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Abstract: In this letter, we use a recent wormhole metric known as a ringhole [Gonzalez-Diaz, Phys.
Rev. D 54, 6122, 1996] to determine the surface topology and the deflection angle of light in the weak
limit approximation using the Gauss-Bonnet theorem (GBT). We apply the GBT and show that the
surface topology at the wormhole throat is indeed a torus by computing the Euler characteristic
number. As a special case of the ringhole solution, one can find the Ellis wormhole which has the
surface topology of a 2-sphere at the wormhole throat. The most interesting results of this paper
concerns the problem of gravitational deflection of light in the spacetime of a ringhole geometry by
applying the GBT to the optical ringhole geometry. It is shown that, the deflection angle of light
depends entirely on the geometric structure of the ringhole geometry encoded by the parameters b0

and a, being the ringhole throat radius and the radius of the circumference generated by the circular
axis of the torus, respectively. As special cases of our general result, the deflection angle by Ellis
wormhole is obtained. Finally, we work out the problem of deflection of relativistic massive particles
and show that the deflection angle remains unaltered by the speed of the particles.

Keywords: ringholes; topology; gravitational deflection; Gauss-Bonnet theorem; optical geometry

1. Introduction

Solving the Einstein’s field equations of general relativity leads to very interesting
solutions which can be interpreted as tunnel-like structures connecting two different
spacetime regions, known as wormholes. The concept of wormholes was introduced
by Flamm in 1916 [1], soon after the first black hole exact solution was found. After
that, Einstein and Rosen [2] introduced a coordinate transformation which eliminates
the curvature singularity, this lead to the famous bridge-like structure connecting two
spacetime regions known as Einstein-Rosen bridges. In fact, they tried to interpret these
solutions as a model for elementary particles, but that idea turned out to be unsuccessful.
Afterwards, Wheeler carried out a pioneering work in wormhole physics [3–6], followed
by important contributions of Ellis, Bronnikov, Clement, Morris, and Thorne [7–10]. The
main difficulty underlying these objects relies on the fact that the wormhole geometric
structure involves a strange type of matter known as the exotic matter. Exotic matter can
be described by a stress-energy tensor components which violates the null, weak and
strong energy conditions at the wormhole throat [11]. As of today, however, there is no
experimental evidence supporting their existence in nature, i.e., wormholes have never
been observed. Despite this fact, wormholes have attracted broad interest in the scientific
community and, among various aspects we point out the gravitational lensing effect [12–33]
and the wormhole stability problem [34]. Recently, the Gibbons and Werner [35], computed
the deflection angle of light applying the GBT over the optical geometry. Very soon,
other consistent methods were shown to compute the deflection angles using the GBT.
An interesting method for computing the deflection angle for stationary metrics was
proposed by Werner [36] which involves the Finsler metric of Randers type, and recently
the finite distance corrections method proposed by Ishihara et al. [37–39]. Very recently,
Crisnejo and Gallo used the GBT to study the deflection angle of massive particles by
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static spacetimes [40,41], while Jusufi investigated the gravitational deflection of massive
particles by stationary spacetimes [42]. Subsequently, this method has been applied in
the context of static/rotating wormholes and topological defects [43–52], including the
recent work by Ono et al. [53]. It is worth noting that the problem the exotic matter can be
avoided in some modified theories of gravity in which the wormholes are supported by
matter that satisfies the energy conditions [54–62].

An interesting wormhole metric with toroidal topology, known as a ringhole, was pro-
posed by Gonzalez-Diaz [63,64]. In addition, several interesting aspects of such objects were
examined; such as the possibility of observing other universe through ringholes [65,66],
thermal processes in ringholes [67], ringholes in a dark-energy universe [68,69]. In this
paper, we shall consider the gravitational lensing effect generated by the gravitational field
of a ringhole, in particular we shall compute the deflection angle of light/massive particles
using the GBT.

This paper is organized as follows. In Section 2, we briefly review the ringhole metric
then we shall use the GBT to determine the surface topology of rinholes. In Section 3, we
study the deflection of light applying GBT to the optical ringhole geometry. In Section 4,
we study the deflection angle of relativistic massive particles. The last Section is devoted
to conclusions.

