Deconstructing Frame-Dragging
Abstract
:1. Introduction
2. Superenergy and the Super-Poynting Vector
- To define energy in terms of a non–local quantity;
- To resort to pseudo–tensors; and
- To introduce a succedaneous definition of energy.
3. Frame-Dragging in Vacuum Stationary Spacetimes
3.1. The Lense–Thirring Precession
3.2. Frame-Dragging in the Kerr Metric
3.3. Frame-Dragging in a General Stationary Vacuum Spacetime
4. Frame-Dragging in Electro-Vacuum Stationary Spacetimes
5. Vorticity and Radiation
5.1. Gravitational Radiation and Vorticity
- If and N are known for some (constant), and (the news function) is known for all u in the interval , then the system is fully determined in that interval.
- As it follows from (42), the mass of a system is constant if, and only if there are no news.
5.2. Electromagnetic Radiation and Vorticity
6. Discussion
Funding
Conflicts of Interest
Appendix A
References
- Everitt, C.W.F.; DeBra, D.B.; Parkinson, B.W.; Turneaure, J.P.; Conklin, J.W.; Heifetz, M.I.; Keiser, G.M.; Silbergleit, A.S.; Holmes, T.; Kolodziejczak, J.; et al. Gravity Probe B: Final Results of a Space Experiment to Test General Relativity. Phys. Rev. Lett. 2011, 106, 221101. [Google Scholar] [CrossRef]
- Debono, I.; Smoot, G.F. General Relativity and Cosmology: Unsolved Questions and Future Directions. Universe 2016, 2, 23. [Google Scholar] [CrossRef]
- Vishwakarma, R.G. Einstein and Beyond: A Critical Perspective on General Relativity. Universe 2016, 2, 11. [Google Scholar] [CrossRef] [Green Version]
- Rindler, W. The case against space dragging. Phys. Lett. A 1997, 233, 25–29. [Google Scholar] [CrossRef]
- Rindler, W. The Lense-Thirring effect exposed as anti-Machian. Phys. Lett. A 1994, 187, 236–238. [Google Scholar] [CrossRef]
- Bondi, H.; Samuel, J. The Lense-Thirring effect and Mach’s principle. Phys. Lett. A 1997, 228, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, I.I.; Reasenberg, R.D.; Chandler, J.F.; Babcock, R.W. Measurement of the de Sitter precession of the Moon: A relativistic three-body effect. Phys. Rev. Lett. 1988, 61, 2643. [Google Scholar] [CrossRef]
- Lense, J.; Thirring, H. Uber den einfluss der eigenrotation der zentralkorper auf die bewuegung der planeteren und monde nach der Einsteinschen gravitationstheorie. Phys. Z. 1918, 19, 156–163. [Google Scholar]
- Pfister, H. On the history of the so-called Lense-Thirring effect. Gen. Relativ. Gravit. 2007, 39, 1735–1748. [Google Scholar] [CrossRef] [Green Version]
- Pfister, H. Editorial note to: Hans Thirring, On the formal analogy between the basic electromagnetic equations and Einstein’s gravity equations in first approximation. Gen. Relativ. Gravit. 2012, 44, 3217–3224. [Google Scholar] [CrossRef] [Green Version]
- Pfister, H. The History of the So-Called Lense–Thirring Effect, and of Related Effects. In General Relativity and John Archibald Wheeler; Ciufolini, I., Matzner, R., Eds.; Springer: Dordrecht, The Netherlands, 2010; Volume 367. [Google Scholar]
- Schiff, L.I. Possible New Experimental Test of General Relativity Theory. Phys. Rev. Lett 1960, 4, 215–217. [Google Scholar] [CrossRef]
- Rindler, W.; Perlick, V. Rotating coordinates as tools for calculating circular geodesics and gyroscopic precession. Gen. Rel. Grav. 1990, 22, 1067–1081. [Google Scholar] [CrossRef]
