Superfluid Dynamics in Neutron Star Crusts: The Iordanskii Force and Chemical Gauge Covariance
Abstract
:1. Introduction
2. Relativistic Formulation of the HVBK Hydrodynamics
2.1. The Stress-Energy Tensor
2.2. The Superfluid Vorticity
2.3. Closure of the Macroscopic Model: The Dynamics of Vortices
2.4. Geometric Decomposition of the Vortex Velocity
3. Phenomenological Modelling of Vortex Dynamics
3.1. Projection Tensors and Physical Basis for Vortex Dynamics
- is defined in a covariant way using only the 2-form and the vector v,
- depends linearly on v,
- is orthogonal for any choice of v.
3.2. Formulation of the Phenomenological Equation of Vortex Motion (PEVM)
3.3. Interpretation of the Force Terms in the PEVM
3.4. Computation of the HVBK Coefficients from the PEVM
4. The Problem of the Chemical Basis
4.1. The Argument for the Absence of the Generalised Iordanskii Force
4.2. The Chemical Gauge
4.3. The Generalised Iordanskii Force Is Necessary to Guarantee Chemical Gauge Covariance
4.4. Gauge Covariance of the PEVM and the Invariance of the HVBK Coefficients
5. The Interpretation of the Generalised Iordanskii Force
5.1. Forces on a Vortex at the Mesoscopic Scale: Carter’s Multifluid Approach
5.2. Transverse Forces on a Vortex: The Sonin-Stone Model
5.3. Transverse Forces on a Vortex: The Thouless-Ao-Wexler-Geller Model
5.4. The Iordanskii Force in Neutron Stars
6. Towards a Resolution of the Iordanskii Force Controversy
6.1. Geometry and Preliminary Definitions of Wexler’s Gedanken Experiment
- 1.
- In the initial state, the total system (the fluid and the walls) is in global thermodynamic equilibrium, with a winding number of the superfluid phase along equal to N (i.e., . In fact, the winding number is one of the thermodynamic variables that should be specified to identify a well defined equilibrium state [19].
- 2.
- A vortex is created on the outer boundary of the annulus and slowly dragged by an external force to the inner boundary where it is, then, annihilated.
- 3.
- In the final state the total system is, again, in global thermodynamic equilibrium, but with a winding number of the phase equal to .
6.2. Relativistic Thermodynamic Analysis
6.3. Computation of the Variation of the Total Four-Momentum
6.4. Computation of the Free-Energy Variation
6.5. Thermalised, Intermediate and Ballistic Regimes
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Recovering the Standard Formulation of the HVBK Vortex Velocity
Appendix A.1. A Preliminary Identity
Appendix A.2. Recovering the HVBK Hydrodynamics of Gusakov
Appendix B. Tetrad Calculations
Appendix B.1. Tetrad Formulary
Appendix B.2. The PEVM in the Tetrad Formalism
Appendix C. Mesoscopic Models for the Flow around a Vortex
Appendix C.1. Induced Circulation in the Normal Component
Appendix C.2. Thermodynamic Equilibrium
References
- Andersson, N.; Comer, G.L.; Langlois, D. Oscillations of general relativistic superfluid neutron stars. Phys. Rev. D 2002, 66, 104002. [Google Scholar] [CrossRef] [Green Version]
- Khomenko, V.; Antonelli, M.; Haskell, B. Hydrodynamical instabilities in the superfluid interior of neutron stars with background flows between the components. Phys. Rev. D 2019, 100, 123002. [Google Scholar] [CrossRef] [Green Version]
- Chamel, N.; Page, D.; Reddy, S. Low-energy collective excitations in the neutron star inner crust. Phys. Rev. C 2013, 87, 035803. [Google Scholar] [CrossRef] [Green Version]