2. Topology of Ringholes

In a recent work [63,64], a new type of wormhole metric with a toroidal topology was
proposed which is given by the following metric

ds2 = −dt2 +
(n

r

)2
dl2 + m2dϕ2

1 + (l2 + b2
0)dϕ2

2, (1)

which is known also known as a ringhole. Note that −∞ < t < ∞, −∞ < l < ∞,
0 ≤ ϕ1, ϕ2 ≤ 2π, in which a and b are the radius of the circumference generated by the
circular axis of the torus and that of a torus section, respectively. On the other hand, l is the
proper radial distance of each transversal section of the torus [63]

m = a− (l2 + b2
0)

1/2 cos ϕ2, (2)

n = (l2 + b2
0)

1/2 − a cos ϕ2, (3)

r =
√

a2 + l2 + b2
0 − 2a(l2 + b2

0)
1/2 cos ϕ2, (4)

with l = ±
√

b2 − b2
0, where the minus sign applies on the left side of the throat and the plus

sign does on the right side, implying l < b. Furthermore the maximum and the minimum
circumference slices are found if we set ϕ2 = π, 0. It is possible, however, to determine the
surface topology inversely. Towards this purpose, we can make use of the metric (1) and
the GBT to show that in fact the surface topology at the wormhole throat is a torus. At a
fixed moment in time t, and a constant l = constant, the ringhole metric reduces to

ds2 = (a− (l2 + b2
0)

1/2 cos ϕ2)
2dϕ2

1 + (l2 + b2
0)dϕ2

2, (5)

with the following metric tensor components

g11 = (a− (l2 + b2
0)

1/2 cos ϕ2)
2, (6)

g22 = l2 + b2
0, (7)

and the determinant

det g(2) = (a− (l2 + b2
0)

1/2 cos ϕ2)
2(l2 + b2

0). (8)
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Theorem 1. LetM be a compact orientable surface, and let K be the Gaussian curvature with
respect to g(2) onM. Then, the Gauss-Bonnet states that∫∫

M
KdA = 2πχ(M). (9)

Note that dA is the surface line element of the 2-dimensional surface and χ(M) is
the Euler characteristic number. It is convenient to express sometimes the above theorem
in terms of the Ricci scalar, in particular for the 2-dimensional surface there is a simple
relation between the Gaussian curvature and Ricci scalar given by

K =
R
2

. (10)

Yielding the following from

1
4π

∫∫
M
RdA = χ(M). (11)

In other words, we can use the metric (5) and the GBT to find the Euler characteristic
number. A straightforward calculation using the ringhole metric (5) yields the following
result for the Ricci scalar

R =
2 cos ϕ2

[
cos3 ϕ2b4

0 + 2 cos2 ϕ2b2
0l2 + cos3 ϕ2l4 − 3a cos2 ϕ2(b2

0 + l2)3/2 + 3 cos ϕ2a2b2
0 + 3 cos3 ϕ2a2l2 −

√
b2

0 + l2a3
]

(b2
0 + l2)

(
cos4 ϕ2b4

0 + 2 cos4 ϕ2b2
0l2 + cos4 ϕ2l4 − 4a cos3 ϕ2(b2

0 + l2)3/2 + ∆
) , (12)

where

∆ = 6 cos ϕ2a2b2
0 + 6 cos2 ϕ2a2l2 − 4

√
b2

0 + l2a3 + a4. (13)

At the wormhole throat l = 0, the Ricci scalar is simplified as follows

R|l=0 =
2 cos ϕ2

b0(b0 cos ϕ2 − a)
. (14)

Therefore, at the wormhole throat l = 0, the throat radius is given by rth = b0;
consequently from the GBT we find

1
4π

∫ 2π

0

∫ 2π

0

(
2 cos ϕ2

b0(b0 cos ϕ2 − a)

)√
g(2)dϕ1dϕ2 = χ(M). (15)

Evaluating the integral we find that the Euler characteristic number is zero

χ(M) = 0. (16)

