Identification of Fractal Properties in Geomagnetic Data of Southeast Asian Region during Various Solar Activity Levels
Abstract
:1. Introduction
2. Methodology
2.1. Data Procurement
2.2. Methods
2.2.1. Power Spectrum Analysis (PSA)
2.2.2. Rescaled Range Analysis (RRA)
2.2.3. Detrended Fluctuation Analysis (DFA)
2.2.4. Robust Detrended Fluctuation Analysis (r-DFA)
2.2.5. Fractional Brownian Motion (fBm)
3. Results and Discussion
3.1. Fractal Properties of Quiet Day Geomagnetic Data
3.2. Fractal Methods to Determine the Hurst Exponent of Geomagnetic Data
3.3. Characterization of Geomagnetic Data during Various Cases of Quiet and Disturbed Days
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kallenrode, M.-B. Space Physics: An Introduction to Plasma and Particles in the Heliosphere and Magnetospheres; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Owens, M.J.; Forsyth, R.J. The heliospheric magnetic field. Living Rev. Sol. Phys. 2013, 10. [Google Scholar] [CrossRef]
- Bolzan, M.J.A.; Sahai, Y.; Fagundes, P.R.; Rosa, R.R.; Ramos, F.M.; Abalde, J.R. Intermittency analysis of geomagnetic storm time-series observed in Brazil. J. Atmos. Sol.-Terr. Phys. 2005, 67, 1365–1372. [Google Scholar] [CrossRef]
- Oliver, R.; Ballester, J.L. Is there memory in solar activity? Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 1998, 58, 5650–5654. [Google Scholar] [CrossRef]
- Zaourar, N.; Hamoudi, M.; Holschneider, M.; Mandea, M. Fractal dynamics of geomagnetic storms. Arab. J. Geosci. 2013, 6, 1693–1702. [Google Scholar] [CrossRef]
- Bolzan, M.J.A.; Rosa, R.R.; Sahai, Y. Multifractal analysis of low-latitude geomagnetic fluctuations. Ann. Geophys. 2009, 27, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Addison, P.S. Fractal and Chaos: An Illustrated Course; IOP Publishing: London, UK, 1997. [Google Scholar]
- Falconer, K. Fractals: A Very Short Introduction, 1st ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Turcotte, D.L. Fractals and Chaos in Geology and Geophysics; Cambridge University Press: Cambridge, MA, USA, 1997; ISBN 9780521561648. [Google Scholar]
- Weron, R. Estimating long-range dependence: Finite sample properties and confidence intervals. Phys. A Stat. Mech. Its Appl. 2002, 312, 285–299. [Google Scholar] [CrossRef] [Green Version]
- Höll, M.; Kiyono, K.; Kantz, H. Theoretical foundation of detrending methods for fluctuation analysis such as detrended fluctuation analysis and detrending moving average. Phys. Rev. E 2019, 99, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanliss, J. Fractal properties of SYM-H during quiet and active times. J. Geophys. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef]
- Wanliss, J.A.; Dobias, P. Space storm as a phase transition. J. Atmos. Sol.-Terr. Phys. 2007, 69, 675–684. [Google Scholar] [CrossRef]
- Hamid, N.S.A.; Gopir, G.; Ismail, M.; Misran, N.; Hasbi, A.M.; Usang, M.D.; Yumoto, K. The Hurst exponents of the geomagnetic horizontal component during quiet and active periods. In Proceedings of the 2009 International Conference on Space Science and Communication, Negeri Sembilan, Malaysia, 26–27 October 2009; pp. 186–190. [Google Scholar]
- Kantelhardt, J.W.; Koscielny-Bunde, E.; Rego, H.H.A.; Havlin, S.; Bunde, A. Detecting long-range correlations with detrended fluctuation analysis. Phys. A Stat. Mech. Its Appl. 2001, 295, 441–454. [Google Scholar] [CrossRef] [Green Version]
