No-Slip Boundary Conditions for Electron Hydrodynamics and the Thermal Casimir Pressure
Abstract
:1. Introduction
2. Casimir Pressure and Boundary Conditions
3. Visco-Elastic Electron Dynamics
3.1. Bulk
3.2. Sub-Surface Region
3.3. Reduced Boundary Layer Conductivity
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Derivation of Hydrodynamic Parameters
Appendix A.1. Expansion of Lindhard Functions
Appendix A.2. Including Collisions
Appendix A.2.1. Longitudinal Dielectric Function
Appendix A.2.2. Transverse Dielectric Function
Appendix A.2.3. Argument Based on Magnetic Charge Conservation
References
- Adler, R.J.; Casey, B.; Jacob, O.C. Vacuum catastrophe: An elementary exposition of the cosmological constant problem. Am. J. Phys. 1995, 63, 620–626, Comment by Ovshinsky, S.R.; Fritzsche, H. Am. J. Phys. 1997, 65, 927; Reply by Ovshinsky, S.R.;Fritzsche, H. Am. J. Phys. 1997, 65, 928. [Google Scholar] [CrossRef]
- Casimir, H.B.G. On the attraction between two perfectly conducting plates. Proc. Kon. Ned. Akad. Wet. 1948, 51, 793–795. [Google Scholar]
- Easson, D.A.; Frampton, P.H.; Smoot, G.F. Entropic accelerating universe. Phys. Lett. B 2011, 696, 273–277. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhu, Z.; Unruh, W.G. How the huge energy of quantum vacuum gravitates to drive the slow accelerating expansion of the Universe. Phys. Rev. D 2017, 95, 103504. [Google Scholar] [CrossRef] [Green Version]
- Sernelius, B.E. Fundamentals of van der Waals and Casimir Interactions; Series on Atomic, Optical, and Plasma Physics; Springer: Cham, Switzerland, 2018; Volume 102. [Google Scholar]
- Jaffe, R.L. Casimir effect and the quantum vacuum. Phys. Rev. D 2005, 72, 021301. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.J.; Tham, W.K.; Krause, D.E.; Lopez, D.; Fischbach, E.; Decca, R.S. Stronger Limits on Hypothetical Yukawa Interactions in the 30–8000 nm Range. Phys. Rev. Lett. 2016, 116, 221102. [Google Scholar] [CrossRef] [Green Version]
- Klimchitskaya, G.L. Constraints on Theoretical Predictions beyond the Standard Model from the Casimir Effect and Some Other Tabletop Physics. Universe 2021, 7, 47. [Google Scholar] [CrossRef]
- Torgerson, J.R.; Lamoreaux, S.K. Low-frequency character of the Casimir force between metallic films. Phys. Rev. E 2004, 70, 047102. [Google Scholar] [CrossRef]
- Bimonte, G. Bohr–van Leeuwen theorem and the thermal Casimir effect for conductors. Phys. Rev. A 2009, 79, 042107. [Google Scholar] [CrossRef] [Green Version]
- Mostepanenko, V.M. How to confirm and exclude different models of material properties in the Casimir effect. J. Phys. Condens. Matter 2015, 27, 214013. [Google Scholar] [CrossRef] [Green Version]
- Klimchitskaya, G.L.; Mostepanenko, V.M. Recent measurements of the Casimir force: Comparison between experiment and theory. Mod. Phys. Lett. A 2020, 35, 2040007. [Google Scholar] [CrossRef] [Green Version]
- Henkel, C. Thermally Excited Quasiparticles in Metals, Dispersion Forces, and the Thermal Anomaly. Mod. Phys. Lett. A 2020, 35, 2040009. [Google Scholar] [CrossRef] [Green Version]
- Reiche, D.; Busch, K.; Intravaia, F. Quantum thermodynamics of overdamped modes in local and spatially dispersive materials. Phys. Rev. A 2020, 101, 012506. [Google Scholar] [CrossRef] [Green Version]
- Klimchitskaya, G.L.; Mostepanenko, V.M. An alternative response to the off-shell quantum fluctuations: A step forward in resolution of the Casimir puzzle. Eur. Phys. J. C 2020, 80, 900. [Google Scholar] [CrossRef]
- Verbeeck, J.; Hens, S.; Potapov, P.; Schryvers, D. Electron Energy Loss Spectrometry. In Encyclopedia of Analytical Science, 2nd ed.; Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Oxford, UK, 2005; pp. 324–331. [Google Scholar] [CrossRef]
- Zangwill, A. Optical properties. In Physics at Surfaces; Cambridge University Press: Cambridge, UK, 1988; Chapter 7; pp. 163–182. [Google Scholar] [CrossRef]