- Pavlis, E.C.; Iorio, L. The impact of tidal errors on the determination of the Lense–Thirring effect from satellite laser ranging. Int. J. Mod. Phys. D. 2002, 11, 599–618. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. On the Lense-Thirring test with the Mars Global Surveyor in the gravitational field of Mars. Central Eur. J. Phys. 2010, 8, 509–513. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L.; Lichtenegger, H.; Ruggiero, M.; Corda, C. Phenomenology of the Lense–Thirring effect in the Solar System. Astrophys. Space Sci. 2011, 331, 351–395. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. LETSGO: A spacecraft-based mission to accurately measure the solar angular momentum with frame-dragging. Acta Astronaut. 2013, 86, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Strohaber, J. frame-dragging with optical vortices. Gen. Relativ. Grav. 2013, 45, 2457–2465. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. On a recent preliminary study for the measurement of the Lense–Thirring effect with the Galileo satellites. Int. J. Mod. Phy. D 2014, 23, 1450028. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. Measuring general relativistic dragging effects in the Earth’s gravitational field with ELXIS: A proposal. Class. Quantum Grav. 2019, 36, 035002. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. Is there still something left that Gravity Probe B can measure? Universe 2020, 6, 85. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Carot, J. Frame-dragging and super–energy. Phys. Rev. D 2007, 76, 044012-5. [Google Scholar] [CrossRef] [Green Version]
- Bonnor, W.B. Dragging of inertial frames by a charged magnetic dipole. Phys. Lett. A 1991, 158, 23–26. [Google Scholar] [CrossRef]
- Herrera, L.; González, G.A.; Pachón, L.A.; Rueda, J.A. frame-dragging, vorticity and electromagnetic fields in axially symmetric stationary spacetimes. Class. Quantum Grav. 2006, 23, 2395–2408. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Hernández-Pastora, J.L. On the influence of gravitational radiation on a gyroscope. Class. Quantum Grav. 2000, 17, 3617–3625. [Google Scholar] [CrossRef] [Green Version]
- Sorge, F.; Bini, D.; de Felice, F. Gravitational waves, gyroscopes and frame-dragging. Class. Quantum Grav. 2001, 18, 2945–2958. [Google Scholar] [CrossRef]
- Herrera, L.; Santos, N.O.; Carot, J. Gravitational radiation, vorticity and the electric and magnetic part of Weyl tensor. J. Math. Phys. 2006, 47, 052502. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Barreto, W.; Carot, J.; Di Prisco, A. Why does gravitational radiation produces vorticity? Class. Quantum Grav. 2007, 24, 2645–2651. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L. Radiation and vorticity: The missing link. Gen. Relativ. Gravit. 2014, 46, 1654–1657. [Google Scholar] [CrossRef] [Green Version]
- Bicak, J.; Katz, J.; Lynden–Bell, D. Gravitational waves and dragging effects. Class. Quantum Grav. 2008, 25, 165017. [Google Scholar] [CrossRef]
- Bini, A.D.; Geralico, A.; Plastino, W. Cylindrical gravitational waves: C–energy, super-energy and associated dynamical effects. Class. Quantum Grav. 2019, 36, 095012. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L. Gravitational radiation, vorticity and super–energy. A conspicuous threesome. Universe 2019, 5, 164. [Google Scholar] [CrossRef] [Green Version]
- Ruggiero, M.L.; Ortolan, A. Gravito–magnetic resonance in the field of a gravitational wave. Phys. Rev. D 2020, 102, 101501(R). [Google Scholar] [CrossRef]
