Dark Matters on the Scale of Galaxies
Abstract
Contents | |
1 Introduction | 2 |
2 Overview of the Cold-Dark-Matter Model | 5 |
3 Observational Challenges of the Cold-Dark-Matter Model | 7 |
3.1 The Rotation Curves of Disk Galaxies and the Baryonic Scaling Relations | 7 |
3.1.1 Observational Evidence | 8 |
3.1.2 Possible Solutions within the CDM Model | 11 |
3.2 The Cusp/Core Problem | 12 |
3.2.1 Observational Evidence | 13 |
3.2.2 Possible Solutions within the CDM Model | 16 |
3.3 The Missing Satellites Problem | 17 |
3.3.1 Possible Solutions within the CDM Model | 18 |
3.4 The Too-Big-To-Fail Problem | 22 |
3.4.1 Possible Solutions within the CDM Model | 24 |
3.5 Planes of Satellite Galaxies | 25 |
3.5.1 Evidence of the Orbital Alignment of the Satellites | 25 |
3.5.2 Comparison with the CDM Predictions | 28 |
3.5.3 Possible Solutions within the CDM Model | 29 |
4 Possible Solutions beyond the Standard Cold Dark Matter | 29 |
4.1 Warm Dark-Matter Model | 31 |
4.1.1 Solutions to the Observational Challenges | 32 |
4.2 Self-Interacting Dark Matter | 33 |
4.2.1 Solving Small-Scale Issues With SIDM | 33 |
4.2.2 SIDM in Particle Physics | 36 |
4.3 QCD Axions | 37 |
4.3.1 Emergence of QCD Axions | 37 |
4.3.2 Distinctive Features of QCD Axions | 39 |
4.3.3 QCD Axions and Small-Scale Problems Of CDM | 40 |
4.4 Fuzzy Dark Matter | 41 |
4.4.1 Solutions to the Observational Challenges | 41 |
5 Possible Solutions beyond Newtonian Dynamics | 44 |
5.1 MOND | 44 |
5.1.1 Disk Galaxies | 45 |
5.1.2 Dwarf Galaxies | 48 |
5.2 MOdified Gravity (MOG) | 49 |
5.2.1 Solutions to the Observational Challenges | 50 |
5.3 F(R)-Gravity | 52 |
5.3.1 Solutions to the Observational Challenges | 53 |
6 Summary and Discussion | 54 |
References | 57 |
1. Introduction
2. Overview of the Cold-Dark-Matter Model
3. Observational Challenges of the Cold-Dark-Matter Model
3.1. The Rotation Curves of Disk Galaxies and the Baryonic Scaling Relations
3.1.1. Observational Evidence
3.1.2. Possible Solutions within the CDM Model
3.2. The Cusp/Core Problem
3.2.1. Observational Evidence
3.2.2. Possible Solutions within the CDM Model
3.3. The Missing Satellites Problem
3.3.1. Possible Solutions within the CDM Model
3.4. The Too-Big-To-Fail Problem
3.4.1. Possible Solutions within the CDM Model
3.5. Planes of Satellite Galaxies
3.5.1. Evidence of the Orbital Alignment of the Satellites
3.5.2. Comparison with the CDM Predictions
3.5.3. Possible Solutions within the CDM Model
4. Possible Solutions beyond the Standard Cold Dark Matter
4.1. Warm Dark-Matter Model
4.1.1. Solutions to the Observational Challenges
4.2. Self-Interacting Dark Matter
4.2.1. Solving Small-Scale Issues With SIDM
4.2.2. SIDM in Particle Physics
4.3. QCD Axions
4.3.1. Emergence of QCD Axions
4.3.2. Distinctive Features of QCD Axions
4.3.3. QCD Axions and Small-Scale Problems Of CDM
4.4. Fuzzy Dark Matter
4.4.1. Solutions to the Observational Challenges
5. Possible Solutions beyond Newtonian Dynamics
5.1. MOND
5.1.1. Disk Galaxies
5.1.2. Dwarf Galaxies
5.2. MOdified Gravity (MOG)