- Bimonte, G.; López, D.; Decca, R.S. Isoelectronic determination of the thermal Casimir force. Phys. Rev. B 2016, 93, 184434. [Google Scholar] [CrossRef] [Green Version]
- Kloppstech, K.; Könne, N.; Biehs, S.A.; Rodriguez, A.W.; Worbes, L.; Hellmann, D.; Kittel, A. Giant heat transfer in the crossover regime between conduction and radiation. Nat. Commun. 2017, 8, 14475. [Google Scholar] [CrossRef]
- Cui, L.; Jeong, W.; Fernández-Hurtado, V.; Feist, J.; García-Vidal, F.J.; Cuevas, J.C.; Meyhofer, E.; Reddy, P. Study of radiative heat transfer in Ångström- and nanometre-sized gaps. Nat. Commun. 2017, 8, 14479. [Google Scholar] [CrossRef]
- Lifshitz, E.M.; Pitaevskii, L.P. Statistical Physics (Part 2), 2nd ed.; Landau and Lifshitz, Course of Theoretical Physics; Pergamon: Oxford, UK, 1980; Volume 9. [Google Scholar]
- Rytov, S.M.; Kravtsov, Y.A.; Tatarskii, V.I. Elements of Random Fields; Principles of Statistical Radiophysics; Springer: Berlin, Germany, 1989; Volume 3. [Google Scholar]
- García-Moliner, F.; Flores, F. Introduction to the Theory of Solid Surfaces; Cambridge Monographs on Physics; Cambridge University Press: Cambridge, UK, 1979. [Google Scholar]
- Dressel, M.; Grüner, G. Electrodynamics of Solids—Optical Properties of Electrons in Matter; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar] [CrossRef]
- Sievers, A.J. Thermal radiation from metal surfaces. J. Opt. Soc. Am. 1978, 68, 1505–1516. [Google Scholar] [CrossRef]
- Intravaia, F.; Ellingsen, S.A.; Henkel, C. Casimir-Foucault interaction: Free energy and entropy at low temperature. Phys. Rev. A 2010, 82, 032504. [Google Scholar] [CrossRef] [Green Version]
- Jackson, J.D. Klassische Elektrodynamik; De Gruyter Studium; De Gruyter: Berlin, Germany, 2014. [Google Scholar]
- Boström, M.; Sernelius, B.E. Thermal Effects on the Casimir Force in the 0.1–5 m Range. Phys. Rev. Lett. 2000, 84, 4757–4760. [Google Scholar] [CrossRef]
- Intravaia, F.; Henkel, C. Casimir interaction from magnetically coupled eddy currents. Phys. Rev. Lett. 2009, 103, 130405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esquivel, R.; Villarreal, C.; Mochán, W.L. Exact surface impedance formulation of the Casimir force: Application to spatially dispersive metals. Phys. Rev. A 2003, 68, 052103. [Google Scholar] [CrossRef] [Green Version]
- Svetovoy, V.B.; Esquivel, R. The Casimir free energy in high- and low-temperature limits. J. Phys. A 2006, 39, 6777–6784. [Google Scholar] [CrossRef] [Green Version]
- Feibelman, P.J. Surface electromagnetic fields. Progr. Surf. Sci. 1982, 12, 287–408. [Google Scholar] [CrossRef]
- Wegner, G.; Henkel, C. Remarks about surface plasmons and their stability. arXiv 2020, arXiv:2005.03716. [Google Scholar]
- Landau, L.; Lifshitz, E. Fluid Mechanics: Volume 6, 2nd ed.; Pergamon Press: Oxford, UK, 1987. [Google Scholar]
- Laman, N.; Grischkowsky, D. Reduced conductivity in the terahertz skin-depth layer of metals. Appl. Phys. Lett. 2007, 90, 122115. [Google Scholar] [CrossRef]
- Conti, S.; Vignale, G. Elasticity of an electron liquid. Phys. Rev. B 1999, 60, 7966–7980. [Google Scholar] [CrossRef] [Green Version]
- Lindhard, J. On the properties of a gas of charged particles. Dan. Mat. Fys. Medd. 1954, 28, 1–57. [Google Scholar]
- Kliewer, K.L.; Fuchs, R. Lindhard Dielectric Functions with a Finite Electron Lifetime. Phys. Rev. 1969, 181, 552–558. [Google Scholar] [CrossRef]
- Mermin, N.D. Lindhard Dielectric Function in the Relaxation-Time Approximation. Phys. Rev. B 1970, 1, 2362–2363. [Google Scholar] [CrossRef]
- Decca, R.S.; Lopez, D.; Fischbach, E.; Klimchitskaya, G.L.; Krause, D.E.; Mostepanenko, V.M. Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions. Ann. Phys. 2005, 318, 37–80. [Google Scholar] [CrossRef] [Green Version]
- Buhmann, S.Y. Dispersion Forces I—Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir–Polder and van der Waals Forces; Springer Tracts in Modern Physics; Springer: Heidelberg, Germany, 2012; Volume 247. [Google Scholar] [CrossRef]
