Space Station. Phys. Rev. Lett. 2019, 122, 181102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collaboration, D.; An, Q.; Asfandiyarov, R.; Azzarello, P.; Bernardini, P.; Bi, X.J.; Cai, M.S.; Chang, J.; Chen, D.Y.; Chen, H.F.; et al. Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite. Sci. Adv. 2019, 5, eaax3793. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, R.; Alvarez, C.; Álvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Avila Rojas, D.; Ayala Solares, H.A.; Barber, A.S.; Becerril, A.; Belmont-Moreno, E.; et al. All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV. Phys. Rev. D 2017, 96, 122001. [Google Scholar] [CrossRef] [Green Version]
- Boschini, M.J.; Torre, S.D.; Gervasi, M.; Grandi, D.; Jóhannesson, G.; Kachelriess, M.; Vacca, G.L.; Masi, N.; Moskalenko, I.V.; Orlando, E.; et al. Solution of Heliospheric Propagation: Unveiling the Local Interstellar Spectra of Cosmic-ray Species. Astrophys. J. 2017, 2017. 840, 115. [Google Scholar] [CrossRef]
- Kudryashov, I.A.; Kovalev, I.M.; Kurganov, A.A.; Gasratov, F.K.; Latonov, V.V.; Yurovskiy, V.D.; Panov, A.D.; Turundaevskiy, A.N. Interpreting the Knee of Cosmic Rays near 10 TV as the Contribution from a Close Source. Bull. Russ. Acad. Sci. Phys. 2021, 85, 379–382. [Google Scholar] [CrossRef]
- Erlykin, A.D.; Wolfendale, A.W. A single source of cosmic rays in the range 105–106 eV. J. Phys. G Nucl. Part. Phys. 1997, 23, 979–989. [Google Scholar] [CrossRef]
- Yuan, Q.; Qiao, B.Q.; Guo, Y.Q.; Fan, Y.Z.; Bi, X.J. Nearby source interpretation of differences among light and medium composition spectra in cosmic rays. Front. Phys. 2021, 16, 24501. [Google Scholar] [CrossRef]
- Kachelrieß, M.; Neronov, A.; Semikoz, D.V. Cosmic ray signatures of a 2–3 Myr old local supernova. Phys. Rev. D 2018, 97, 063011. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Guo, Y.Q.; Yuan, Q. Indication of nearby source signatures of cosmic rays from energy spectra and anisotropies. J. Cosmol. Astropart. Phys. 2019, 10, 010. [Google Scholar] [CrossRef] [Green Version]
- Panov, A.D.; Adams, J.H.; Ahn, H.S.; Bashinzhagyan, G.L.; Watts, J.W.; Wefel, J.P.; Wu, J.; Ganel, O.; Guzik, T.G.; Zatsepin, V.I.; et al. Energy Spectra of Abundant Nuclei of Primary Cosmic Rays from the Data of ATIC-2 Experiment: Final Results. Bull. Russ. Acad. Sci. Phys. 2009, 73, 564–567. [Google Scholar] [CrossRef]
- Aguilar, M.; Aisa, D.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; et al. Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2015, 114, 171103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, Y.S.; Anderson, T.; Barrau, A.; Conklin, N.B.; Coutu, S.; Derome, L.; Han, J.H.; Jeon, J.A.; Kim, K.C.; Kim, M.H.; et al. Proton and Helium Spectra from the CREAM-III Flight. Astrophys. J. 2017, 839, 5. [Google Scholar] [CrossRef] [Green Version]
- Boyle, P. Cosmic ray composition at high energies: The TRACER project. Adv. Space Res. 2008, 42, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Casse, F.; Lemoine, M.; Pelletier, G. Transport of cosmic rays in chaotic magnetic fields. Phys. Rev. D 2001, 65, 023002. [Google Scholar] [CrossRef] [Green Version]
- Giacinti, G.; Kachelriess, M.; Semikoz, D.V. Reconciling cosmic ray diffusion with Galactic magnetic field models. J. Cosmol. Astropart. Phys. 2018, 7, 051. [Google Scholar] [CrossRef] [Green Version]
- Adriani, O.; Barbarino, G.; Bazilevskaya, G.; Bellotti, R.; Boezio, M.; Bogomolov, E.; Bonechi, L.; Bongi, M.; Bonvicini, V.; Borisov, S.; et al. PAMELA measurements of cosmic-ray proton and helium spectra. Science 2011, 332, 69–72. [Google Scholar] [CrossRef] [Green Version]
- Yi-Qing Guo, Q.Y. On the knee of Galactic cosmic rays in light of sub-TeV spectral hardenings. Chin. Phys. C 2018, 42, 075103. [Google Scholar] [CrossRef] [Green Version]
- Barlow, R. Combining experiments with systematic errors. Nucl. Instrum. Meth. A 2021, 987, 164864. [Google Scholar] [CrossRef]
- Aaron, F.D.; Alexa, C.; Andreev, V.; Backovic, S.; Baghdasaryan, A.; Baghdasaryan, S.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; et al. Inclusive Deep Inelastic Scattering at High Q2 with Longitudinally Polarised Lepton Beams at HERA. J. High Energy Phys. 2012, 09, 061. [Google Scholar] [CrossRef] [Green Version]
- Schlickeiser, R. Cosmic Ray Astrophysics; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Luo, Q.; Qiao, B.Q.; Liu, W.; Cui, S.W.; Guo, Y.Q. Statistically study the optimal local sources for cosmic ray nuclei and electron. arXiv 2021, arXiv:2110.00501. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudryashov, I.; Gasratov, F.; Yurovskiy, V.; Latonov, V.V. Interpretation of the Spectral Inhomogeneity in the 10 TV Region in Terms of a Close Source. Universe 2021, 7, 460. https://doi.org/10.3390/universe7120460
Kudryashov I, Gasratov F, Yurovskiy V, Latonov VV. Interpretation of the Spectral Inhomogeneity in the 10 TV Region in Terms of a Close Source. Universe. 2021; 7(12):460. https://doi.org/10.3390/universe7120460
Chicago/Turabian StyleKudryashov, Ilya, Farid Gasratov, Vladimir Yurovskiy, and Vasilii V. Latonov. 2021. "Interpretation of the Spectral Inhomogeneity in the 10 TV Region in Terms of a Close Source" Universe 7, no. 12: 460. https://doi.org/10.3390/universe7120460
APA StyleKudryashov, I., Gasratov, F., Yurovskiy, V., & Latonov, V. V. (2021). Interpretation of the Spectral Inhomogeneity in the 10 TV Region in Terms of a Close Source. Universe, 7(12), 460. https://doi.org/10.3390/universe7120460