- Yakovlev, D.G.; Pethick, C.J. Neutron Star Cooling. Annu. Rev. Astron. Astrophys. 2004, 42, 169–210. [Google Scholar] [CrossRef]
- Haskell, B.; Melatos, A. Models of pulsar glitches. Int. J. Modern Phys. D 2015, 24, 1530008. [Google Scholar] [CrossRef]
- Donnelly, R.J. Quantized Vortices in Helium II; Cambridge University Press: Cambridge, UK, 2005; p. 364. [Google Scholar]
- Sonin, E.B. Dynamics of Quantised Vortices in Superfluids; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Langlois, D.; Sedrakian, D.M.; Carter, B. Differential rotation of relativistic superfluid in neutron stars. Mon. Not. R. Astron. Soc. 1998, 297, 1189–1201. [Google Scholar] [CrossRef] [Green Version]
- Andersson, N.; Sidery, T.; Comer, G.L. Mutual friction in superfluid neutron stars. Mon. Not. R. Astron. Soc. 2006, 368, 162–170. [Google Scholar] [CrossRef]
- Gusakov, M.E. Relativistic formulation of the Hall-Vinen-Bekarevich-Khalatnikov superfluid hydrodynamics. Phys. Rev. D 2016, 93, 064033. [Google Scholar] [CrossRef] [Green Version]
- Andersson, N.; Wells, S.; Vickers, J.A. Quantised vortices and mutual friction in relativistic superfluids. Clas. Quan. Gravity 2016, 33, 245010. [Google Scholar] [CrossRef]
- Rau, P.B.; Wasserman, I. Relativistic finite temperature multifluid hydrodynamics in a neutron star from a variational principle. Phys. Rev. D 2020, 102, 063011. [Google Scholar] [CrossRef]
- Sourie, A.; Chamel, N. Force on a neutron quantized vortex pinned to proton fluxoids in the superfluid core of cold neutron stars. Mon. Not. R. Astron. Soc. 2020, 493, 382–389. [Google Scholar] [CrossRef]
- Antonelli, M.; Haskell, B. Superfluid vortex-mediated mutual friction in non-homogeneous neutron star interiors. Mon. Not. R. Astron. Soc. 2020, 499, 3690–3705. [Google Scholar] [CrossRef]
- Lindblom, L.; Mendell, G. r-modes in superfluid neutron stars. Phys. Rev. D 2000, 61, 104003. [Google Scholar] [CrossRef] [Green Version]
- Haskell, B.; Andersson, N.; Passamonti, A. r modes and mutual friction in rapidly rotating superfluid neutron stars. Mon. Not. R. Astron. Soc. 2009, 397, 1464–1485. [Google Scholar] [CrossRef]
- Chamel, N.; Haensel, P. Physics of Neutron Star Crusts. Liv. Rev. Relativ. 2008, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Carter, B.; Chamel, N.; Haensel, P. Entrainment Coefficient and Effective Mass for Conduction Neutrons in Neutron Star Crust:. Macroscopic Treatment. Int. J. Modern Phys. D 2006, 15, 777–803. [Google Scholar] [CrossRef] [Green Version]
- Gavassino, L.; Antonelli, M. Thermodynamics of uncharged relativistic multifluids. Clas. Quant. Gravity 2020, 37, 025014. [Google Scholar] [CrossRef] [Green Version]
- Galantucci, L.; Baggaley, A.W.; Barenghi, C.F.; Krstulovic, G. A new self-consistent approach of quantum turbulence in superfluid helium. Eur. Phys. J. Plus 2020, 135, 547. [Google Scholar] [CrossRef]
- Wexler, C. Magnus and Iordanskii Forces in Superfluids. Phys. Rev. Lett. 1997, 79, 1321–1324. [Google Scholar] [CrossRef] [Green Version]
- Sonin, E.B. Comment on “Berry’s Phase and the Magnus Force for a Vortex Line in a Superconductor,” “Transverse Force on a Quantized Vortex in a Superfluid,” and “Magnus and Iordanskii Forces in Superfluids”. Phys. Rev. Lett. 1998, 81, 4276. [Google Scholar] [CrossRef]
- Volovik, G.E. Vortex versus spinning string: Iordanskii force and gravitational Aharonov-Bohm effect. JETP Lett. 1998, 68, 881–887. [Google Scholar] [CrossRef] [Green Version]