5.2.1. Solutions to the Observational Challenges
5.3. F(R)-Gravity
5.3.1. Solutions to the Observational Challenges
6. Summary and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALPs | Axion-Like Particles |
AM | Abundance Matching |
BEC | Bose-Einstein Condensate |
BTFR | Baryonic Tully-Fisher Relation |
CASP | Centaurus A satellite plane |
CCP | Cusp/Core Problem |
CDM | Cold Dark Matter |
CenA | Centaurus A |
ALPs | Axion-Like Particles |
AM | Abundance Matching |
BEC | Bose-Einstein Condensate |
BTFR | Baryonic Tully-Fisher Relation |
CASP | Centaurus A satellite plane |
CCP | Cusp/Core Problem |
CDM | Cold Dark Matter |
CenA | Centaurus A |
CMBR | Cosmic Microwave Background Radiation |
dSph | Dwarf Spheroidal |
FDM | Fuzzy Dark Matter |
GPoA | Giant Plane of Andromeda |
HSB | High Surface Brightness |
IMF | Initial Mass Functions |
ΛCDM | Λ-Cold Dark Matter |
MACHOs | Massive Astrophysical Compact Halo Object |
MDAR | Mass-Discrepancy Acceleration Relation |
MOND | Modified Newtonian Dynamics |
NFW | Navarro-Frenk-White |
PQ | Peccei-Quinn |
QCD | Quantum Chromodynamics |
RAR | Radial Acceleration Relation |
SPS | Stellar-Population-Synthesis |
VPOS | Vast Polar Structure |
TBTF | Too-Big-To-Fail |
TDGs | Tidal Dwarf Galaxies |
ULALPs | Ultra-Light ALPs |
WMAP | Wilkinson Microwave Anisotropy Probe |
WDM | Warm Dark Matter |
WIMPs | Weakly Interacting Massive Particles |
References
- Bertone, G.; Hooper, D. History of dark matter. Rev. Mod. Phys. 2018, 90, 045002. [Google Scholar] [CrossRef]
- Oort, J.H. The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems. Bull. Astron. Inst. Neth. 1932, 6, 249. [Google Scholar]
- Kuijken, K.; Gilmore, G. The mass distribution in the galactic disc—II. Determination of the surface mass density of the galactic disc near the Sun. Mon. Not. R. Astron. Soc. 1989, 239, 605–649. [Google Scholar] [CrossRef]
- Kuijken, K.; Gilmore, G. The mass distribution in the galactic disc—III. The local volume mass density. Mon. Not. R. Astron. Soc. 1989, 239, 651–664. [Google Scholar] [CrossRef]
- Holmberg, J.; Flynn, C. The local surface density of disc matter mapped byHipparcos. Mon. Not. R. Astron. Soc. 2004, 352, 440–446. [Google Scholar] [CrossRef]
- Read, J.I. The local dark matter density. J. Phys. G Nucl. Phys. 2014, 41, 063101. [Google Scholar] [CrossRef]
- Zwicky, F. Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 1933, 6, 110–127. [Google Scholar]
- Rubin, V.C.; Ford, W.K., Jr. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 1970, 159, 379. [Google Scholar] [CrossRef]
- Freeman, K.C. On the Disks of Spiral and S0 Galaxies. Astrophys. J. 1970, 160, 811. [Google Scholar] [CrossRef]
- Roberts, M.S.; Rots, A.H. Comparison of Rotation Curves of Different Galaxy Types. Astron. Astrophys. 1973, 26, 483–485. [Google Scholar]
- Ostriker, J.P.; Peebles, P.J.E. A Numerical Study of the Stability of Flattened Galaxies: Or, can Cold Galaxies Survive? Astrophys. J. 1973, 186, 467–480. [Google Scholar] [CrossRef]
