Isospin Effect on Baryon and Charge Fluctuations from the pNJL Model
Abstract
:1. Introduction
2. PNJL Model with Isovector Couplings
3. Isospin Properties of Higher-Order Susceptibilities
4. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Bernard, C.; Burch, T.; DeTar, C.; Osborn, J.; Gottlieb, S.; Gregory, E.B.; Toussaint, D.; Heller, U.M.; Sugar, R. QCD thermodynamics with three flavors of improved staggered quarks. Phys. Rev. D 2005, 71, 034504. [Google Scholar] [CrossRef] [Green Version]
- Aoki, Y.; Endrodi, G.; Fodor, Z.; Katz, S.D.; Szabo, K.K. The order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 2006, 443, 675–678. [Google Scholar] [CrossRef] [Green Version]
- Bazavov, A.; Bhattacharya, T.; Cheng, M.; DeTar, C.; Ding, H.-T.; Gottlieb, S.; Gupta, R.; Hegde, P.; Heller, U.M.; Karsch, F.; et al. Chiral and deconfinement aspects of the QCD transition. Phys. Rev. D 2012, 85, 054503. [Google Scholar] [CrossRef] [Green Version]
- Asakawa, M.; Yazaki, K. Chiral restoration at finite density and temperature. Nucl. Phys. A 1989, 504, 668–684. [Google Scholar]
- Fukushima, K. Phase diagrams in the three-flavor Nambu–Jona-Lasinio model with the Polyakov loop. Phys. Rev. D 2008, 77, 114028, Erratum in 2008, 78, 039902. [Google Scholar] [CrossRef] [Green Version]
- Carignano, S.; Nickel, D.; Buballa, M. Influence of vector interaction and Polyakov loop dynamics on inhomogeneous chiral symmetry breaking phases. Phys. Rev. D 2010, 82, 054009. [Google Scholar] [CrossRef] [Green Version]
- Bratovic, N.M.; Hatsuda, T.; Weise, W. Role of vector interaction and axial anomaly in the PNJL modeling of the QCD phase diagram. Phys. Lett. B 2013, 719, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Stephanov, M.A. QCD phase diagram: An overview. PoS LAT 2006, 2006, 024. [Google Scholar]
- Aggarwal, M.M.; Ahammed, Z.; Alakhverdyants, A.V.; Alekseev, I.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Balewski, J.; Barnby, L.S.; Baumgart, S.; et al. An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement. arXiv 2010, arXiv:1007.2613. [Google Scholar]
- Son, D.T.; Stephanov, M.A. QCD at finite isospin density. Phys. Rev. Lett. 2001, 86, 592. [Google Scholar] [CrossRef] [Green Version]
- Andronic, A.; Braun-Munzinger, P.; Stachel, J. Thermal hadron production in relativistic nuclear collisions: The hadron mass spectrum, the horn, and the QCD phase transition. Phys. Lett. B 2009, 673, 142–145. [Google Scholar] [CrossRef] [Green Version]
- Stachel, J.; Andronic, A.; Braun-Munzinger, P.; Redlich, K. Confronting LHC data with the statistical hadronization model. J. Phys. Conf. Ser. 2014, 509, 012019. [Google Scholar] [CrossRef]
- Hatta, Y.; Monnai, A.; Xiao, B.W. Elliptic flow difference of charged pions in heavy-ion collisions. Nucl. Phys. A 2016, 947, 155. [Google Scholar] [CrossRef] [Green Version]
- Stephanov, M.A. Non-Gaussian Fluctuations near the QCD Critical Point. Phys. Rev. Lett. 2009, 102, 032301. [Google Scholar] [CrossRef] [Green Version]
- Asakawa, M.; Ejiri, S.; Kitazawa, M. Third moments of conserved charges as probes of QCD phase structure. Phys. Rev. Lett. 2009, 103, 262301. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, M.M.; Ahammed, Z.; Alakhverdyants, A.V.; Alekseev, I.; Alford, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Balewski, J.; Barnby, L.S.; et al. Higher Moments of Net Proton Multiplicity Distributions at RHIC. Phys. Rev. Lett. 2010, 105, 022302. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.D.; Aparin, A.; Arkhipkin, D.; et al. Energy Dependence of Moments of Net-Proton Multiplicity Distributions at RHIC. Phys. Rev. Lett. 2014, 112, 032302. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.D.; Aparin, A.; Arkhipkin, D.; et al. Beam Energy Dependence of Moments of the Net-Charge Multiplicity Distributions in Au+Au Collisions at RHIC. Phys. Rev. Lett. 2014, 113, 092301. [Google Scholar] [CrossRef]
