Quantum Hydrodynamics of Spinning Particles in Electromagnetic and Torsion Fields
Abstract
:1. Introduction
2. Pauli Equation for the System with Spin-Torsion Coupling
2.1. Poincaré Gauge Gravity Theory: The Basics
2.2. Hamiltonian for the Dirac Fermion
3. Quantum Hydrodynamics for Spin-Torsion Coupling
3.1. Spin Density Evolution
3.2. Equation of Motion
4. Madelung Decomposition
5. Experimental Manifestations of Spin-Torsion Coupling
6. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cartan, É. On Manifolds with an Affine Connection and the Theory of General Relativity; Magnon, A., Ashtekar, A., Eds.; Bibliopolis: Napoli, Italy, 1986. [Google Scholar]
- Sciama, D.W. On the analogy between charge and spin in general relativity. In Recent Developments in General Relativity, Festschrift for Infeld; Pergamon Press: Oxford, UK; PWN: Warsaw, Poland, 1962; pp. 415–439. [Google Scholar]
- Kibble, T.W.B. Lorentz invariance and the gravitational field. J. Math. Phys. 1961, 2, 212–221. [Google Scholar] [CrossRef] [Green Version]
- Trautman, A. Einstein–Cartan theory. In Encyclopedia of Mathematical Physics; Françoise, J.-P., Naber, G.L., Tsou, S.T., Eds.; Elsevier: Oxford, UK, 2006; pp. 189–195. Available online: https://arxiv.org/abs/gr-qc/0606062 (accessed on 1 November 2021).
- Hehl, F.W.; von der Heyde, P.; Kerlick, G.D. General relativity with spin and torsion and its deviations from Einstein’s theory. Phys. Rev. D 1974, 10, 1066–1069. [Google Scholar] [CrossRef]
- Hehl, F.W.; Lemke, J.; Mielke, E.W. Two lectures on fermions and gravity. In Geometry and Theoretical Physics; Debrus, J., Hirshfeld, A.C., Eds.; Springer: Heidelberg, Germany, 1991; pp. 56–140. [Google Scholar]
- Hehl, F.W.; von der Heyde, P.; Kerlick, G.D.; Nester, J. General relativity with spin and torsion: Foundations and prospects. Rev. Mod. Phys. 1976, 48, 393–416. [Google Scholar] [CrossRef] [Green Version]
- Hehl, F.W.; McCrea, J.D.; Mielke, E.W.; Ne’eman, Y. Metric-affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rept. 1995, 258, 1–171. [Google Scholar] [CrossRef] [Green Version]
- Blagojević, M. Gravitation and Gauge Symmetries; IOP: Bristol, UK, 2002. [Google Scholar]
- Blagojević, M.; Hehl, F.W. (Eds.) Gauge Theories of Gravitation. A Reader with Commentaries; Imperial College Press: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A. Geometrie und Erfahrung. Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Klasse 1921, 1, 123–130. [Google Scholar]
- Yasskin, P.B.; Stoeger, W.R. Propagating equations for test bodies with spin and rotation in theories of gravity with torsion. Phys. Rev. D 1980, 21, 2081–2094. [Google Scholar] [CrossRef]
- Hehl, F.W.; Obukhov, Y.N.; Puetzfeld, D. On Poincaré gauge theory of gravity, its equations of motion, and Gravity Probe B. Phys. Lett. A 2013, 377, 1775–1781. [Google Scholar] [CrossRef] [Green Version]
- Obukhov, Y.N.; Puetzfeld, D. Multipolar test body equations of motion in generalized gravity theories. In Fundamental Theories of Physics; Springer: Cham, Switzerland, 2015; Volume 179, pp. 67–119. [Google Scholar] [CrossRef]
- Shapiro, I.L. Physical aspects of the space-time torsion. Phys. Rept. 2002, 357, 113–213. [Google Scholar] [CrossRef] [Green Version]
- Obukhov, Y.N. Poincaré gauge gravity: Selected topics. Int. J. Geom. Meth. Mod. Phys. 2006, 3, 95–137. [Google Scholar] [CrossRef]
- Obukhov, Y.N. Poincaré gauge gravity: An overview. Int. J. Geom. Meth. Mod. Phys. 2018, 15 (Suppl. 1), 1840005. [Google Scholar] [CrossRef] [Green Version]
- Ponomarev, V.N.; Barvinsky, A.O.; Obukhov, Y.N. Gauge Approach and Quantization Methods in Gravity Theory; Nauka: Moscow, Russia, 2017; 360p. [Google Scholar]
