Determining the Topology and Deflection Angle of Ringholes via Gauss-Bonnet Theorem
Abstract
1. Introduction
2. Topology of Ringholes
3. Deflection of Light
3.1. Ringhole Optical Metric
3.2. Deflection Angle of Light
4. Deflection of Massive Particles
5. Conclusions
Funding
Conflicts of Interest
References
- Flamm, L. Beitrage zur Einsteinschen Gravitationstheorie. Phys. Z. 1916, 17, 448. [Google Scholar]
- Einstein, A.; Rosen, N. The Particle Problem in the General Theory of Relativity. Phys. Rev. 1935, 48, 73. [Google Scholar] [CrossRef]
- Fuller, R.W.; Wheeler, J.A. Causality and Multiply Connected Space-Time. Phys. Rev. 1962, 919, 128. [Google Scholar] [CrossRef]
- Wheeler, J. On the nature of quantum geometrodynamics. Ann. Phys. 1957, 2, 604–614. [Google Scholar] [CrossRef]
- Wheeler, J.A. Geons. Phys. Rev. 1955, 511, 97. [Google Scholar] [CrossRef]
- Wheeler, J.A. Geometrodynamics; Academic Press: New York, NY, USA, 1962. [Google Scholar]
- Ellis, H.G. Ether flow through a drainhole: A particle model in general relativity. J. Math. Phys. 1973, 14, 104, Erratum in 1974, 15, 520. [Google Scholar] [CrossRef]
- Bronnikov, K.A. Scalar-tensor theory and scalar charge. Acta Phys. Polon. B 1973, 4, 251–266. [Google Scholar]
- Clement, G. Massive from massless regular solutions in five-dimensional general relativity. Gen. Relat. Grav. 1984, 16, 131. [Google Scholar] [CrossRef]
- Morris, M.S.; Thorne, K.S. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395. [Google Scholar] [CrossRef]
- Visser, M. Lorentzian Wormholes; AIP Press: New York, NY, USA, 1996. [Google Scholar]
- Teo, E. Rotating traversable wormholes. Phys. Rev. D 1998, 58, 024014. [Google Scholar] [CrossRef]
- Lobo, F.S.N. Phantom energy traversable wormholes. Phys. Rev. D 2005, 71, 084011. [Google Scholar] [CrossRef]
- Lemos, J.P.S.; Lobo, F.S.N.; de Oliveira, S.Q. Morris-Thorne wormholes with a cosmo-logical constant. Phys. Rev. D 2003, 68, 064004. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Galiakhmetov, A.M. Wormholes and black universes without phantom fields in Einstein-Cartan theory. Phys. Rev. D 2016, 94, 124006. [Google Scholar] [CrossRef]
- Shaikh, R. Lorentzian wormholes in Eddington-inspired Born-Infeld gravity. Phys. Rev. D 2015, 92, 024015. [Google Scholar] [CrossRef]
- Shaikh, R.; Kar, S. Gravitational lensing by scalar-tensor wormholes and the energy condi-tions. Phys. Rev. D 2017, 96, 044037. [Google Scholar] [CrossRef]
- Dzhunushaliev, V.; Folomeev, V.; Kleihaus, B.; Kunz, J. Wormhole solutions with a complex ghost scalar field and their instability. Phys. Rev. D 2018, 97, 024002. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Chervon, S.V.; Sushkov, S.V. Wormholes supported by chiral fields. Grav. Cosmol. 2009, 15, 241–246. [Google Scholar] [CrossRef][Green Version]
- Clément, G. Wormhole cosmic strings. Phys. Rev. D 1995, 51, 6803. [Google Scholar] [CrossRef]
- Tsukamoto, N.; Harada, T. Light curves of light rays passing through a wormhole. Phys. Rev. D 2017, 95, 024030. [Google Scholar] [CrossRef]
- Tsukamoto, N.; Harada, T.; Yajima, K. Can we distinguish between black holes and worm-holes by their Einstein-ring systems? Phys. Rev. D 2012, 86, 104062. [Google Scholar] [CrossRef]
- Chetouani, L.; Clément, G. Geometrical optics in the Ellis geometry. Gen. Relat. Grav. 1984, 16, 111–119. [Google Scholar] [CrossRef]
- Nakajima, K.; Asada, H. Deflection angle of light in an Ellis wormhole geometry. Phys. Rev. D 2012, 85, 107501. [Google Scholar] [CrossRef]
- Bhattachary, A.; Potapov, A. Bending of Light in Ellis Wormhole Geometry. Mod. Phys. Lett. A 2010, 25, 2399. [Google Scholar] [CrossRef]
- Abe, F. Gravitational Microlensing by the Ellis Wormhole. Astrophys. J. 2010, 725, 787–793. [Google Scholar] [CrossRef]
- Dey, T.K.; Sen, S. Gravitational lensing by wormholes. Mod. Phys. Lett. A 2008, 23, 953–962. [Google Scholar] [CrossRef]