- Adare, A.; Afanasiev, S.; Aidala, C.; Ajitan, N.N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Alexander, J.; Al-Ta’ani, H.; Angerami, A.; et al. [PHENIX Collaboration] Measurement of higher cumulants of net-charge multiplicity distributions in Au + Au collisions at sNN = 7.7–200 GeV. Phys. Rev. C 2016, 93, 011901. [Google Scholar] [CrossRef] [Green Version]
- Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Ajitanand, N.N.; Alekseev, I.; Anderson, D.M.; Aoyama, R.; et al. Collision Energy Dependence of Moments of Net-Kaon Multiplicity Distributions at RHIC. Phys. Lett. B 2018, 785, 551. [Google Scholar] [CrossRef]
- Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Anderson, D.M.; Aoyama, R.; et al. Collision-energy dependence of second-order off-diagonal and diagonal cumulants of net-charge, net-proton, and net-kaon multiplicity distributions in Au + Au collisions. Phys. Rev. C 2019, 100, 014902. [Google Scholar] [CrossRef] [Green Version]
- Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Anderson, D.M.; Aparin, A.; et al. Net-proton number fluctuations and the Quantum Chromodynamics critical point. arXiv 2020, arXiv:2001.02852. [Google Scholar]
- Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Anderson, D.M.; Aoyama, R.; et al. Beam energy dependence of net-Λ fluctuations measured by the STAR experiment at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 2020, 102, 024903. [Google Scholar] [CrossRef]
- Bazavov, A.; Ding, H.T.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Laermann, E.; Mukherjee, S.; Petreczky, P.; Schmidt, C.; Smith, D.; et al. Freeze-out conditions in heavy ion collisions from QCD thermodynamics. Phys. Rev. Lett. 2012, 109, 192302. [Google Scholar] [CrossRef] [Green Version]
- Borsányi, S.; Fodor, Z.; Katz, S.D.; Krieg, S.; Ratti, C.; Szabó, K.K. Freeze-Out Parameters: Lattice Meets Experiment. Phys. Rev. Lett. 2013, 111, 062005. [Google Scholar] [CrossRef] [Green Version]
- Asakawa, M.; Kitazawa, M. Fluctuations of conserved charges in relativistic heavy ion collisions: An introduction. Prog. Part. Nucl. Phys. 2016, 90, 299. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.F.; Xu, N. Search for the QCD Critical Point with Fluctuations of Conserved Quantities in Relativistic Heavy-Ion Collisions at RHIC: An Overview. Nucl. Sci. Tech. 2017, 28, 112. [Google Scholar] [CrossRef] [Green Version]
- Kogut, J.B.; Sinclair, D.K. Lattice QCD at finite isospin density at zero and finite temperature. Phys. Rev. D 2002, 66, 034505. [Google Scholar] [CrossRef] [Green Version]
- Detmold, W.; Orginos, K.; Shi, Z. Lattice QCD at nonzero isospin chemical potential. Phys. Rev. D 2012, 86, 054507. [Google Scholar] [CrossRef] [Green Version]
- Brandt, B.B.; Endrodi, G. QCD phase diagram with isospin chemical potential. arXiv 2016, arXiv:1611.06758. [Google Scholar]
- Barbour, I.; Behilil, N.E.; Dagotto, E.; Karsch, F.; Moreo, A.; Stone, M.; Wyld, H.W. Problems with finite density simulations of lattice QCD. Nucl. Phys. B 1986, 275, 296. [Google Scholar] [CrossRef] [Green Version]
- Karsch, F. Lattice QCD at High Temperature and Density. Lect. Notes Phys. 2002, 583, 209. [Google Scholar]