- Geller, M.R.; Thouless, D.J.; Rhee, S.W.; Vinen, W.F. Iordanskii and Lifshitz-Pitaevskii Forces in the Two-Fluid Model. J. Low Temp. Phys. 2000, 121, 411–416. [Google Scholar] [CrossRef]
- Stone, M. Iordanskii force and the gravitational Aharonov-Bohm effect for a moving vortex. Phys. Rev. B 2000, 61, 11780–11786. [Google Scholar] [CrossRef] [Green Version]
- Thouless, D.J.; Geller, M.R.; Vinen, W.F.; Fortin, J.Y.; Rhee, S.W. Vortex dynamics in the two-fluid model. Phys. Rev. B 2001, 63, 224504. [Google Scholar] [CrossRef] [Green Version]
- Sourie, A.; Chamel, N. Generalization of the Kutta-Joukowski theorem for the hydrodynamic forces acting on a quantized vortex. Int. J. Modern Phys. B 2020, 34, 2050099. [Google Scholar] [CrossRef]
- Gavassino, L.; Antonelli, M.; Pizzochero, P.M.; Haskell, B. A universal formula for the relativistic correction to the mutual friction coupling time-scale in neutron stars. Mon. Not. R. Astron. Soc. 2020, 494, 3562–3580. [Google Scholar] [CrossRef]
- Carter, B.; Langlois, D.; Prix, R. Relativistic solution of Iordanskii problem in multi-constituent superfluid mechanics. In Vortices in Unconventional Superconductors and Superfluids; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Sonin, E.B. Magnus force in superfluids and superconductors. Phys. Rev. B 1997, 55, 485–501. [Google Scholar] [CrossRef] [Green Version]
- Baym, G.; Chandler, E. The hydrodynamics of rotating superfluids. I. Zero-temperature, nondissipative theory. J. Low Temp. Phys. 1983, 50, 57–87. [Google Scholar] [CrossRef]
- Carter, B.; Langlois, D. Kalb-Ramond coupled vortex fibration model for relativistic superfluid dynamics. Nuc. Phys. B 1995, 454, 402–424. [Google Scholar] [CrossRef] [Green Version]
- Andersson, N.; Wells, S.; Comer, G.L. A variational approach to relativistic superfluid vortex elasticity. Clas. Quant. Gravity 2020, 37, 085014. [Google Scholar] [CrossRef] [Green Version]
- Andersson, N.; Haskell, B.; Comer, G.L.; Samuelsson, L. The dynamics of neutron star crusts: Lagrangian perturbation theory for a relativistic superfluid-elastic system. Clas. Quant. Gravity 2019, 36, 105004. [Google Scholar] [CrossRef] [Green Version]
- Carter, B.; Chachoua, E. Newtonian Mechanics of Neutron Superfluid in Elastic Star Crust. Int. J. Mod. Phys. D 2006, 15, 1329–1358. [Google Scholar] [CrossRef] [Green Version]
- Pethick, C.J.; Chamel, N.; Reddy, S. Superfluid Dynamics in Neutron Star Crusts. Prog. Theor. Phys. Suppl. 2010, 186, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Kobyakov, D.N.; Pethick, C.J. Superfluid Liquid Crystals: Pasta Phases in Neutron Star Crusts. S. J. Exp. Theor. Phys. 2018, 127, 851–859. [Google Scholar] [CrossRef] [Green Version]
- Carter, B.; Khalatnikov, I. Momentum, vorticity, and helicity in covariant superfluid dynamics. Ann. Phys. 1992, 219, 243–265. [Google Scholar] [CrossRef]
- Carter, B. Relativistic dynamics of vortex defects in superfluids. In NATO Advanced Science Institutes (ASI) Series C; Bunkov, Y.M., Godfrin, H., Eds.; NATO: Brussels, Belgium, 2000; Volume 549, p. 267. [Google Scholar]
- Anderson, P.W. Considerations on the Flow of Superfluid Helium. Rev. Mod. Phys. 1966, 38, 298–310. [Google Scholar] [CrossRef]
- Nemirovskii, S.K. On the Closure Problem of the Coarse-Grained Hydrodynamics of Turbulent Superfluids. J. Low Temp. Phys. 2020. [Google Scholar] [CrossRef]