- Bel, L. Sur la radiation gravitationelle. Comp. Rend. Acad. Sci. 1958, 247, 1094–1096. [Google Scholar]
- Bel, L. Radiation states and the problem of energy in general relativity. Gen. Relativ. Gravit. 2000, 32, 2047–2078. [Google Scholar] [CrossRef]
- Bel, L. Introduction d’un tenseur du quatrieme order. Comp. Rend. Acad. Sci. Paris 1959, 248, 1297–1300. [Google Scholar]
- García–Parrado Gómez Lobo, A. Dynamical laws of superenergy in general relativity. Class. Quantum Grav. 2008, 25, 015006. [Google Scholar] [CrossRef]
- Kerr, R.P. Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Phys. Rev. Lett. 1963, 11, 237. [Google Scholar] [CrossRef]
- Hernández-Pastora, J.L.; Herrera, L. Interior solution for the Kerr metric. Phys. Rev. D 2017, 95, 024003. [Google Scholar] [CrossRef] [Green Version]
- Papapetrou, A. Eine rotationssymmetrische losung in der allgmeinen relativitatstheorie. Ann. Phys. 1953, 12, 309–315. [Google Scholar] [CrossRef]
- Stephani, H.; Kramer, D.; MacCallum, M.; Honselaers, C.; Herlt, E. Exact Solutions to Einstein’s Field Equations, 2nd ed.; Cambridge University Press: Cambridge, UK, 2003; p. 309. [Google Scholar]
- Feynman, R.P.; Leighton, R.B.; Sand, M. Lectures on Physics II; Addison–Wesley: Reading, PA, USA, 1964; pp. 27–28. [Google Scholar]
- DeWitt, B.S.; Brehme, R. Radiation damping in a gravitational field. Ann. Phys. 1960, 9, 220–259. [Google Scholar] [CrossRef]
- Kundt, W.; Newman, E.T. Hyperbolic Differential Equations in Two Dimensions. J. Math. Phys. 1968, 9, 2193–2210. [Google Scholar] [CrossRef]
- Bonnor, W.B. Approximate methods and gravitational radiation. In Proceedings of the Meeting on General Relativity; Barbera, G., Ed.; Comitato Nazionale per le Manifeestazioni Celebrative: Florence, Italy, 1965; pp. 119–142. [Google Scholar]
- Couch, W.; Torrence, R.; Janis, A.; Newman, E.T. Tail of a Gravitational Wave. J. Math. Phys. 1968, 9, 484. [Google Scholar] [CrossRef]
- Bonnor, W.B. Gravitational wave tails. In Ondes et Radiations Gravitationelles; Editions du Centre National de la Recherche Scientifique: Paris, France, 1974; pp. 73–81. [Google Scholar]
- Blanchet, L.; Shafer, G. Gravitational wave tails and binary star systems. Class. Quantum. Grav. 1993, 10, 2699–2722. [Google Scholar] [CrossRef]
- Marchand, T.; Blanchet, L.; Faye, G. Gravitational-wave tail effects to quartic non-linear order. Class. Quantum. Grav. 2016, 33, 244003. [Google Scholar] [CrossRef]
- Abbot, B.P.; Abbot, R.; Abbot, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. (LIGO Scientific Collaboration and Virgo Collaboration). Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Bondi, H.; van der Burg, M.G.J.; Metzner, A.W.K. Gravitational waves in general relativity VII. Waves from axi–symmetric isolated systems. Proc. R. Soc. A 1962, 269, 21–52. [Google Scholar]
- Sachs, R. Gravitational waves in general relativity VIII. Waves in asymptotically flat space–time. Proc. R. Soc. A 1962, 270, 103–125. [Google Scholar]
- Van der Burg, M.G.J. Gravitational Waves in General Relativity. IX. Conserved Quantities. Proc. R. Soc. 1966, A294, 112–122. [Google Scholar]
- Herrera, L.; Barreto, W. Electromagnetic radiation produces frame-dragging. Phys. Rev. D 2012, 86, 064014. [Google Scholar] [CrossRef] [Green Version]
- Van der Burg, M.G.J. Gravitational Waves in General Relativity X. Asymptotic Expansions for the Einstein-Maxwell Field. Proc. R. Soc. A 1969, 310, 221–230. [Google Scholar]