Thus, the surface topology of the ringhole at the wormhole throat is indeed a torus, due
to the simple fact that χ(M)torus = 0. It is worth noting that metric (1) can be regarded as a
generalization to toroidal symmetry from the static, spherical wormhole metric. Namely,
performing new coordinate transformations via a→ 0, ϕ2 → θ +π/2, ϕ1 → φ, where θ and
φ are the angular polar coordinates on the two-sphere, one finds the Ellis wormhole solution

ds2 = −dt2 + dl2 + (l2 + b2
0)(dθ2 + sin2 θdφ2). (17)

Note that the coordinates are defined in the range −∞ < t < ∞, −∞ < l < ∞,
0 ≤ θ ≤ π, and 0 ≤ φ ≤ 2π and b0 is a positive constant. Again, for a fixed moment in
time t = const, and constant l = const, the above metric reduces to

ds2 = (l2 + b2
0)(dθ2 + sin2 θdφ2), (18)
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with metric tensor components

g11 = b2
0 + l2, (19)

g22 = sin2 θ(l2 + b2
0), (20)

and the determinant of the metric tensor

det g(2) = sin2 θ(l2 + b2
0)

2. (21)

A direct calculation reveals the following result for the Ricci scalar

R =
2

l2 + b2
0

. (22)

Again, at the wormhole throat which has the radius rth = b0, we find

1
4π

∫ π

0

∫ 2π

0

[
2

l2 + b2
0

]
l=0

√
g(2)dθdφ = χ(M). (23)

Finally, solving the integral we find

χ(M) = 2. (24)

As was expected, the surface topology of Ellis wormhole at the wormhole throat is a
2-sphere, since we know that χ(M)sphere = 2.

3. Deflection of Light
3.1. Ringhole Optical Metric

We can now proceed to elaborate the gravitational lensing effect in the spacetime
of the ringhole metric. Let us first find the ringhole optical metric by letting ds2 = 0,
resulting with

dt2 =
(n

r

)2
dl2 + m2dϕ2

1 + (l2 + b2
0)dϕ2

2. (25)

To simplify the problem, we shall focus on the special case ϕ2 = π, which is equivalent
to the problem of studying the deflection of light rays in the equatorial plane. Now the
ringhole optical metric simplifies to

dt2 =

(
(l2 + b2

0)
1/2 + a

)2

a2 + l2 + b2
0 + 2a(l2 + b2

0)
1/2

dl2

+
(

a + (l2 + b2
0)

1/2
)2

dϕ2
1. (26)

We can easily read the optical metric components from the last equation as follows

g(op)
11 =

(
(l2 + b2

0)
1/2 + a

)2

a2 + l2 + b2
0 + 2a(l2 + b2

0)
1/2

, (27)

g(op)
22 =

(
a + (l2 + b2

0)
1/2
)2

. (28)

And the determinant of the ringhole optical metric is computed as follows

det g(op) = a2 + l2 + b2
0 + 2a

√
b2

0 + l2. (29)
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The Gaussian optical curvature K can be found from the optical metric (26). To do this,
first we can find the Ricci scalarR(op) from the optical metric (26), then using the relation
K = R(op)/2, we find

K = −

(
b2

0 + l2)3/2[3a2b2
0 + 4a2l2 + b4

0 + 2b2
0l2 + l4]−√b2

0 + l2
[
4a2b2

0l2 + a2l4 + b4
0l4 + 2b2

0l4 + l6]+ η(
a2 + l2 + b2

0 + 2a
√

b2
0 + l2

)2(
b2

0 + l2
)5/2

, (30)

where

η = a3b4
0 + a3b2

0l2 + 3ab6
0 + 6ab4

0l2 + 3ab2
0l4. (31)

Introducing dimensionless variables, say, x = a/l and y = b0/l, then performing a
series expansion in terms of x and y, the Gaussian optical curvature can be approximated
in leading order terms as follows

K ' −
(

l − a
l5

)
b2

0 +O
(

b2
0a2

l6

)
. (32)

3.2. Deflection Angle of Light

Theorem 2. Let AR be a non-singular domain (or a region outside the light ray) with boundaries
∂AR = γg(op) ∪ CR, of an oriented two-dimensional surface S with the optical metric g(op). Let K
and κ be the Gaussian optical curvature and the geodesic curvature, respectively. Then, the GBT in
terms of the above construction is written as follows [35]∫∫