- Dawley, S.; Zhang, Y.; Liu, X.; Jiang, P.; Yuan, L.; Sun, H. Statistical and Probability Quantification of Hydrologic Dynamics in the Lake Tuscaloosa Watershed, Alabama, USA. J. Geosci. Environ. Prot. 2018, 6, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Dawley, S.; Zhang, Y.; Liu, X.; Jiang, P.; Tick, G.; Sun, H.; Zheng, C.; Chen, L. Statistical Analysis of Extreme Events in Precipitation, Stream Discharge, and Groundwater Head Fluctuation: Distribution, Memory, and Correlation. Water 2019, 11, 707. [Google Scholar] [CrossRef] [Green Version]
- Hekmatzadeh, A.A.; Torabi Haghighi, A.; Hosseini Guyomi, K.; Amiri, S.M.; Kløve, B. The effects of extremes and temporal scale on multifractal properties of river flow time series. River Res. Appl. 2020, 36, 171–182. [Google Scholar] [CrossRef]
- Zheng, X.; Lian, Y.; Wang, Q. The long-range correlation and evolution law of centennial-scale temperatures in Northeast China. PLoS ONE 2018, 13, e0198238. [Google Scholar] [CrossRef] [PubMed]
- Molkkari, M.; Angelotti, G.; Emig, T.; Räsänen, E. Dynamical Heart Beat Correlations as a Measure of Exercise Intensity. Sci. Rep. 2019, 2019, 13627. [Google Scholar]
- Vipindas, V.; Gopinath, S.; Girish, T.E. A study on the variations in long-range dependence of solar energetic particles during different solar cycles. Proc. Int. Astron. Union 2018, 13, 47–48. [Google Scholar] [CrossRef]
- Rifqi, F.N.; Hamid, N.S.A.; Yoshikawa, A. Possibility of robust detrended fluctuation analysis as a method for identifying fractal properties of geomagnetic time series. J. Phys. Conf. Ser. 2021, 1768, 012004. [Google Scholar] [CrossRef]
- Rabiu, A.B.; Abdulrahim, R.B.; Garuba, O.A.; Adekanbi, O.O.; Alabi, S.A.; Ojurongbe, L.L.; Lawani, A.S. Occurence of Similar Periods in Geomagnetic Field Variations and Solar Activity. Arid Zone J. Eng. Technol. Environ. 2018, 15, 223–241. [Google Scholar]
- Nasuddin, K.A.; Abdullah, M.; Abdul Hamid, N.S. Characterization of the South Atlantic Anomaly. Nonlinear Process. Geophys. 2019, 26, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Yumoto, K. Space weather activities at SERC for IHY: MAGDAS. Bull. Astron. Soc. India 2007, 35, 511–522. [Google Scholar]
- Telesca, L.; Colangelo, G.; Lapenna, V.; Macchiato, M. Monofractal and multifractal characterization of geoelectrical signals measured in southern Italy. Chaos Solitons Fractals 2003, 18, 385–399. [Google Scholar] [CrossRef]
- Malamud, B.D.; Turcotte, D.L. Self-affine time series: Measures of weak and strong persistence. J. Stat. Plan. Inference 1999, 80, 173–196. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Wallis, J.R. Some long-run properties of geophysical records. Water Resour. Res. 1969, 5, 321–340. [Google Scholar] [CrossRef] [Green Version]
- Hurst, H.E. Long term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770. [Google Scholar] [CrossRef]
- Ibe, L.; Ogunniyi Salau, T.A. Comparative Analysis of Rescaled Range Results of Normal and Abnormal Heart Sound Recordings. J. Eng. Res. Rep. 2019, 1–7. [Google Scholar] [CrossRef]
- Yang, S.; Hu, X.; Liu, W.V.; Cai, J.; Zhou, X. Spontaneous combustion influenced by surface methane drainage and its prediction by rescaled range analysis. Int. J. Min. Sci. Technol. 2018, 28, 215–221. [Google Scholar] [CrossRef]