- Nandi, K.K.; Zhang, Y.; Zakharov, A.V. Gravitational lensing by wormholes. Phys. Rev. D 2006, 74, 024020. [Google Scholar] [CrossRef]
- Amir, M.; Jusufi, K.; Banerjee, A.; Hansraj, S. Shadow images of Kerr-like wormholes. Class. Quantum Grav. 2019, 36, 215007. [Google Scholar] [CrossRef]
- Abdujabbarov, A.; Juraev, B.; Ahmedov, B.; Stuchlik, Z. Shadow of rotating wormhole in plasma environment. Astrophys. Space Sci. 2016, 361, 226. [Google Scholar] [CrossRef]
- Bambi, C. Broad Kα iron line from accretion disks around traversable wormholes. Phys. Rev. D 2013, 87, 084039. [Google Scholar] [CrossRef]
- Shaikh, R. Shadows of rotating wormholes. Phys. Rev. D 2018, 98, 024044. [Google Scholar] [CrossRef]
- Gyulchev, G.; Nedkova, P.; Tinchev, V.; Yazadjiev, S. On the shadow of rotating traversable wormholes. Eur. Phys. J. C 2018, 78, 544. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Konoplya, R.A.; Zhidenko, A. Instabilities of wormholes and regu-lar black holes supported by a phantom scalar field. Phys. Rev. D 2012, 86, 024028. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Werner, M.C. Applications of the Gauss-Bonnet theorem to gravitational lensing. Class. Quant. Grav. 2008, 25, 235009. [Google Scholar] [CrossRef]
- Werner, M.C. Gravitational lensing in the Kerr-Randers optical geometry. Gen. Relat. Grav. 2012, 44, 3047–3057. [Google Scholar] [CrossRef]
- Ishihara, A.; Suzuki, Y.; Ono, T.; Kitamura, T.; Asada, H. Gravitational bending angle of light for finite distance and the Gauss-Bonnet theorem. Phys. Rev. D 2016, 94, 084015. [Google Scholar] [CrossRef]
- Ishihara, A.; Suzuki, Y.; Ono, T.; Asada, H. Finite-distance corrections to the gravita-tional bending angle of light in the strong deflection limit. Phys. Rev. D 2017, 95, 044017. [Google Scholar] [CrossRef]
- Ono, T.; Ishihara, A.; Asada, H. Gravitomagnetic bending angle of light with fi-nite-distance corrections in stationary axisymmetric spacetimes. Phys. Rev. D 2017, 96, 104037. [Google Scholar] [CrossRef]
- Crisnejo, G.; Gallo, E. Weak lensing in a plasma medium and gravitational deflection of massive particles using the Gauss-Bonnet theorem. A unified treatment. Phys. Rev. D 2018, 97, 124016. [Google Scholar] [CrossRef]
- Crisnejo, G.; Gallo, E.; Rogers, A. Finite distance corrections to the light deflection in a gravitational field with a plasma medium. Phys. Rev. D 2019, 99, 124001. [Google Scholar] [CrossRef]
- Jusufi, K. Gravitational deflection of relativistic massive particles by Kerr black holes and Teo wormholes viewed as a topological effect. Phys. Rev. D 2018, 98, 064017. [Google Scholar] [CrossRef]
- Jusufi, K. Deflection Angle of Light by Wormholes using the Gauss-Bonnet Theorem. Int. J. Geom. Meth. Mod. Phys. 2017, 14, 1750179. [Google Scholar] [CrossRef]
- Jusufi, K. Conical Morris-Thorne wormholes with a global monopole charge. Phys. Rev. D 2018, 98, 044016. [Google Scholar] [CrossRef]
- Jusufi, K.; Övgün, A. Gravitational Lensing by Rotating Wormholes. Phys. Rev. D 2018, 97, 024042. [Google Scholar] [CrossRef]
- Jusufi, K. Gravitational lensing by Reissner-Nordström black holes with topological defects. Astrophys. Space Sci. 2016, 361, 24. [Google Scholar] [CrossRef]
- Jusufi, K.; Rahaman, F.; Banerjee, A. Semiclassical gravitational effects on the gravitational lensing in the spacetime of topological defects. Annals Phys. 2018, 389, 219. [Google Scholar] [CrossRef]
- Jusufi, K.; Övgün, A. Effect of the cosmological constant on the deflection angle by a rotating cosmic string. Phys. Rev. D 2018, 97, 064030. [Google Scholar] [CrossRef]
- Jusufi, K.; Övgün, A.; Banerjee, A. Light deflection by charged wormholes in Einstein-Maxwell-dilaton theory. Phys. Rev. D 2017, 96, 084036. [Google Scholar] [CrossRef]
- Jusufi, K.; Sarkar, N.; Rahaman, F.; Banerjee, A.; Hansraj, S. Deflection of light by black holes and massless wormholes in massive gravity. Eur. Phys. J. C 2018, 78, 349. [Google Scholar] [CrossRef]