- Obukhov, Y.N.; Silenko, A.J.; Teryaev, O.V. Spin-torsion coupling and gravitational moments of Dirac fermions: Theory and experimental bounds. Phys. Rev. D 2014, 90, 124068. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, B.; Obukhov, Y.N.; Shapiro, I.S. Exact Foldy–Wouthuysen transformation for a Dirac spinor in torsion and other CPT and Lorentz violating backgrounds. Phys. Rev. D 2009, 80, 125034. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.S.; Ni, W.-T.; Li, Y.C.M. Test of cosmic spatial isotropy for polarized electrons using a rotatable torsion balance. Phys. Rev. Lett. 2003, 90, 201101. [Google Scholar] [CrossRef] [Green Version]
- Ni, W.-T.; Pan, S.S.; Yeh, H.C.; Hou, L.S.; Wan, J. Search for an axionlike spin coupling using a paramagnetic salt with a dc SQUID. Phys. Rev. Lett. 1999, 82, 2439–2442. [Google Scholar] [CrossRef]
- Chui, T.C.P.; Ni, W.-T. Experimental search for an anomalous spin–spin interaction between electrons. Phys. Rev. Lett. 1993, 71, 3247–3250. [Google Scholar] [CrossRef] [PubMed]
- Wineland, D.J.; Bollinger, J.J.; Heinzen, D.J.; Itano, W.M.; Raizen, M.G. Search for anomalous spin-dependent forces using stored-ion spectroscopy. Phys. Rev. Lett. 1991, 67, 1735–1738. [Google Scholar] [CrossRef] [PubMed]
- Hunter, L.; Gordon, J.; Peck, S.; Ang, D.; Lin, J.-F. Using the Earth as a polarized electron source to search for long-range spin–spin interactions. Science 2013, 339, 928–932. [Google Scholar] [CrossRef] [Green Version]
- Lehnert, R.; Snow, W.M.; Yan, H. A first experimental limit on in-matter torsion from neutron spin rotation in liquid 4He. Phys. Lett. B 2014, 730, 353–356. [Google Scholar] [CrossRef] [Green Version]
- Puetzfeld, D.; Obukhov, Y.N. Prospects of detecting spacetime torsion. Int. J. Mod. Phys. D 2014, 23, 1442004. [Google Scholar] [CrossRef] [Green Version]
- Obukhov, Y.N.; Puetzfeld, D. Conservation laws in gravitational theories with general nonminimal coupling. Phys. Rev. D 2013, 87, 081502(R). [Google Scholar] [CrossRef] [Green Version]
- Fadeev, P.; Wang, T.; Band, Y.B.; Budker, D.; Graham, P.W.; Sushkov, A.O.; Kimball, D.F.J. Gravity Probe Spin: Prospects for measuring general-relativistic precession of intrinsic spin using a ferromagnetic gyroscope. Phys. Rev. D 2021, 103, 044056. [Google Scholar] [CrossRef]
- Lämmerzahl, C. Constraints on space-time torsion from Hughes-Drever experiments. Phys. Lett. A 1997, 228, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.; Sarkar, U. Constraints on background torsion field from K-physics. Phys. Lett. B 1998, 433, 424–428. [Google Scholar] [CrossRef] [Green Version]
- Belyaev, A.S.; Shapiro, I.L.; do Vale, M.A.B. Torsion phenomenology at the CERN LHC. Phys. Rev. D 2007, 75, 034014. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Russell, N.; Tasson, J.D. Constraints on torsion from bounds on Lorentz violation. Phys. Rev. Lett. 2008, 100, 111102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostelecký, V.A.; Li, Z. Searches for beyond-Riemann gravity. Phys. Rev. D 2021, 104, 044054. [Google Scholar] [CrossRef]
- Heckel, B.R.; Adelberger, E.G.; Cramer, C.E.; Cook, T.S.; Schlamminger, S.; Schmidt, U. Preferred-frame and CP-violation tests with polarized electrons. Phys. Rev. D 2008, 78, 092006. [Google Scholar] [CrossRef] [Green Version]
- Kimball, D.F.J.; Boyd, A.; Budker, D. Constraints on anomalous spin–spin interactions from spin-exchange collisions. Phys. Rev. A 2010, 82, 062714. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.N.; Wellenzohn, M. Spin precession of slow neutrons in Einstein–Cartan gravity with torsion, chameleon, and magnetic field. Phys. Rev. D 2016, 93, 045031. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.N.; Wellenzohn, M.; Abele, H. Quantum gravitational states of ultracold neutrons as a tool for probing of beyond-Riemann gravity. Phys. Lett. B 2021, 822, 136640. [Google Scholar] [CrossRef]