- Xiao, Z.; Ding, W.; Liu, J.; Tian, M.; Yin, S.; Zhou, X.; Gu, Y. A fracture identification method for low-permeability sandstone based on R/S analysis and the finite difference method: A case study from the Chang 6 reservoir in Huaqing oilfield, Ordos Basin. J. Pet. Sci. Eng. 2019, 174, 1169–1178. [Google Scholar] [CrossRef]
- Gkarlaouni, C.; Lasocki, S.; Papadimitriou, E.; George, T. Hurst analysis of seismicity in Corinth rift and Mygdonia graben (Greece). Chaos Solitons Fractals 2017, 96, 30–42. [Google Scholar] [CrossRef]
- Yao, L.; Ma, R.; Wang, H. Baidu index-based forecast of daily tourist arrivals through rescaled range analysis, support vector regression, and autoregressive integrated moving average. Alexandria Eng. J. 2021, 60, 365–372. [Google Scholar] [CrossRef]
- Akhmetova, A.Z.; La, L.L.; Murzin, F.A. Rescaled range analysis for the social networks. In Proceedings of the 5th International Conference on Engineering and MIS; ACM: New York, NY, USA, 2019; pp. 1–4. [Google Scholar]
- Singh, A.K.; Bhargawa, A. An early prediction of 25th solar cycle using Hurst exponent. Astrophys. Space Sci. 2017, 362, 2–7. [Google Scholar] [CrossRef]
- Klevtsov, S. Application of the Hurst index to evaluate the testing of information gathering system components. ITM Web Conf. 2019, 30, 04002. [Google Scholar] [CrossRef]
- Peng, C.K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995, 5, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, A.N.; Abdurashitov, A.S.; Koronovskii, A.A.; Pavlova, O.N.; Semyachkina-Glushkovskaya, O.V.; Kurths, J. Detrended fluctuation analysis of cerebrovascular responses to abrupt changes in peripheral arterial pressure in rats. Commun. Nonlinear Sci. Numer. Simul. 2020, 85, 105232. [Google Scholar] [CrossRef]
- Pavlov, A.N.; Runnova, A.E.; Maksimenko, V.A.; Pavlova, O.N.; Grishina, D.S.; Hramov, A.E. Detrended fluctuation analysis of EEG patterns associated with real and imaginary arm movements. Phys. A Stat. Mech. Its Appl. 2018, 509, 777–782. [Google Scholar] [CrossRef]
- Kuznetsov, N.A.; Rhea, C.K. Power considerations for the application of detrended fluctuation analysis in gait variability studies. PLoS ONE 2017, 12, e0174144. [Google Scholar] [CrossRef]
- Tatli, H.; Dalfes, H.N. Long-Time Memory in Drought via Detrended Fluctuation Analysis. Water Resour. Manag. 2020, 34, 1199–1212. [Google Scholar] [CrossRef]
- Liu, W.; Chen, W.; Zhang, Z. A Novel Fault Diagnosis Approach for Rolling Bearing Based on High-Order Synchrosqueezing Transform and Detrended Fluctuation Analysis. IEEE Access 2020, 8, 12533–12541. [Google Scholar] [CrossRef]
- Blesić, S.M.; du Preez, D.J.; Stratimirović, D.I.; Ajtić, J.V.; Ramotsehoa, M.C.; Allen, M.W.; Wright, C.Y. Characterization of personal solar ultraviolet radiation exposure using detrended fluctuation analysis. Environ. Res. 2020, 182, 108976. [Google Scholar] [CrossRef] [PubMed]
- Mallick, J.; Talukdar, S.; Alsubih, M.; Salam, R.; Ahmed, M.; Ben Kahla, N.; Shamimuzzaman, M. Analysing the trend of rainfall in Asir region of Saudi Arabia using the family of Mann-Kendall tests, innovative trend analysis, and detrended fluctuation analysis. Theor. Appl. Climatol. 2021, 143, 823–841. [Google Scholar] [CrossRef]
- Skordas, E.S.; Christopoulos, S.-R.G.; Sarlis, N.V. Detrended fluctuation analysis of seismicity and order parameter fluctuations before the M7.1 Ridgecrest earthquake. Nat. Hazards 2020, 100, 697–711. [Google Scholar] [CrossRef]