- Jusufi, K.; Sakalli, I.; Ovgun, A. Effect of Lorentz Symmetry Breaking on the Deflection of Light in a Cosmic String Spacetime. Phys. Rev. D 2017, 96, 024040. [Google Scholar]
- Jusufi, K.; Werner, M.C.; Banerjee, A.; Ovgun, A. Light Deflection by a Rotating Global Monopole Spacetime. Phys. Rev. D 2017, 95, 104012. [Google Scholar] [CrossRef]
- Ono, T.; Ishihara, A.; Asada, H. Deflection angle of light for an observer and source at fi-nite distance from a rotating wormhole. Phys. Rev. D 2018, 98, 044047. [Google Scholar] [CrossRef]
- Capozziello, S.; Lobo, F.S.N.; Mimoso, J.P. Generalized energy conditions in extended theories of gravity. Phys. Rev D 2015, 91, 124019. [Google Scholar] [CrossRef]
- Capozziello, S.; Lobo, F.S.N.; Mimoso, J.P. Energy conditions in modified gravity. Phys. Lett. B 2014, 730, 280. [Google Scholar] [CrossRef]
- Shaikh, R. Wormholes with nonexotic matter in Born-Infeld gravity. Phys. Rev. D 2018, 98, 064033. [Google Scholar] [CrossRef]
- Maeda, H.; Nozawa, M. Static and symmetric wormholes respecting energy conditions in Einstein-Gauss-Bonnet gravity. Phys. Rev. D 2008, 78, 024005. [Google Scholar] [CrossRef]
- Lobo, F.S.N.; Oliveira, M.A. Wormhole geometries in f(R) modified theories of gravity. Phys. Rev. D 2009, 80, 104012. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Hendi, S.H. Wormhole solutions in Gauss-Bonnet-Born-Infeld gravity. Gen. Relat. Grav. 2009, 41, 1853. [Google Scholar] [CrossRef]
- Kanti, P.; Kleihaus, B.; Kunz, J. Wormholes in Dilatonic Einstein-Gauss-Bonnet Theory. Phys. Rev. Lett. 2011, 107, 271101. [Google Scholar] [CrossRef]
- Garcia, N.M.; Lobo, F.S.N. Nonminimal curvaturematter coupled wormholes with matter satisfying the null energy condition. Class. Quant. Grav. 2011, 28, 085018. [Google Scholar] [CrossRef]
- Boehmer, C.G.; Harko, T.; Lobo, F.S.N. Wormhole geometries in modified teleparallel gravity and the energy conditions. Phys. Rev. D 2012, 85, 044033. [Google Scholar] [CrossRef]
- Gonzalez-Diaz, P.F. Ring holes and closed timelike curves. Phys. Rev. D 1996, 54, 6122. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Diaz, P.F. Observable effects from space-time tunneling. Phys. Rev. D 1997, 56, 6293. [Google Scholar] [CrossRef]
- Gonzalez-Diaz, P.F.; Alonso-Serrano, A. Observing other universe through ringholes and Klein-bottle holes. Phys. Rev. D 2011, 84, 023008. [Google Scholar] [CrossRef]
- González-Díaz, P.F. Lensing effects in ringholes and the multiverse black holes. In Cosmology, Quantum Vacuum and Zeta Functions, Proceedings of the Cosmology, Quantum Vacuum, and Zeta Functions: A Workshop with a Celebration of Emilio Elizalde’s Sixtieth Birthday, Barcelona, Spain, 8–10 March 2010; Springer Proceedings in Physics; Springer: Berlin/Heidelberg, Germany, 2011; Volume 137, pp. 193–204. [Google Scholar]
- Gonzalez-Diaz, P.F. Thermal processes in ringholes. Phys. Rev. D 2010, 82, 044016. [Google Scholar] [CrossRef]
- Gonzalez-Diaz, P.F. Holographic cosmic energy, fundamental theories and the future of the Universe. Grav. Cosmol. 2006, 12, 29. [Google Scholar]
- Gonzalez-Diaz, P.F. Wormholes and ringholes in a dark-energy universe. Phys. Rev. D 2003, 68, 084016. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jusufi, K. Determining the Topology and Deflection Angle of Ringholes via Gauss-Bonnet Theorem. Universe 2021, 7, 44. https://doi.org/10.3390/universe7020044
Jusufi K. Determining the Topology and Deflection Angle of Ringholes via Gauss-Bonnet Theorem. Universe. 2021; 7(2):44. https://doi.org/10.3390/universe7020044
Chicago/Turabian StyleJusufi, Kimet. 2021. "Determining the Topology and Deflection Angle of Ringholes via Gauss-Bonnet Theorem" Universe 7, no. 2: 44. https://doi.org/10.3390/universe7020044
APA StyleJusufi, K. (2021). Determining the Topology and Deflection Angle of Ringholes via Gauss-Bonnet Theorem. Universe, 7(2), 44. https://doi.org/10.3390/universe7020044