- Buhmann, S.Y. Dispersion Forces II—Many-Body Effects, Excited Atoms, Finite Temperature and Quantum Friction; Springer Tracts in Modern Physics; Springer: Heidelberg, Germany, 2012; Volume 247. [Google Scholar] [CrossRef]
- Volokitin, A.I.; Persson, B.N. Electromagnetic Fluctuations at the Nanoscale; NanoScience and Technology; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Lifshitz, E.M. The Theory of Molecular Attractive Forces between Solids. Sov. Phys. JETP 1956, 2, 73–83, [J. Exper. Theoret. Phys. USSR 1955, 29, 94]. [Google Scholar]
- Polder, D.; Van Hove, M. Theory of Radiative Heat Transfer between Closely Spaced Bodies. Phys. Rev. B 1971, 4, 3303–3314. [Google Scholar] [CrossRef]
- Loomis, J.J.; Maris, H.J. Theory of heat transfer by evanescent electromagnetic waves. Phys. Rev. B 1994, 50, 18517–18524. [Google Scholar] [CrossRef]
- Eckhardt, W. First and second fluctuation-dissipation-theorem in electromagnetic fluctuation theory. Opt. Commun. 1982, 41, 305–309. [Google Scholar] [CrossRef]
- Ancona, M.G. Hydrodynamic Models of Semiconductor Electron Transport at High Fields. VLSI Des. 1995, 3, 085107. [Google Scholar] [CrossRef] [Green Version]
- Halevi, P. Hydrodynamic model for the degenerate free-electron gas: Generalization to arbitrary frequencies. Phys. Rev. B 1995, 51, 7497–7499. [Google Scholar] [CrossRef] [PubMed]
- De Andrés, P.; Monreal, R.; Flores, F. Relaxation-time effects in the transverse dielectric function and the electromagnetic properties of metallic surfaces and small particles. Phys. Rev. B 1986, 34, 7365–7366. [Google Scholar] [CrossRef]
- Bedeaux, D.; Vlieger, J. Optical Properties of Surfaces; Imperial College Press: London, UK, 2002. [Google Scholar]
- Nayfeh, A.H. Introduction to Perturbation Techniques; Wiley: New York, NY, USA, 1981. [Google Scholar]
- Bender, C.M.; Orszag, S.A. Advanced Mathematical Methods for Scientists and Engineers; International Series in Pure and Applied Mathematics; McGraw-Hill Inc.: New York, NY, USA, 1978. [Google Scholar]
- Mortensen, N.A.; Gonçalves, P.A.D.; Shuklin, F.A.; Cox, J.D.; Tserkezis, C.; Ichikawa, M.; Wolff, C. Surface-response functions obtained from equilibrium electron-density profiles. arXiv 2021, arXiv:2103.00162. [Google Scholar]
- Sipe, J.E. Bulk-selvedge coupling theory for the optical properties of surfaces. Phys. Rev. B 1980, 22, 1589–1599. [Google Scholar] [CrossRef]
- Ford, G.W.; Weber, W.H. Electromagnetic interactions of molecules with metal surfaces. Phys. Rep. 1984, 113, 195–287. [Google Scholar] [CrossRef] [Green Version]
- Ashcroft, N.W.; Mermin, N.D. Solid State Physics; Saunders: Philadelphia, PA, USA, 1976. [Google Scholar]
- Bordag, M. Casimir and Casimir-Polder forces with dissipation from first principles. Phys. Rev. A 2017, 96, 062504. [Google Scholar] [CrossRef] [Green Version]
- Arista, N.R.; Brandt, W. Dielectric response of quantum plasmas in thermal equilibrium. Phys. Rev. A 1984, 29, 1471–1480. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hannemann, M.; Wegner, G.; Henkel, C. No-Slip Boundary Conditions for Electron Hydrodynamics and the Thermal Casimir Pressure. Universe 2021, 7, 108. https://doi.org/10.3390/universe7040108
Hannemann M, Wegner G, Henkel C. No-Slip Boundary Conditions for Electron Hydrodynamics and the Thermal Casimir Pressure. Universe. 2021; 7(4):108. https://doi.org/10.3390/universe7040108
Chicago/Turabian StyleHannemann, Mandy, Gino Wegner, and Carsten Henkel. 2021. "No-Slip Boundary Conditions for Electron Hydrodynamics and the Thermal Casimir Pressure" Universe 7, no. 4: 108. https://doi.org/10.3390/universe7040108
APA StyleHannemann, M., Wegner, G., & Henkel, C. (2021). No-Slip Boundary Conditions for Electron Hydrodynamics and the Thermal Casimir Pressure. Universe, 7(4), 108. https://doi.org/10.3390/universe7040108