- Son, D.T. Hydrodynamics of Relativistic Systems with Broken Continuous Symmetries. Int. J. Mod. Phys. A 2001, 16, 1284–1286. [Google Scholar] [CrossRef] [Green Version]
- Gusakov, M.E. Bulk viscosity of superfluid neutron stars. Phys. Rev. D 2007, 76, 083001. [Google Scholar] [CrossRef] [Green Version]
- Barenghi, C.F.; Donnelly, R.J.; Vinen, W.F. Friction on quantized vortices in helium II. A review. J. Low Temp. Phys. 1983, 52, 189–247. [Google Scholar] [CrossRef]
- Haskell, B.; Sedrakian, A. Superfluidity and Superconductivity in Neutron Stars. In The Physics and Astrophysics of Neutron Stars; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Carter, B.; Khalatnikov, I.M. Equivalence of convective and potential variational derivations of covariant superfluid dynamics. Phys. Rev. D 1992, 45, 4536–4544. [Google Scholar] [CrossRef] [PubMed]
- Gavassino, L.; Antonelli, M.; Haskell, B. Multifluid Modelling of Relativistic Radiation Hydrodynamics. Symmetry 2020, 12, 1543. [Google Scholar] [CrossRef]
- Geurst, J.A.; van Beelen, H. Iordanskii’s force for superfluid vortices revisited: A critical analysis. Phys. A Stat. Mechan. Appl. 1997, 237, 1–24. [Google Scholar] [CrossRef]
- Alpar, M.A.; Langer, S.A.; Sauls, J.A. Rapid postglitch spin-up of the superfluid core in pulsars. Astrophys. J. 1984, 282, 533–541. [Google Scholar] [CrossRef]
- Mendell, G. Superfluid hydrodynamics in rotating neutron stars. I—Nondissipative equations. II—Dissipative effects. Astrophys. J. 1991, 380, 515–540. [Google Scholar] [CrossRef]
- Gusakov, M.E.; Dommes, V.A. Relativistic dynamics of superfluid-superconducting mixtures in the presence of topological defects and an electromagnetic field with application to neutron stars. Phys. Rev. D 2016, 94, 083006. [Google Scholar] [CrossRef] [Green Version]
- Thouless, D.J.; Ao, P.; Niu, Q. Transverse Force on a Quantized Vortex in a Superfluid. Phys. Rev. Lett. 1996, 76, 3758–3761. [Google Scholar] [CrossRef] [Green Version]
- Gavassino, L. The zeroth law of thermodynamics in special relativity. Found. Phys. 2020, 50, 1554–1586. [Google Scholar] [CrossRef]
- Landau, L.; Lifshitz, E. Statistical Physics; Number v. 5; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Prix, R. Covariant vortex in superconducting-superfluid-normal fluid mixtures with a stiff equation of state. Phys. Rev. D 2000, 62, 103005. [Google Scholar] [CrossRef] [Green Version]
- Khalatnikov, I.M. An Introduction to the Theory of Superfluidity; Frontiers in Physics; Benjamin: New York, NY, USA, 1965; Trans. from the Russian. [Google Scholar]
- Wexler, C.; Thouless, D.J. Effective Vortex Dynamics in Superfluid Systems. arXiv 1996, arXiv:9612059. [Google Scholar]
- Gavassino, L.; Antonelli, M.; Haskell, B. Bulk viscosity in relativistic fluids: From thermodynamics to hydrodynamics. arXiv 2020, arXiv:2003.04609. [Google Scholar]
- Sourie, A.; Chamel, N.; Novak, J.; Oertel, M. Global numerical simulations of the rise of vortex-mediated pulsar glitches in full general relativity. Mon. Not. R. Astron. Soc. 2017, 464, 4641–4657. [Google Scholar] [CrossRef]
- Antonelli, M.; Montoli, A.; Pizzochero, P.M. Effects of general relativity on glitch amplitudes and pulsar mass upper bounds. Mon. Not. R. Astron. Soc. 2018, 475, 5403–5416. [Google Scholar] [CrossRef] [Green Version]
- Montoli, A.; Antonelli, M.; Magistrelli, F.; Pizzochero, P.M. Bayesian estimate of the superfluid moments of inertia from the 2016 glitch in the Vela pulsar. Astron. Astrophys. 2020, 642, A223. [Google Scholar] [CrossRef]