- Lasserre, T.; Afonso, C.; Albert, J.N.; Andersen, J.; Ansari, R.; Aubourg, É.; Bareyre, P.; Bauer, F.; Beaulieu, J.P.; Blanc, G.; et al. Not enough stellar mass Machos in the Galactic halo. Astron. Astrophys. 2000, 355, L39–L42. [Google Scholar]
- Tisserand, P.; Le Guillou, L.; Afonso, C.; Albert, J.N.; Andersen, J.; Ansari, R.; Aubourg, É.; Bareyre, P.; Beaulieu, J.P.; Charlot, X.; et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. Astron. Astrophys. 2007, 469, 387–404. [Google Scholar] [CrossRef]
- Carr, B.J.; Hawking, S.W. Black Holes in the Early Universe. Mon. Not. R. Astron. Soc. 1974, 168, 399–415. [Google Scholar] [CrossRef]
- Motohashi, H.; Hu, W. Primordial black holes and slow-roll violation. Phys. Rev. D 2017, 96. [Google Scholar] [CrossRef]
- Passaglia, S.; Hu, W.; Motohashi, H. Primordial black holes and local non-Gaussianity in canonical inflation. Phys. Rev. D 2019, 99. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.F.; Huang, Q.G.; Li, T.G.F. Constraints on the Primordial Black Hole Abundance from the First Advanced LIGO Observation Run Using the Stochastic Gravitational-Wave Background. Phys. Rev. Lett. 2018, 120, 191102. [Google Scholar] [CrossRef]
- Young, S.; Byrnes, C.T. Signatures of non-gaussianity in the isocurvature modes of primordial black hole dark matter. J. Cosmol. Astropart. Phys. 2015, 2015, 034. [Google Scholar] [CrossRef]
- Clark, S.J.; Dutta, B.; Gao, Y.; Strigari, L.E.; Watson, S. Planck constraint on relic primordial black holes. Phys. Rev. D 2017, 95, 083006. [Google Scholar] [CrossRef]
- Planck Collaboration; Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results. IX. Constraints on primordial non-Gaussianity. arXiv 2019, arXiv:1905.05697. [Google Scholar]
- Niikura, H.; Takada, M.; Yasuda, N.; Lupton, R.H.; Sumi, T.; More, S.; Kurita, T.; Sugiyama, S.; More, A.; Oguri, M.; et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nat. Astron. 2019, 3, 524–534. [Google Scholar] [CrossRef]
- Martin, S.P. A Supersymmetry Primer. In Perspectives on Supersymmetry; Kane Gordon, L., Ed.; World Scientific Publishing Co. Pte. Ltd.: Singapore, 1998; pp. 1–98. [Google Scholar] [CrossRef]
- Jungman, G.; Kamionkowski, M.; Griest, K. Supersymmetric dark matter. Phys. Rep. 1996, 267, 195–373. [Google Scholar] [CrossRef]
- Akerib, D.S.; Alsum, S.; Araújo, H.M.; Bai, X.; Bailey, A.J.; Balajthy, J.; Beltrame, P.; Bernard, E.P.; Bernstein, A.; Biesiadzinski, T.P.; et al. Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett. 2017, 118, 021303. [Google Scholar] [CrossRef] [PubMed]
- Bernabei, R.; Belli, P.; Cappella, F.; Caracciolo, V.; Castellano, S.; Cerulli, R.; Dai, C.J.; d’Angelo, A.; d’Angelo, S.; Di Marco, A.; et al. Final model independent result of DAMA/LIBRA-phase1. Eur. Phys. J. C 2013, 73. [Google Scholar] [CrossRef]
- Bernabei, R.; Belli, P.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Dai, C.J.; d’Angelo, A.; Di Marco, A.; He, H.L.; Incicchitti, A.; et al. The Dark Matter annual modulation results from DAMA/LIBRA. Eur. Phys. J. Web Conf. 2014, 70, 00043. [Google Scholar] [CrossRef]