- Habib, A.; Sorensen, J.P.R.; Bloomfield, J.P.; Muchan, K.; Newell, A.J.; Butler, A.P. Temporal scaling phenomena in groundwater-floodplain systems using robust detrended fluctuation analysis. J. Hydrol. 2017, 549, 715–730. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.-K. Quantifying fractal dynamics of groundwater systems with detrended fluctuation analysis. J. Hydrol. 2007, 336, 139–146. [Google Scholar] [CrossRef]
- Little, M.A.; Bloomfield, J.P. Robust evidence for random fractal scaling of groundwater levels in unconfined aquifers. J. Hydrol. 2010, 393, 362–369. [Google Scholar] [CrossRef] [Green Version]
- Mandelbrot, B.B.; Van Ness, J.W. Fractional Brownian Motions, Fractional Noises and Applications. SIAM Rev. 1968, 10, 422–437. [Google Scholar] [CrossRef]
- Baillie, R.T. Long memory processes and fractional integration in econometrics. J. Econom. 1996, 73, 5–59. [Google Scholar] [CrossRef]
- Zainuri, N.A.; Jemain, A.A.; Muda, N. Existence of fractal behaviour in ozone time series. J. Qual. Meas. Anal. 2016, 12, 97–106. [Google Scholar]
- Shang, P.; Wan, M.; Kama, S. Fractal nature of highway traffic data. Comput. Math. Appl. 2007, 54, 107–116. [Google Scholar] [CrossRef] [Green Version]
- De La Torre, F.C.; González-Trejo, J.I.; Real-Ramírez, C.A.; Hoyos-Reyes, L.F. Fractal dimension algorithms and their application to time series associated with natural phenomena. J. Phys. Conf. Ser. 2013, 475. [Google Scholar] [CrossRef]
- Harte, D. Multifractals; Chapman & Hall: London, UK, 2001; ISBN 978-1-58488-154-4. [Google Scholar]
- Lopes, R.; Betrouni, N. Fractal and multifractal analysis: A review. Med. Image Anal. 2009, 13, 634–649. [Google Scholar] [CrossRef]
- Onwumechili, C.A.; Ezema, P.O. On the course of the geomagnetic daily variation in low latitudes. J. Atmos. Terr. Phys. 1977, 39, 1079–1086. [Google Scholar] [CrossRef]
- Gouin, P. Reversal of the Magnetic Daily Variation at Addis Ababa. Nature 1962, 193, 1145–1146. [Google Scholar] [CrossRef]
- Chapman, S.; Lindzen, R.S. Atmospheric Tides; Springer: Dordrecht, The Netherlands, 1969; ISBN 978-94-010-3401-2. [Google Scholar]
- Balasis, G.; Daglis, I.A.; Anastasiadis, A.; Eftaxias, K. Detection of Dynamical Complexity Changes in Dst Time Series Using Entropy Concepts and Rescaled Range Analysis. In The Dynamic Magnetosphere; Liu, W., Fujimoto, M., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 211–220. ISBN 978-94-007-0500-5. [Google Scholar]
- Dias, V.H.A.; Franco, J.O.O.; Papa, A.R.R. Changes in fractal properties of geomagnetic indexes as possible magnetic storms precursors. arXiv 2006, arXiv:physics/0605170. [Google Scholar]
- Donner, R.V.; Balasis, G.; Stolbova, V.; Georgiou, M.; Wiedermann, M.; Kurths, J. Recurrence-Based Quantification of Dynamical Complexity in the Earth’s Magnetosphere at Geospace Storm Timescales. J. Geophys. Res. Space Phys. 2019, 124, 90–108. [Google Scholar] [CrossRef]
- Mourenas, D.; Artemyev, A.V.; Zhang, X.-J. Dynamical Properties of Peak and Time-Integrated Geomagnetic Events Inferred From Sample Entropy. J. Geophys. Res. Space Phys. 2020, 125. [Google Scholar] [CrossRef]
- Hamid, N.S.A.; Liu, H.; Uozumi, T.; Yumoto, K.; Veenadhari, B.; Yoshikawa, A.; Sanchez, J.A. Relationship between the equatorial electrojet and global Sq currents at the dip equator region. Earth Planets Space 2014, 66, 146. [Google Scholar] [CrossRef] [Green Version]