- Muroya, S.; Nakamura, A.; Nonaka, C.; Takaishi, T. Lattice QCD at finite density: An introductory review. Prog. Theor. Phys. 2003, 110, 615–668. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Xu, J.; Chen, L.W.; Sun, K.J. Isospin properties of quark matter from a 3-flavor NJL model. Phys. Rev. D 2016, 94, 065032. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, F.T.; Sun, K.J.; Xu, J.; Ko, C.M. Isospin splitting of pion elliptic flow in relativistic heavy-ion collisions. Phys. Lett. B 2019, 798, 135002. [Google Scholar] [CrossRef]
- Liu, H.; Xu, J.; Ko, C.M. Properties of strange quark stars with isovector interactions. Phys. Lett. B 2020, 803, 135343. [Google Scholar] [CrossRef]
- Frank, M.; Buballa, M.; Oertel, M. Flavor-mixing effects on the QCD phase diagram at non-vanishing isospin chemical potential: One or two phase transitions? Phys. Lett. B 2003, 562, 221. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Su, H.P. Fate of separate chiral transitions at finite I under the influence of mismatched vector interactions. Phys. Rev. D 2014, 80, 054020. [Google Scholar] [CrossRef] [Green Version]
- Toublan, D.; Kugot, J.B. Gapless two-flavor color superconductor. Phys. Lett. B 2003, 564, 211. [Google Scholar]
- Lutz, M.F.M.; Klimt, S.; Weise, W. Meson properties at finite temperature and baryon density. Nucl. Phys. A 1992, 542, 521. [Google Scholar] [CrossRef]
- Kunihiro, T. Quark-number susceptibility and fluctuations in the vector channel at high temperatures. Phys. Lett. B 1991, 271, 395. [Google Scholar] [CrossRef]
- Steinheimer, J.; Schramma, S. The problem of repulsive quark interactions–Lattice versus mean field models. Phys. Lett. B 2011, 696, 257. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Song, T.; Ko, C.M.; Li, F. Elliptic flow splitting as a probe of the QCD phase structure at finite baryon chemical potential. Phys. Rev. Lett. 2014, 112, 012301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.W.; Deng, J.; Labun, L. Baryon susceptibilities, non-Gaussian moments, and the QCD critical point. Phys. Rev. D 2015, 92, 054019. [Google Scholar] [CrossRef] [Green Version]
- Ratti, C.; Roessner, S.; Thaler, M.A.; Weise, W. Thermodynamics of the PNJL model. Eur. Phys. J. C 2007, 49, 213. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mustafa, M.G.; Ray, R. Thermodynamics of the Polyakov-Nambu-Jona-Lasinio model with nonzero baryon and isospin chemical potentials. Phys. Rev. D 2007, 75, 094015. [Google Scholar] [CrossRef] [Green Version]
- Kashiwa, K.; Kouno, H.; Matsuzaki, M.; Yahiro, M. Critical endpoint in the Polyakov-loop extended NJL model. Phys. Lett. B 2008, 662, 26. [Google Scholar] [CrossRef] [Green Version]
- Buballa, M.; Grunfeld, A.G.; Radzhabov, A.E.; Scheffler, D. Aspects of the phase diagram in (P) NJL-like models. Prog. Part. Nucl. Phys. 2009, 62, 365. [Google Scholar] [CrossRef] [Green Version]
- Cristoforetti, M.; Hell, T.; Klein, B.; Weise, W. Thermodynamics and quark susceptibilities: A Monte Carlo approach to the Polyakov–Nambu–Jona-Lasinio model. Phys. Rev. D 2010, 81, 114017. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, A.; Deb, P.; Lahiri, A.; Ray, R. Susceptibilities with multiquark interactions in the Polyakov–Nambu–Jona-Lasinio model. Phys. Rev. D 2010, 82, 114028. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, A.; Ray, R.; Sur, S. Fluctuation of strongly interacting matter in the Polyakov–Nambu–Jona-Lasinio model in a finite volume. Phys. Rev. D 2015, 91, 051501. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, A.; Ghosh, S.K.; Maity, S.; Raha, S.; Ray, R.; Saha, K.; Upadhaya, S. Reparametrizing the Polyakov–Nambu–Jona-Lasinio model. Phys. Rev. D 2017, 95, 054005. [Google Scholar] [CrossRef] [Green Version]