- Klinger, J.; Kudryavtsev, V.A. Muon-Induced Neutrons Do Not Explain the DAMA Data. Phys. Rev. Lett. 2015, 114, 151301. [Google Scholar] [CrossRef]
- Hu, W.; Barkana, R.; Gruzinov, A. Fuzzy Cold Dark Matter: The Wave Properties of Ultralight Particles. Phys. Rev. Lett. 2000, 85, 1158–1161. [Google Scholar] [CrossRef]
- Amendola, L.; Barbieri, R. Dark matter from an ultra-light pseudo-Goldsone-boson. Phys. Lett. B 2006, 642, 192–196. [Google Scholar] [CrossRef]
- Weinberg, S. A New Light Boson? Phys. Rev. Lett. 1978, 40, 223–226. [Google Scholar] [CrossRef]
- Wilczek, F. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 279–282. [Google Scholar] [CrossRef]
- Arvanitaki, A.; Dimopoulos, S.; Dubovsky, S.; Kaloper, N.; March-Russell, J. String axiverse. Phys. Rev. D 2010, 81, 123530. [Google Scholar] [CrossRef]
- Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 1983, 270, 365–370. [Google Scholar] [CrossRef]
- Milgrom, M. A modification of the Newtonian dynamics - Implications for galaxies. Astrophys. J. 1983, 270, 371–389. [Google Scholar] [CrossRef]
- Milgrom, M. A modification of the newtonian dynamics: Implications for galaxy systems. Astrophys. J. 1983, 270, 384–389. [Google Scholar] [CrossRef]
- Moffat, J.W. Scalar tensor vector gravity theory. J. Cosmol. Astropart. Phys. 2006, 2006, 004. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M. The dark matter problem from f(R) gravity viewpoint. Ann. Phys. 2012, 524, 545–578. [Google Scholar] [CrossRef]
- Verlinde, E. Emergent Gravity and the Dark Universe. SciPost Phys. 2017, 2, 016. [Google Scholar] [CrossRef]
- Moore, B. Evidence against dissipation-less dark matter from observations of galaxy haloes. Nat. Phys. 1994, 370, 629–631. [Google Scholar] [CrossRef]
- Moore, B.; Quinn, T.; Governato, F.; Stadel, J.; Lake, G. Cold collapse and the core catastrophe. Mon. Not. R. Astron. Soc. 1999, 310, 1147–1152. [Google Scholar] [CrossRef]
- Boylan-Kolchin, M.; Bullock, J.S.; Kaplinghat, M. Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Mon. Not. R. Astron. Soc. 2011, 415, L40–L44. [Google Scholar] [CrossRef]
- Bullock, J.S.; Boylan-Kolchin, M. Small-Scale Challenges to the ΛCDM Paradigm. Ann. Rev. Astron. Astrophys. 2017, 55, 343–387. [Google Scholar] [CrossRef]
- Del Popolo, A.; Le Delliou, M. Small Scale Problems of the ΛCDM Model: A Short Review. Galaxies 2017, 5, 17. [Google Scholar] [CrossRef]
- Salucci, P. The distribution of dark matter in galaxies. Astron. Astrophys. Rev. 2019, 27, 2. [Google Scholar] [CrossRef]
- Navarro, J.F.; Eke, V.R.; Frenk, C.S. The cores of dwarf galaxy haloes. Mon. Not. R. Astron. Soc. 1996, 283, L72–L78. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. A Universal Density Profile from Hierarchical Clustering. Astrophys. J. 1997, 490, 493–508. [Google Scholar] [CrossRef]
- Ferrero, I.; Abadi, M.G.; Navarro, J.F.; Sales, L.V.; Gurovich, S. The dark matter haloes of dwarf galaxies: A challenge for the Λ cold dark matter paradigm? Mon. Not. R. Astron. Soc. 2012, 425, 2817–2823. [Google Scholar] [CrossRef]