AR

K dS +
∮

∂AR

κ dt + ∑
k

θk = 2πχ(AR). (33)

where dS is the optical surface element, θk gives the exterior angle at the kth vertex. The regular
domain is chosen to be outside of the light ray in the (r, ϕ) optical plane, this domain can be
thought to have the topology of disc with the Euler characteristic number χ(AR) = 1. Let us
introduce a smooth curve defined as γ := {t} → AR, with the geodesic curvature defined by the
following relation

κ = g(op) (∇γ̇γ̇, γ̈), (34)

with an additional unit speed condition g(op)(γ̇, γ̇) = 1, and γ̈ being the unit acceleration vector.
Now if we consider a very large, but finite radial distance l ≡ R → ∞, such that the two jump
angles (at the source S , and observer O), yields θO + θS → π [35]. Note that, by definition, the
geodesic curvature for the light ray (geodesics) γg(op) vanishes, i.e., κ(γg(op)) = 0. One should only
compute the contribution to the curve CR. That being said, from the GBT we find

lim
R→∞

∫ π+α̂

0

[
κ

dt
dϕ1

]
CR

dϕ1 = π − lim
R→∞

∫∫
AR

K dS (35)

The geodesic curvature for the curve CR located at a coordinate distance R from the
coordinate system chosen at the ringhole center can be calculated in terms of the relation

κ(CR) = |∇ĊR
ĊR|. (36)

In components notation we can write(
∇ĊR

ĊR

)r
= Ċϕ1

R
(
∂ϕ1 Ċr

R
)
+ Γr(op)

ϕ1 ϕ1

(
Ċϕ1

R

)2
. (37)
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With the help of the unit speed condition and the ringhole optical metric one can
show that

lim
R→∞

κ(CR) = lim
R→∞

∣∣∣∇ĊR
ĊR

∣∣∣,
→ 1

R
. (38)

On the other hand, from the ringhole optical metric setting a constant l ≡ R, we find

lim
R→∞

dt→ R dϕ1. (39)

Combining these two equations, we arrive at the conclusion that our ringhole optical
metric is asymptotically Euclidean

lim
R→∞

(
κ(CR)

dt
dϕ1

)
= 1. (40)

From the GBT (35) it is not difficult to solve for the deflection angle which gives

α̂ = −
π∫

0

∞∫
r(ϕ1)

KdS. (41)

where the surface element reads dS =
√

g(op)dldϕ1. Moreover we shall assume the
following equation for the light ray r(ϕ1) = b/ sin ϕ1. Using expression (32) we find

α̂ = −
π∫

0

∞∫
b

sin ϕ1

[
−
(

l − a
l5

)
b2

0

]
dS. (42)

in which the surface element can be approximated as

dS ' (l + a)dldϕ1. (43)

Solving this integral we can approximate the solution to be

α̂ =
πb2

0
4 b2 −

3b2
0a2π

32b4 . (44)

As a special case, for a vanishing a, i.e., a → 0, we recover the deflection angle by
Ellis wormhole

α̂Ellis =
πb2

0
4 b2 . (45)

4. Deflection of Massive Particles

In this section we shall consider the problem of computing the deflection angle for
relativistic massive particles. For the same reason, let us consider the physical spacetime
metric to be described by a the following metric [40]

ds2 = −A(r)dt2 + B(r)dr2 + C(r)(dθ2 + sin2 θdϕ2). (46)

We assume that the particles has speed v and energy [40]

E∞ =
µ√

1− v2
, (47)
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as measured by an asymptotic observer. In addition, let us assume that the particle has an
angular momentum given by

J =
µvb√
1− v2

, (48)

where b is the impact parameter. Without going into details (see for details [40]), one can
deduce the following optical metric for massive particles

dσ2 =
n(r)2

A(r)

(
B(r)dr2 + C(r)dϕ2

)
, (49)

where the refractive index is given by

n2(r) = 1− µ2

E2
∞

A(r) = 1− (1− v2)A(r). (50)

In our particular case, we can recast the ringhole metric in the form (46) by choosing
ϕ2 = π, yielding

dσ2 =
(
(1− (1− v2)

)[ ((l2+b2
0)

1/2+a)
2

a2+l2+b2
0+2a(l2+b2

0)
1/2 dl2

+
(

a + (l2 + b2
0)

1/2
)2

dϕ2
1

]
.

