Benefit of New High-Precision LLR Data for the Determination of Relativistic Parameters
Abstract
:1. Introduction
2. LLR Analysis
3. Distribution of the Normal Points
4. Relativistic Parameters
4.1. Equivalence Principle
4.2. Temporal Variation of the Gravitational Constant
4.3. PPN Parameters and
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chabé, J.; Courde, C.; Torre, J.M.; Bouquillon, S.; Bourgoin, A.; Aimar, M.; Albanèse, D.; Chauvineau, B.; Mariey, H.; Martinot-Lagarde, G.; et al. Recent Progress in Lunar Laser Ranging at Grasse Laser Ranging Station. Earth Space Sci. 2020, 7, e2019EA000785. [Google Scholar] [CrossRef] [Green Version]
- Murphy, T.W. Lunar laser ranging: The millimeter challenge. Rep. Prog. Phys. 2013, 76, 076901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, T.W.; Adelberger, E.G.; Battat, J.B.R.; Hoyle, C.D.; McMillan, R.J.; Michelsen, E.L.; Samad, R.L.; Stubbs, C.W.; Swanson, H.E. Long-term degradation of optical devices on the Moon. Icarus 2010, 208, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.; Murphy, T.W.; Schreiber, U.; Shelus, P.J.; Torre, J.M.; Williams, J.G.; Boggs, D.H.; Bouquillon, S.; Bourgoin, A.; Hofmann, F. Lunar Laser Ranging: A tool for general relativity, lunar geophysics and Earth science. J. Geod. 2019, 93, 2195–2210. [Google Scholar] [CrossRef]
- Michelsen, E.L. Normal Point Generation and First Photon Bias Correction in APOLLO Lunar Laser Ranging. Ph.D. Thesis, University of California, San Diego, CA, USA, 2010. [Google Scholar]
- Courde, C.; Torre, J.M.; Samain, E.; Martinot-Lagarde, G.; Aimar, M.; Albanese, D.; Exertier, P.; Fienga, A.; Mariey, H.; Metris, G.; et al. Lunar laser ranging in infrared at the Grasse laser station. Astron. Astrophys. 2017, 602, A90. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, K.U.; Eckl, J.J.; Leidig, A.; Bachem, T.; Neidhart, A.; Schüler, T. Lunar Laser Ranging: A small system approach. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 9–13 December 2019. [Google Scholar]
- Viswanathan, V.; Fienga, A.; Minazzoli, O.; Bernus, L.; Laskar, J.; Gastineau, M. The new lunar ephemeris INPOP17a and its application to fundamental physics. Mon. Not. R. Astron. Soc. 2018, 476, 1877–1888. [Google Scholar] [CrossRef] [Green Version]
- Egger, D. Systemanalyse der Laserentfernungsmessung. Ph.D. Thesis, Technische Universität München, München, Germany, 1985. [Google Scholar]
- Gleixner, H. Ein Beitrag zur Ephemeridenrechnung und Parameterschätzung im Erde-Mond-System. Ph.D. Thesis, Technische Universität München, München, Germany, 1986. [Google Scholar]
- Bauer, R. Bestimmung von Parametern des Erde-Mond-Systems—Ein Beitrag zur Modellerweiterung und Bewertung, Ergebnisse. Ph.D. Thesis, Technische Universität München, München, Germany, 1989. [Google Scholar]
- Müller, J. Analyse von Lasermessungen zum Mond im Rahmen Einer Post-Newton’schen Theorie. Ph.D. Thesis, Technische Universität München, München, Germany, 1991. [Google Scholar]
- Hofmann, F.; Müller, J. Relativistic tests with lunar laser ranging. Class. Quantum Gravity 2018, 35, 035015. [Google Scholar] [CrossRef]
- Zhang, M.; Müller, J.; Biskupek, L. Test of the equivalence principle for galaxy’s dark matter by lunar laser ranging. Celest. Mech. Dyn. Astron. 2020, 132, 25. [Google Scholar] [CrossRef]
- Biskupek, L. Bestimmung der Erdorientierung mit Lunar Laser Ranging. Ph.D. Thesis, Leibniz Universität Hannover, Hannover, Germany, 2015. [Google Scholar] [CrossRef]
- Hofmann, F. Lunar Laser Ranging–Verbesserte Modellierung der Monddynamik und Schätzung Relativistischer Parameter. Ph.D. Thesis, Leibniz Universität Hannover, Hannover, Germany, 2017. [Google Scholar]
- Folkner, W.M.; Williams, J.G.; Boggs, D.H.; Park, R.S.; Kuchynka, P. The Planetary and Lunar Ephemerides DE430 and DE431. In The Interplanetary Network Progress Report; Jet Propulsion Laboratory, California Institute of Technology: Passadena, CA, USA, 2014; Volume 42–196. [Google Scholar]
