Asymptotically Flat Boundary Conditions for the U(1)3 Model for Euclidean Quantum Gravity
Abstract
:1. Introduction
2. Background
2.1. Review of Asymptotically Flat Boundary Conditions for the Case
2.2. Review of Model for Euclidean Quantum Gravity
3. Generators of Asymptotic Symmetries for Model
3.1. Gauss Constraint
3.2. Scalar Constraint
3.3. Vector Constraint
4. Comparison with the Case
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashtekar, A. New Hamiltonian formulation of general relativity. Phys. Rev. D 1987, 36, 1587–1603. [Google Scholar] [CrossRef]
- Ashtekar, A. New Variables for Classical and Quantum Gravity. Phys. Rev. Lett. 1986, 57, 2244–2247. [Google Scholar] [CrossRef] [PubMed]
- Barbero, J. Real Ashtekar variables for Lorentzian signature space-times. Phys. Rev. D 1995, 51, 5507–5510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiemann, T. Quantum Spin Dynamics (QSD). Class. Quant. Grav. 1998, 15, 839–873. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Pullin, J. (Eds.) Loop Quantum Gravity—The First 30 Years; World Scientific: Singapore, 2017. [Google Scholar]
- Pullin, J.; Gambini, R. A First Course in Loop Quantum Gravity; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Hojman, S.A.; Kuchar, K.; Teitelboim, C. Geometrodynamics Regained. Ann. Phys. 1976, 96, 88–135. [Google Scholar] [CrossRef]
- Smolin, L. The GNewton→0 limit of Euclidean quantum gravity. Class. Quant. Grav. 1992, 9, 883–894. [Google Scholar] [CrossRef] [Green Version]
- Tomlin, C.; Varadarajan, M. Towards an Anomaly-Free Quantum Dynamics for a Weak Coupling Limit of Euclidean Gravity. Phys. Rev. D 2013, 87, 044039. [Google Scholar] [CrossRef] [Green Version]
- Laddha, A. Hamiltonian Constraint in Euclidean LQG revisited: First hints of off-shell Closure. arXiv 2014, arXiv:1401.0931. [Google Scholar]
- Henderson, A.; Laddha, A.; Tomlin, C. Constraint algebra in loop quantum gravity reloaded. II. Toy model of an Abelian gauge theory: Spatial diffeomorphisms. Phys. Rev. D 2013, 88, 044029. [Google Scholar] [CrossRef] [Green Version]
- Henderson, A.; Laddha, A.; Tomlin, C. Constraint algebra in loop quantum gravity reloaded. I. Toy model of a U(1)3 gauge theory. Phys. Rev. D 2013, 88, 044028. [Google Scholar] [CrossRef] [Green Version]
- Varadarajan, M. On quantum propagation in Smolin’s weak coupling limit of 4d Euclidean Gravity. Phys. Rev. D 2019, 100, 066018. [Google Scholar] [CrossRef] [Green Version]
- Dirac, P.A.M. Lectures on quantum mechanics. J. Math. Phys. 1960, 1, 434. [Google Scholar]
- Bakhoda, S.; Thiemann, T. Covariant Origin of the U(1)3 model for Euclidean Quantum Gravity. arXiv 2020, arXiv:2011.00031. [Google Scholar]
- Bakhoda, S.; Thiemann, T. Reduced Phase Space Approach to the U(1)3 model for Euclidean Quantum Gravity. arXiv 2020, arXiv:2010.16351. [Google Scholar]
- Regge, T.; Teitelboim, C. Role of Surface Integrals in the Hamiltonian Formulation of General Relativity. Ann. Phys. 1974, 88, 286. [Google Scholar] [CrossRef]
- Sachs, R. Asymptotic symmetries in gravitational theory. Phys. Rev. 1962, 128, 2851. [Google Scholar] [CrossRef]
- Newman, E.T.; Unti, T.W. Behavior of Asymptotically Flat Empty Spaces. J. Math. Phys. 1962, 3, 891. [Google Scholar] [CrossRef]
- Penrose, R. Asymptotic properties of fields and space-times. Phys. Rev. Lett. 1963, 10, 66. [Google Scholar] [CrossRef]
- Penrose, R. Zero rest mass fields including gravitation: Asymptotic behavior. Proc. R. Soc. Lond. A 1965, 284, 159. [Google Scholar]
- Barnich, G.; Troessaert, C. Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited. Phys. Rev. Lett. 2010, 105, 111103. [Google Scholar] [CrossRef] [Green Version]
- Campiglia, M.; Laddha, A. Asymptotic symmetries and subleading soft graviton theorem. Phys. Rev. D 2014, 90, 124028. [Google Scholar] [CrossRef] [Green Version]
- Campiglia, M.; Laddha, A. New symmetries for the Gravitational S-matrix. JHEP 2015, 1504, 076. [Google Scholar] [CrossRef]
- Corvino, J.; Schoen, R.M. On the asymptotics for the vacuum Einstein constraint equations. J. Differ. Geom. 2006, 73, 185. [Google Scholar] [CrossRef]
- Huang, L.H. Solutions of special asymptotics to the Einstein constraint equations. Class. Quant. Grav. 2010, 27, 245002. [Google Scholar] [CrossRef] [Green Version]
- Henneaux, M.; Troessaert, C. BMS Group at Spatial Infinity: The Hamiltonian (ADM) approach. JHEP 2018, 3, 147. [Google Scholar] [CrossRef] [Green Version]
- Beig, R.; óMurchadha, N. The Poincaré group as the symmetry group of canonical general relativity. Ann. Phys. 1987, 174, 463. [Google Scholar] [CrossRef]
- Thiemann, T. Generalized boundary conditions for general relativity for the asymptotically flat case in terms of Ashtekar’s variables. Class. Quant. Grav. 1995, 12, 181. [Google Scholar] [CrossRef]
- Campiglia, M. Note on the phase space of asymptotically flat gravity in Ashtekar-Barbero variables. Class. Quant. Grav. 2015, 32, 14. [Google Scholar] [CrossRef]
- Giesel, K.; Thiemann, T. Scalar Material Reference Systems and Loop Quantum Gravity. Class. Quant. Grav. 2015, 32, 135015. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhoda, S.; Shojaie, H.; Thiemann, T. Asymptotically Flat Boundary Conditions for the U(1)3 Model for Euclidean Quantum Gravity. Universe 2021, 7, 68. https://doi.org/10.3390/universe7030068
Bakhoda S, Shojaie H, Thiemann T. Asymptotically Flat Boundary Conditions for the U(1)3 Model for Euclidean Quantum Gravity. Universe. 2021; 7(3):68. https://doi.org/10.3390/universe7030068
Chicago/Turabian StyleBakhoda, Sepideh, Hossein Shojaie, and Thomas Thiemann. 2021. "Asymptotically Flat Boundary Conditions for the U(1)3 Model for Euclidean Quantum Gravity" Universe 7, no. 3: 68. https://doi.org/10.3390/universe7030068
APA StyleBakhoda, S., Shojaie, H., & Thiemann, T. (2021). Asymptotically Flat Boundary Conditions for the U(1)3 Model for Euclidean Quantum Gravity. Universe, 7(3), 68. https://doi.org/10.3390/universe7030068