(51)

note that in our case A = 1. The Gaussian optical curvature from the last metric is computed
as follows

K = −

(
b2

0 + l2)3/2[3a2b2
0 + 4a2l2 + b4

0 + 2b2
0l2 + l4]−√b2

0 + l2
[
4a2b2

0l2 + a2l4 + b4
0l4 + 2b2

0l4 + l6]+ η

v2
(

a2 + l2 + b2
0 + 2a

√
b2

0 + l2
)2(

b2
0 + l2

)5/2
. (52)

Or, if we perform a series expansion around b0, a, we get

K ' −
(

l − a
v2l5

)
b2

0. (53)

It is clearly seen from the last equation that, in the limit v→ 0, there is a singularity
in K. Due to this singularity, we need to add a further constraint, namely the speed of the
particle belongs to the interval 0 < v ≤ 1 with [c = 1].

Next, we find that the geodesic deviation for large coordinate radius R reads

lim
R→∞

κ(CR) = lim
R→∞

∣∣∣∇ĊR
ĊR

∣∣∣,
→ 1

v R
. (54)

From the metric (4.6) in this limit for a constant l = R we also find that

lim
R→∞

dσ→ v R dϕ1. (55)

From these equations it is possible to see that the same condition (40) holds, namely

lim
R→∞

(
κ(CR)

dσ

dϕ1

)
= 1. (56)
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Therefore the deflection angle is found to be

α̂ = −
π∫

0

∞∫
b

sin ϕ

[
−
(

l − a
v2l5

)
b2

0

]
dS. (57)

where the surface element can be approximated as

dS ' v2(l + a)dldϕ1. (58)

Finally, solving this integral we find

α̂ '
πb2

0
4 b2 −

3b2
0a2π

32b4 . (59)

In other words, we recovered the same result as in the case of deflection of light.
However, this is not a surprising result considering the fact that the deflection angle
depends only on the geometric parameters encoded via b0 and a reflecting the toroidal
structure of the ringhole.

5. Conclusions

Let us summarize the main results of this brief review. We have studied the surface
topology and the deflection angle of light in the ringhole spacetime using GBT. Using the
ringhole metric, we have shown that the surface topology of the ringhole at the throat
is indeed a torus with the Euler characteristic number χtorus = 0. The peculiar ringhole
geometry under specific coordinate transformations reduces to the Ellis wormhole which
has the surface topology of a 2-sphere, with Euler characteristic number χsphere = 2.

Most importantly, we carried out a detailed study of the deflection angle of light
caused by the ringhole geometry in the weak limit approximation. Among other things, we
have shown that the deflection angle is given in terms of the ringhole throat radius b0, and
the radius of the circumference generated by the circular axis of the torus a. In particular
we found the following equation for the deflection angle

α̂Ringholes '
πb2

0
4 b2 −

3b2
0a2π

32b4 .

We observe that the contribution of the fist term (which is proportional to the worm-
hole throat b0), indicating that light rays always bend towards the ringhole, while the
effect of the second term (which is proportional to the radius b2

0a2), deflects the light rays
outwards the ringhole. This result can be viewed as a generalization of the deflection angle
caused by Ellis wormholes simply by setting a = 0. A further analyses shows that the
same result is deduced by studying the deflection angle of massive particles moving with a
relativistic velocity v.

Finally, we should point out that the resulting difference between the ringhole de-
flection angle with the Ellis wormholes can be of significant importance in astrophysics
for the following reason: we can potentially use this difference in the deflection angle to
distinguish ringholes from wormholes and black holes. Note that, there is another effect
pointed out in [65,66] where two concentric bright rings can be produced by the inner
gravitational field of a ringhole with toroidal symmetry when a single luminous source
is situated behind the ringhole in our universe or in a parallel universe. This might be a
signature of the ringhole spacetime and can be observed by the Earth observer. This effect
can also distinguish them from black holes or other exotic objects. We are planning in the
near future to investigate the deflection angle of massive particles by adding the effect of
rotation in the ringhole geometry.
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