1. | In fact, a term of the form , or its Newtonian analogue, is always included in all models for the dissipative PEVM in He, as well as in neutron star interiors, see e.g., [8,9,45]. Regarding neutron star modelling, in the special case , or , the definition of reduces to the one of, e.g., [9,11,14,28], apart from a Lorentz factor which is negligible under the assumption of slow rotation. |
2. | As distinct from the Magnus force, the Iordanskii force arises when a quantum vortex moves with respect to the heat bath made of quasiparticle excitations. Volovik [23] first proposed that the interaction of quasiparticles with the velocity field around a vortex resembles the interaction of matter with the gravitational field induced by a spinning cosmic string (gravitational Aharonov-Bohm effect). This analogy allowed Stone [25] to calculate the asymmetry in the scattering of phonons on the vortex and the associated Iordanskii transverse force, in agreement with the previous work of Sonin, see e.g., [30]. These results, in principle, would allow to set the value of . Our Generalized Iordanskii force, however, also includes the possibility of having additional transverse contributions (e.g., a sort of “transverse drag”, possibly due to quasiparticles other than phonons [6,44]). For this reason, and because of the chemical gauge-covariance issue to be discussed in Section 4.3, the coefficient and its temperature dependence are not specified. |
3. | |
4. | The reason why Equations (89) and (92) are so different, while in the He analogue they coincide, is that in helium the formal analogue of the relativistic chemical potential of the normal component is the temperature , while the formal analogue of the relativistic chemical potential of the superfluid component is . Therefore in Equation (92) one deals with the ratio , which in the Newtonian limit is zero. |
5. | |
6. | This argument is valid for any mixture of superfluid and normal species, or single-species superfluids at finite temperature. In fact, in global thermodynamic equilibrium every normal component has to move rigidly [29,55]. Furthermore, if the heat bath does not rotate (which is our case), all the normal currents need to be at rest with respect to it, in order to minimize the free energy at fixed winding number of [19,56]. For the microscopic counterpart of this result, computed directly in a vortex configuration, see [57]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavassino, L.; Antonelli, M.; Haskell, B. Superfluid Dynamics in Neutron Star Crusts: The Iordanskii Force and Chemical Gauge Covariance. Universe 2021, 7, 28. https://doi.org/10.3390/universe7020028
Gavassino L, Antonelli M, Haskell B. Superfluid Dynamics in Neutron Star Crusts: The Iordanskii Force and Chemical Gauge Covariance. Universe. 2021; 7(2):28. https://doi.org/10.3390/universe7020028
Chicago/Turabian StyleGavassino, Lorenzo, Marco Antonelli, and Brynmor Haskell. 2021. "Superfluid Dynamics in Neutron Star Crusts: The Iordanskii Force and Chemical Gauge Covariance" Universe 7, no. 2: 28. https://doi.org/10.3390/universe7020028
APA StyleGavassino, L., Antonelli, M., & Haskell, B. (2021). Superfluid Dynamics in Neutron Star Crusts: The Iordanskii Force and Chemical Gauge Covariance. Universe, 7(2), 28. https://doi.org/10.3390/universe7020028