- Hamid, N.S.A.; Rosli, N.I.M.; Ismail, W.N.I.; Yoshikawa, A. Effects of solar activity on ionospheric current system in the Southeast Asia region. Indian J. Phys. 2021, 95, 543–550. [Google Scholar] [CrossRef]
- Consolini, G.; Lui, A.T.Y. Symmetry breaking and nonlinear wave-wave interaction in current disruption: Possible evidence for a phase transition. Geophys. Monogr. Ser. 2000, 118, 395–401. [Google Scholar] [CrossRef]
- Burlaga, L.F.; Klein, L.W. Fractal structure of the interplanetary magnetic field. J. Geophys. Res. 1986, 91, 347. [Google Scholar] [CrossRef]
Solar Activity Level | Type of Day | Dates Analyzed (DD/MM/YYYY) |
---|---|---|
Intermediate | Disturbed | 17/03/2013 |
01/06/2013 | ||
29/06/2013 | ||
Quiet | 26/03/2013 | |
High | Disturbed | 17/03/2015 |
18/03/2015 | ||
22/06/2015 | ||
23/06/2015 | ||
07/10/2015 | ||
20/12/2015 | ||
21/12/2015 | ||
Quiet | 04/06/2015 |
This Study (DAV) | Rabiu et al. [23] (KOU and BNG) | ||
---|---|---|---|
Year | Existing Peaks (h) | Year | Existing Peaks (h) |
2009 | 6, 8, 12, 24 | 1996 | 8, 12, 24 |
2013 | 6, 8, 12, 24 | 2000 | 6 *, 8, 12, 24 |
2015 | 6, 8, 12, 24 | 2002 | 8, 12, 24 |
Hurst (H) | PSA | RRA | DFA | r-DFA |
---|---|---|---|---|
0.1 | 0.04 ± 0.02 | 0.19 ± 0.02 | 0.09 ± 0.01 | 0.01 ± 0.03 |
0.3 | 0.20 ± 0.02 | 0.35 ± 0.02 | 0.31 ± 0.01 | 0.19 ± 0.03 |
0.5 | 0.40 ± 0.01 | 0.53 ± 0.02 | 0.51 ± 0.01 | 0.37 ± 0.03 |
0.7 | 0.44 ± 0.01 | 0.71 ± 0.03 | 0.70 ± 0.01 | 0.55 ± 0.04 |
0.9 | 0.41 ± 0.00 | 0.81 ± 0.07 | 0.91 ± 0.01 | 0.73 ± 0.04 |
Disturbed Day (All Major Events in One Year; Days with Dst < −200 nT) | Disturbed Day | Quiet Day | ||||
---|---|---|---|---|---|---|
Station | 2013 | 2015 | 17/03/2013 | 23/06/2015 | 26/03/2013 | 04/06/2015 |
DAV | 0.56 ± 0.03 (3d) | 0.58 ± 0.01 (7d) | 0.62 ± 0.03 | 0.63 ± 0.05 | 0.36 ± 0.03 | 0.36 ± 0.03 |
LKW | 0.69 ± 0.04 (3d) | 0.74 ± 0.02 (5d) | 0.68 ± 0.03 | 0.69 ± 0.05 | 0.38 ± 0.03 | 0.41 ± 0.04 |
Period | Quiet Period | Disturbed Period | |||
---|---|---|---|---|---|
Year/Case | 2009 (60d) | 2013 (59d) | 2013 (42d) (A-Index > 25) | 2015 (60d) | 2015 (58d) (A-Index > 25) |
H | 0.51 ± 0.03 | 0.55 ± 0.02 | 0.55 ± 0.02 | 0.55 ± 0.01 | 0.55 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rifqi, F.N.; Hamid, N.S.A.; Rabiu, A.B.; Yoshikawa, A. Identification of Fractal Properties in Geomagnetic Data of Southeast Asian Region during Various Solar Activity Levels. Universe 2021, 7, 248. https://doi.org/10.3390/universe7070248
Rifqi FN, Hamid NSA, Rabiu AB, Yoshikawa A. Identification of Fractal Properties in Geomagnetic Data of Southeast Asian Region during Various Solar Activity Levels. Universe. 2021; 7(7):248. https://doi.org/10.3390/universe7070248
Chicago/Turabian StyleRifqi, Farhan Naufal, Nurul Shazana Abdul Hamid, A. Babatunde Rabiu, and Akimasa Yoshikawa. 2021. "Identification of Fractal Properties in Geomagnetic Data of Southeast Asian Region during Various Solar Activity Levels" Universe 7, no. 7: 248. https://doi.org/10.3390/universe7070248
APA StyleRifqi, F. N., Hamid, N. S. A., Rabiu, A. B., & Yoshikawa, A. (2021). Identification of Fractal Properties in Geomagnetic Data of Southeast Asian Region during Various Solar Activity Levels. Universe, 7(7), 248. https://doi.org/10.3390/universe7070248