- Scully, M.O.; Zubairy, M.S.; Haugan, M.P. Proposed optical test of metric gravitation theories. Phys. Rev. A 1981, 24, 2009. [Google Scholar] [CrossRef]
- Lenef, A.; Hammond, T.D.; Smith, E.T.; Chapman, M.S.; Rubenstein, R.A.; Pritchard, D.E. Rotation Sensing with an Atom Interferometer. Phys. Rev. Lett. 1997, 78, 760. [Google Scholar] [CrossRef] [Green Version]
- Gustavson, T.L.; Bouyer, P.; Kasevich, M.A. Precision Rotation Measurements with an Atom Interferometer Gyroscope. Phys. Rev. Lett. 1997, 78, 2046. [Google Scholar] [CrossRef] [Green Version]
- Stedman, G.E.; Schreiber, K.U.; Bilger, H.R. On the detectability of the Lense–Thirring field from rotating laboratory masses using ring laser gyroscope interferometers. Class. Quantum Grav. 2003, 20, 2527–2540. [Google Scholar] [CrossRef]
- Stedman, G.E.; Hurst, R.B.; Schreiber, K.U. On the potential of large ring lasers. Opt. Commun. 2007, 279, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Di Virgilio, A.; Schreiber, K.U.; Gebauer, A.; Wells, J.-P.R.; Tartaglia, A.; Belfi, J.; Beverini, N.; Ortolan, A. A laser gyroscope system to detect the gravitomagnetic effect on earth. Int. J. Mod. Phys. D 2010, 19, 2331–2343. [Google Scholar] [CrossRef] [Green Version]
- Bosi, F.; Cella, G.; Di Virgilio, A.; Ortolan, A.; Porzic, A.; Solimenof, S.; Cerdonio, M.; Zendri, J.P.; Allegrini, M.; Bel, J.; et al. Measuring gravito-magnetic efects by multiring–laser gyroscope. Phys. Rev. D 2011, 84, 122002. [Google Scholar] [CrossRef] [Green Version]
- Robins, N.P.; Altin, P.A.; Debs, J.E.; Close, J.D. Atom lasers: Production, properties and prospects for precision inertial measurement. Phys. Rep. 2013, 529, 265–296. [Google Scholar] [CrossRef] [Green Version]
- Tartaglia, A. Experimental determination of gravitomagnetic effects by means of ring lasers. J. Phys. Conf. Ser. 2013, 453, 012019. [Google Scholar] [CrossRef] [Green Version]
- Di Virgilio, A.; Allegrini, M.; Beghi, A.; Belfi, J.; Beverini, N.; Bosi, F.; Bouhadef, B.; Calamai, M.; Carelli, G.; Cuccato, D.; et al. A ring laser array for fundamental physics. Comp. Rend. Phys. 2014, 15, 866–874. [Google Scholar] [CrossRef] [Green Version]
- Campbell, W.C.; Hamilton, P. Rotation sensing with trapped ions. J. Phys. B 2017, 50, 064002. [Google Scholar] [CrossRef] [Green Version]
- Tartaglia, A.; di Virgilio, A.; Belfi, J.; Beverini, N.; Ruggiero, M.L. Testing general relativity by means of ringlasers. Eur. Phys. J. Plus 2017, 132, 73. [Google Scholar] [CrossRef] [Green Version]
- di Virgilio, A.; Beverini, N.; Carelli, G.; Ciampini, D.; Fuso, F.; Maccioni, E. Analysis of ring lasers gyroscopes including laser dynamics. Eur. Phys. J. C 2019, 79, 573. [Google Scholar] [CrossRef]
- Lehner, L.; Palenzuela, C.; Liebling, S.L.; Thompson, C.; Hanna, C. Intense electromagnetic outbursts from collapsing hypermassive neutron stars. Phys. Rev. D 2012, 86, 104035. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, L. Deconstructing Frame-Dragging. Universe 2021, 7, 27. https://doi.org/10.3390/universe7020027
Herrera L. Deconstructing Frame-Dragging. Universe. 2021; 7(2):27. https://doi.org/10.3390/universe7020027
Chicago/Turabian StyleHerrera, Luis. 2021. "Deconstructing Frame-Dragging" Universe 7, no. 2: 27. https://doi.org/10.3390/universe7020027
APA StyleHerrera, L. (2021). Deconstructing Frame-Dragging. Universe, 7(2), 27. https://doi.org/10.3390/universe7020027