- Shao, G.Y.; Tang, Z.D.; Gao, X.Y.; He, W.B. Baryon number fluctuations and the phase structure in the PNJL model. Eur. Phys. J. C 2018, 78, 138. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.; Costa, P.; Providência, C. Presence of a critical endpoint in the QCD phase diagram from the net-baryon number fluctuations. Phys. Rev. D 2018, 98, 034006. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xu, K.; Wang, X.; Huang, M. The kurtosis of net baryon number fluctuations from a realistic Polyakov–Nambu–Jona-Lasinio model along the experimental freeze-out line. Eur. Phys. J. C 2019, 79, 245. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, K. Hadron resonance gas and mean-field nuclear matter for baryon number fluctuations. Phys. Rev. D 2015, 91, 044910. [Google Scholar] [CrossRef] [Green Version]
- Nahrgang, M.; Bluhm, M.; Alba, P.; Bellwied, R.; Ratti, C. Impact of resonance regeneration and decay on the net proton fluctuations in a hadron resonance gas. Eur. Phys. J. C 2015, 75, 573. [Google Scholar] [CrossRef] [Green Version]
- Mishra, D.K.; Garg, P.; Netrakanti, P.K.; Mohanty, A.K. Effect of resonance decay on conserved number fluctuations in a hadron resonance gas model. Phys. Rev. C 2016, 94, 014905. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Steinheimer, J.; Schramm, S. Higher-order baryon number susceptibilities: Interplay between the chiral and the nuclear liquid-gas transitions. Phys. Rev. D 2017, 96, 025205. [Google Scholar] [CrossRef] [Green Version]
- Vovchenko, V.; Gorenstein, M.I.; Stoecker, H. van der Waals interactions in hadron resonance gas: From nuclear matter to lattice QCD. Phys. Rev. Lett. 2017, 118, 182301. [Google Scholar] [CrossRef] [Green Version]
- Adak, R.P.; Das, S.; Ghosh, S.K.; Ray, R.; Samanta, S. Centrality dependence of chemical freeze-out parameters from net-proton and net-charge fluctuations using a hadron resonance gas model. Phys. Rev. C 2017, 96, 014902. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.H. Higher moments of multiplicity fluctuations in a hadron-resonance gas with exact conservation laws. Phys. Rev. C 2017, 96, 034905. [Google Scholar] [CrossRef] [Green Version]
- Cleymans, J.; Oeschler, H.; Redlich, K.; Wheaton, S. Comparison of chemical freeze-out criteria in heavy-ion collisions. Phys. Rev. C 2006, 73, 034905. [Google Scholar] [CrossRef]
- Chen, J.W.; Deng, J.; Kohyama, H.; Labun, L. Universal relations between non-Gaussian fluctuations in heavy-ion collisions. Phys. Rev. D 2017, 95, 014038. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.F. Private Communications. Available online: https://www.privatecommcorp.com/about/ (accessed on 8 December 2020).
- Bazavov, A.; Ding, H.T.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Laermann, E.; Maezawa, Y.; Mukherjee, S.; Ohno, H.; Petreczky, P.; et al. QCD equation of state to O ( B 6) from lattice QCD. Phys. Rev. D 2017, 95, 054504. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Xu, J. Isospin Effect on Baryon and Charge Fluctuations from the pNJL Model. Universe 2021, 7, 6. https://doi.org/10.3390/universe7010006
Liu H, Xu J. Isospin Effect on Baryon and Charge Fluctuations from the pNJL Model. Universe. 2021; 7(1):6. https://doi.org/10.3390/universe7010006
Chicago/Turabian StyleLiu, He, and Jun Xu. 2021. "Isospin Effect on Baryon and Charge Fluctuations from the pNJL Model" Universe 7, no. 1: 6. https://doi.org/10.3390/universe7010006
APA StyleLiu, H., & Xu, J. (2021). Isospin Effect on Baryon and Charge Fluctuations from the pNJL Model. Universe, 7(1), 6. https://doi.org/10.3390/universe7010006