- Müller, J.; Biskupek, L.; Hofmann, F.; Mai, E. Lunar laser ranging and relativity. In Frontiers in Relativistic Celestial Mechanics; Kopeikin, S.M., Ed.; Walter de Gruyter: Berlin, Germany, 2014; pp. 103–156. [Google Scholar]
- Shapiro, I.I. Fourth Test of General Relativity. Phys. Rev. Lett. 1964, 13, 789–791. [Google Scholar] [CrossRef]
- Moyer, T.D. Mathematical formulation of the Double Precision Orbit Determination Program DPODP; Technical Report JPL-TR-32-1527; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 1971. [Google Scholar]
- Mendes, V.B.; Prates, G.; Pavlis, E.C.; Pavlis, D.E.; Lanley, R.B. Improved mapping functions for atmospheric refraction correction in SLR. Geophys. Res. Lett. 2002, 29, 1414. [Google Scholar] [CrossRef] [Green Version]
- Mendes, V.B.; Pavlis, E.C. High-accuracy zenith delay prediction at optical wavelengths. Geophys. Res. Lett. 2004, 31, L14602. [Google Scholar] [CrossRef] [Green Version]
- Vokrouhlicky, D. A Note on the Solar Radiation Perturbations of Lunar Motion. Icarus 1997, 126, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Petit, G.; Luzum, B. (Eds.) IERS Conventions 2010; Number 36 in IERS Technical Note; Verlag des Bundesamtes für Kartographie und Geodäsie: Frankfurt am Main, Germany, 2010. [Google Scholar]
- Williams, J.G.; Turyshev, S.G.; Boggs, D.H. Lunar Laser Ranging Tests of the Equivalence Principle with the Earth and Moon. Int. J. Mod. Phys. D 2009, 18, 1129–1175. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.G.; Turyshev, S.G.; Boggs, D.H. Lunar laser ranging tests of the equivalence principle. Class. Quantum Gravity 2012, 29, 184004. [Google Scholar] [CrossRef] [Green Version]
- Bourgoin, A.; Hees, A.; Bouquillon, S.; Le Poncin-Lafitte, C.; Francou, G.; Angonin, M.C. Testing Lorentz Symmetry with Lunar Laser Ranging. Phys. Rev. Lett. 2016, 117, 241301. [Google Scholar] [CrossRef] [Green Version]
- Bourgoin, A.; Le Poncin-Lafitte, C.; Hees, A.; Bouquillon, S.; Francou, G.; Angonin, M.C. Lorentz Symmetry Violations from Matter-Gravity Couplings with Lunar Laser Ranging. Phys. Rev. Lett. 2017, 119, 201102. [Google Scholar] [CrossRef] [Green Version]
- Bourgoin, A.; Bouquillon, S.; Hees, A.; Le Poncin-Lafitte, C.; Bailey, Q.G.; Howard, J.J.; Angonin, M.C.; Francou, G.; Chabé, J.; Courde, C.; et al. Constraining velocity-dependent Lorentz/CPT-violations using Lunar Laser Ranging. arXiv 2020, arXiv:2011.06641. [Google Scholar]
- Müller, J.; Williams, J.G.; Turyshev, S.G. Lunar Laser Ranging Contributions to Relativity and Geodesy. In Lasers, Clocks and Drag-Free Control: Exploration of Relativistic Gravity in Space; Dittus, H., Lämmerzahl, C., Turyshev, S.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 349, pp. 457–472. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.; Soffel, M.; Klioner, S.A. Geodesy and relativity. J. Geod. 2008, 82, 133–145. [Google Scholar] [CrossRef]
- Roll, P.G.; Krotkov, R.; Dicke, R.H. The equivalence of inertial and passive gravitational mass. Ann. Phys. 1964, 26, 442–517. [Google Scholar] [CrossRef]
- Schlamminger, S.; Choi, K.Y.; Wagner, T.A.; Gundlach, J.H.; Adelberger, E.G. Test of the Equivalence Principle Using a Rotating Torsion Balance. Phys. Rev. Lett. 2008, 100, 041101. [Google Scholar] [CrossRef] [Green Version]
- Albers, H.; Herbst, A.; Richardson, L.L.; Heine, H.; Nath, D.; Hartwig, J.; Schubert, C.; Vogt, C.; Woltmann, M.; Lämmerzahl, C.; et al. Quantum test of the Universality of Free Fall using rubidium and potassium. Eur. Phys. J. D 2020, 74, 145. [Google Scholar] [CrossRef]
- Touboul, P.; Métris, G.; Rodrigues, M.; André, Y.; Baghi, Q.; Bergé, J.; Boulanger, D.; Bremer, S.; Chhun, R.; Christophe, B.; et al. Space test of the equivalence principle: First results of the MICROSCOPE mission. Class. Quantum Gravity 2019, 36, 225006. [Google Scholar] [CrossRef] [Green Version]
- Nordtvedt, K. Equivalence Principle for Massive Bodies. I. Phenomenology. Phys. Rev. D 1968, 169, 1014–1016. [Google Scholar] [CrossRef]