- Fabbri, L. Fundamental theory of torsion gravity. Universe 2021, 7, 305. [Google Scholar] [CrossRef]
- Ni, W.-T. Searches for the role of spin and polarization in gravity. Rep. Prog. Phys. 2010, 73, 056901. [Google Scholar] [CrossRef] [Green Version]
- Moody, J.; Wilczek, F. New macroscopic forces? Phys. Rev. D 1984, 30, 130–138. [Google Scholar] [CrossRef]
- Graham, P.W.; Irastorza, I.G.; Lamoreaux, S.K.; Lindner, A.; van Bibber, K.A. Experimental searches for the axion and axion-like particles. Annu. Rev. Nucl. Part. Sci. 2015, 65, 485–514. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.; Im, S.H.; Shin, C.S. Recent progress in the physics of axions and axion-like particles. Annu. Rev. Nucl. Part. Sci. 2021, 71, 225–252. [Google Scholar] [CrossRef]
- Anselm, A.A.; Uraltsev, N.G. Long range “arion” field in the radio frequency band. Phys. Lett. B 1982, 116, 161–164. [Google Scholar] [CrossRef]
- Vorobyov, P.V.; Kakhidze, A.I.; Kolokolov, I.V. Axion wind: A search for cosmological axion condensate. Phys. Atom. Nuclei 1995, 58, 959–963. [Google Scholar]
- Hehl, F.W.; Ni, W.-T. Inertial effects of a Dirac particle. Phys. Rev. D 1990, 42, 2045–2048. [Google Scholar] [CrossRef]
- Obukhov, Y.N. Spin, gravity, and inertia. Phys. Rev. Lett. 2001, 86, 192–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obukhov, Y.N. Obukhov replies. Phys. Rev. Lett. 2002, 89, 068903. [Google Scholar] [CrossRef]
- Trukhanova, M.I. Quantum hydrodynamics approach to the research of quantum effects and vorticity evolution in spin quantum plasmas. Prog. Theor. Exp. Phys. 2013, 2013, 111I01. [Google Scholar] [CrossRef] [Green Version]
- Trukhanova, M.I.; Andreev, P. Hydrodynamic description of Weyl fermions in condensed state of matter. Eur. Phys. J. B 2021, 94, 170. [Google Scholar] [CrossRef]
- Kuzmenkov, L.S.; Maksimov, S.G.; Fedoseev, V.V. Microscopic quantum hydrodynamics of systems of fermions: I. Theor. Math. Phys. 2001, 126, 110–120. [Google Scholar] [CrossRef]
- Kuzmenkov, L.S.; Maksimov, S.G.; Fedoseev, V.V. Microscopic quantum hydrodynamics of systems of fermions: II. Theor. Math. Phys. 2001, 126, 212–223. [Google Scholar] [CrossRef]
- Andreev, P.A.; Kuzmenkov, L.S. On equations for the evolution of collective phenomena in fermion systems. Russ. Phys. J. 2007, 50, 1251–1258. [Google Scholar] [CrossRef]
- Trukhanova, M.I. Quantum hydrodynamics in the rotating reference frame. Phys. Plasmas 2016, 23, 112114. [Google Scholar] [CrossRef] [Green Version]
- Andreev, P.A.; Mosaki, I.N.; Trukhanova, M.I. Quantum hydrodynamics of the spinor Bose–Einstein condensate at non-zero temperatures. Phys. Fluids 2021, 33, 067108. [Google Scholar] [CrossRef]
- Andreev, P.A.; Kuzmenkov, L.S.; Trukhanova, M.I. Quantum hydrodynamics approach to the formation of waves in polarized two-dimensional systems of charged and neutral particles. Phys. Rev. B 2011, 84, 245401. [Google Scholar] [CrossRef] [Green Version]
- Mashhoon, B. General covariance and quantum theory. Found. Phys. 1986, 16, 619–635. [Google Scholar] [CrossRef]
- Mashhoon, B. Quantum Theory in aCcelerated Frames of Reference; Lecture Notes in Physics; Springer: Berlin, Germany, 2006; Volume 702, pp. 112–132. [Google Scholar] [CrossRef] [Green Version]
- Mashhoon, B. Toward nonlocal electrodynamics of accelerated systems. Universe 2020, 6, 229. [Google Scholar] [CrossRef]
- Madelung, E. Quantentheorie in hydrodynamischer Form. Z. Physik 1927, 40, 322–326. [Google Scholar] [CrossRef]
- Gemmel, C.; Heil, W.; Karpuk, S.; Lenz, K.; Ludwig, C.; Sobolev, Y.; Tullney, K.; Burghoff, M.; Kilian, W.; Knappe-Grüneberg, S.; et al. Ultra-sensitive magnetometry based on free precession of nuclear spins. Eur. Phys. J. D 2010, 57, 303–320. [Google Scholar] [CrossRef] [Green Version]