- Müller, J.; Nordtvedt, K. Lunar laser ranging and the equivalence principle signal. Phys. Rev. D 1998, 58, 062001. [Google Scholar] [CrossRef]
- Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 1916, 354, 769–822. [Google Scholar] [CrossRef] [Green Version]
- Brans, C.; Dicke, R.H. Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Peebles, P.J.; Dicke, R.H. Significance of Spatial Isotropy. Phys. Rev. 1962, 127, 629–631. [Google Scholar] [CrossRef]
- Sanders, A.; Gillies, G.; Schmutzer, E. Implications upon theory discrimination of an accurate measurement of the time rate of change of the gravitational “constant” G and other cosmological parameters. Ann. Phys. 2010, 522, 861–873. [Google Scholar] [CrossRef] [Green Version]
- Steinhardt, P.J.; Wesley, D. Exploring extra dimensions through observational tests of dark energy and varying Newton’s constant. arXiv 2010, arXiv:1003.2815. [Google Scholar]
- Will, C.M.; Nordtvedt, K. Conservation Laws and Preferred Frames in Relativistic Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism. Astrophys. J. 1972, 177, 757–774. [Google Scholar] [CrossRef]
- Pitjeva, E.V.; Pitjev, N.P. Development of planetary ephemerides EPM and their applications. Celest. Mech. Dyn. Astron. 2014, 119, 237–256. [Google Scholar] [CrossRef]
- Fienga, A.; Laskar, J.; Exertier, P.; Manche, H.; Gastineau, M. Numerical estimation of the sensitivity of INPOP planetary ephemerides to general relativity parameters. Celest. Mech. Dyn. Astron. 2015, 123, 325–349. [Google Scholar] [CrossRef]
- Genova, A.; Mazarico, E.; Goossens, S.; Lemoine, F.G.; Neumann, G.A.; Smith, D.E.; Zuber, M.T. Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission. Nat. Commun. 2018, 9, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitjeva, E.V.; Pitjev, N.P. Relativistic effects and dark matter in the Solar system from observations of planets and spacecraft. Mon. Not. R. Astron. Soc. 2013, 432, 3431–3437. [Google Scholar] [CrossRef] [Green Version]
- Currie, D.G.; Dell’Agnello, S.; Delle Monache, G.O.; Behr, B.; Williams, J.G. A Lunar Laser Ranging Retroreflector Array for the 21st Century. Nucl. Phys. B 2013, 243–244, 218–228. [Google Scholar] [CrossRef]
- Turyshev, S.G.; Shao, M.; Hanh, I.; Williams, J.G.; Trahan, R. Advanced Laser Ranging for high-precision science investigations. In Proceedings of the 21st International Workshop on Laser Ranging, Canberra, Australia, 5–9 November 2018. [Google Scholar]
- Santoli, F.; Fiorenza, E.; Lefevre, C.; Lucchesi, D.M.; Lucente, M.; Magnafico, C.; Morbidini, A.; Peron, R.; Iafolla, V. ISA, a High Sensitivity Accelerometer in the Interplanetary Space. Space Sci. Rev. 2020, 216, 145. [Google Scholar] [CrossRef]
- Noll, C. The Crustal Dynamics Data Information System: A resource to support scientific analysis using space geodesy. Adv. Space Res. 2010, 45, 1421–1440. [Google Scholar] [CrossRef] [Green Version]
- Pearlman, M.R.; Degnan, J.J.; Bosworth, J.M. The International Laser Ranging Service. Adv. Space Res. 2002, 30, 135–143. [Google Scholar] [CrossRef]
Parameter | Hofmann and Müller [13] | Current Analysis |
---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biskupek, L.; Müller, J.; Torre, J.-M. Benefit of New High-Precision LLR Data for the Determination of Relativistic Parameters. Universe 2021, 7, 34. https://doi.org/10.3390/universe7020034
Biskupek L, Müller J, Torre J-M. Benefit of New High-Precision LLR Data for the Determination of Relativistic Parameters. Universe. 2021; 7(2):34. https://doi.org/10.3390/universe7020034
Chicago/Turabian StyleBiskupek, Liliane, Jürgen Müller, and Jean-Marie Torre. 2021. "Benefit of New High-Precision LLR Data for the Determination of Relativistic Parameters" Universe 7, no. 2: 34. https://doi.org/10.3390/universe7020034
APA StyleBiskupek, L., Müller, J., & Torre, J. -M. (2021). Benefit of New High-Precision LLR Data for the Determination of Relativistic Parameters. Universe, 7(2), 34. https://doi.org/10.3390/universe7020034