- Allmendinger, F.; Heil, W.; Karpuk, S.; Kilian, W.; Scharth, A.; Schmidt, U.; Schnabel, A.; Sobolev, Y.; Tullney, K. New limit on Lorentz-invariance- and CPT-violating neutron spin interactions using a free-spin-precession 3He-129Xe comagnetometer. Phys. Rev. Lett. 2014, 112, 110801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burghoff, M.; Gemmel, C.; Heil, W.; Karpuk, S.; Kilian, W.; Knappe-Grüneberg, S.; Lenz, K.; Müller, W.; Tullney, K.; Schmidt, U.; et al. Probing Lorentz invariance and other fundamental symmetries in 3He-129Xe clock-comparison experiments. J. Phys. Conf. Ser. 2011, 295, 012017. [Google Scholar] [CrossRef] [Green Version]
- Venema, B.J.; Majumder, P.K.; Lamoreaux, S.K.; Heckel, B.R.; Fortson, E.N. Search for a coupling of the Earth’s gravitational field to nuclear spins in atomic mercury. Phys. Rev. Lett. 1992, 68, 135–138. [Google Scholar] [CrossRef] [PubMed]
- De Sabbata, V.; Pronin, P.I.; Sivaram, C. Neutron interferometry in gravitational field with torsion. Int. J. Theor. Phys. 1991, 30, 1671–1678. [Google Scholar] [CrossRef]
- Hammond, R.T. Upper limit on the torsion coupling constant. Phys. Rev. D 1995, 52, 6918–6921. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, C.; Weber, C. On the interaction of mesoscopic quantum systems with gravity. Ann. Phys. 2005, 14, 253–278. [Google Scholar] [CrossRef] [Green Version]
- Lämmerzahl, C. Interferometry as a universal tool in physics. In Planck Scale Effects in Astrophysics and Cosmology; Kowalski-Glikman, J., Amelino-Camelia, G., Eds.; Lecture Notes in Physics; Springer: Berlin, Germany, 2005; Volume 669, pp. 161–198. [Google Scholar] [CrossRef]
- Sponar, S.; Sedmik, R.I.P.; Pitschmann, M.; Abele, H.; Hasegawa, Y. Tests of fundamental quantum mechanics and dark interactions with low-energy neutrons. Nature Rev. Phys. 2021, 3, 309–327. [Google Scholar] [CrossRef]
- Misra, A.; Brodin, G.; Marklund, M.; Shukla, P. Circularly polarized modes in magnetized spin plasmas. J. Plasma Phys. 2010, 76, 857–864. [Google Scholar] [CrossRef] [Green Version]
- Takabayasi, T. Hydrodynamical formalism of quantum mechanics and Aharonov-Bohm effect. Prog. Theor. Phys. 1983, 69, 1323–1344. [Google Scholar] [CrossRef] [Green Version]
- Takabayasi, T. Vortex, spin and triad for quantum mechanics of spinning particle I: General theory. Prog. Theor. Phys. 1983, 70, 1–17. [Google Scholar] [CrossRef]
- Salesi, G.; Recami, E. Hydrodynamical reformulation and quantum limit of the Barut-Zanghi theory. Found. Phys. Lett. 1997, 10, 533–546. [Google Scholar] [CrossRef]
- Fabbri, L. Spinors in polar form. Eur. Phys. J. Plus 2021, 136, 354. [Google Scholar] [CrossRef]
- Hestenes, D. Zitterbewegung structure in electrons and photons. arXiv 2020, arXiv:1910.11085. Available online: https://arxiv.org/abs/1910.11085 (accessed on 1 November 2021).
- Holland, P.R. The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trukhanova, M.I.; Obukhov, Y.N. Quantum Hydrodynamics of Spinning Particles in Electromagnetic and Torsion Fields. Universe 2021, 7, 498. https://doi.org/10.3390/universe7120498
Trukhanova MI, Obukhov YN. Quantum Hydrodynamics of Spinning Particles in Electromagnetic and Torsion Fields. Universe. 2021; 7(12):498. https://doi.org/10.3390/universe7120498
Chicago/Turabian StyleTrukhanova, Mariya Iv., and Yuri N. Obukhov. 2021. "Quantum Hydrodynamics of Spinning Particles in Electromagnetic and Torsion Fields" Universe 7, no. 12: 498. https://doi.org/10.3390/universe7120498
APA StyleTrukhanova, M. I., & Obukhov, Y. N. (2021). Quantum Hydrodynamics of Spinning Particles in Electromagnetic and Torsion Fields. Universe, 7(12), 498. https://doi.org/10.3390/universe7120498