- Genina, A.; Benítez-Llambay, A.; Frenk, C.S.; Cole, S.; Fattahi, A.; Navarro, J.F.; Oman, K.A.; Sawala, T.; Theuns, T. The core-cusp problem: A matter of perspective. Mon. Not. R. Astron. Soc. 2018, 474, 1398–1411. [Google Scholar] [CrossRef]
- Davis, M.; Efstathiou, G.; Frenk, C.S.; White, S.D.M. The evolution of large-scale structure in a universe dominated by cold dark matter. Astrophys. J. 1985, 292, 371–394. [Google Scholar] [CrossRef]
- Flores, R.A.; Primack, J.R. Observational and theoretical constraints on singular dark matter halos. Astrophys. J. 1994, 427, L1. [Google Scholar] [CrossRef]
- Walker, M.G.; Mateo, M.; Olszewski, E.W.; Peñarrubia, J.; Evans, N.W.; Gilmore, G. A Universal Mass Profile for Dwarf Spheroidal Galaxies? Astrophys. J. 2009, 704, 1274–1287. [Google Scholar] [CrossRef]
- Kauffmann, G.; White, S.D.M.; Guiderdoni, B. The formation and evolution of galaxies within merging dark matter haloes. Mon. Not. R. Astron. Soc. 1993, 264, 201–218. [Google Scholar] [CrossRef]
- Klypin, A.; Kravtsov, A.V.; Valenzuela, O.; Prada, F. Where Are the Missing Galactic Satellites? Astrophys. J. 1999, 522, 82–92. [Google Scholar] [CrossRef]
- Read, J.I.; Wilkinson, M.I.; Evans, N.W.; Gilmore, G.; Kleyna, J.T. The importance of tides for the Local Group dwarf spheroidals. Mon. Not. R. Astron. Soc. 2006, 367, 387–399. [Google Scholar] [CrossRef]
- Boylan-Kolchin, M.; Bullock, J.S.; Kaplinghat, M. The Milky Way’s bright satellites as an apparent failure of ΛCDM. Mon. Not. R. Astron. Soc. 2012, 422, 1203–1218. [Google Scholar] [CrossRef]
- Garrison-Kimmel, S.; Boylan-Kolchin, M.; Bullock, J.S.; Kirby, E.N. Too big to fail in the Local Group. Mon. Not. R. Astron. Soc. 2014, 444, 222–236. [Google Scholar] [CrossRef]
- Pawlowski, M.S.; Famaey, B.; Jerjen, H.; Merritt, D.; Kroupa, P.; Dabringhausen, J.; Lüghausen, F.; Forbes, D.A.; Hensler, G.; Hammer, F.; et al. Co-orbiting satellite galaxy structures are still in conflict with the distribution of primordial dwarf galaxies. Mon. Not. R. Astron. Soc. 2014, 442, 2362–2380. [Google Scholar] [CrossRef]
- McGaugh, S.S. Novel Test of Modified Newtonian Dynamics with Gas Rich Galaxies. Phys. Rev. Lett. 2011, 106. [Google Scholar] [CrossRef]
- van den Bosch, F.C.; Swaters, R.A. Dwarf galaxy rotation curves and the core problem of dark matter haloes. Mon. Not. R. Astron. Soc. 2001, 325, 1017–1038. [Google Scholar] [CrossRef]
- Cardone, V.F.; Popolo, A.D.; Kroupa, P. Angular momentum transfer and the size-mass relation in early-type galaxies. Mon. Not. R. Astron. Soc. 2009, 400, 766–774. [Google Scholar] [CrossRef][Green Version]
- Ostriker, J.P.; Steinhardt, P.J. The observational case for a low-density Universe with a non-zero cosmological constant. Nat. Phys. 1995, 377, 600–602. [Google Scholar] [CrossRef]
- Hinshaw, G.; Larson, D.; Komatsu, E.; Spergel, D.N.; Bennett, C.L.; Dunkley, J.; Nolta, M.R.; Halpern, M.; Hill, R.S.; Odegard, N.; et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. Astrophys. J. Suppl. Ser. 2013, 208, 19. [Google Scholar] [CrossRef]
- Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results. VI. Cosmological parameters. arXiv 2018, arXiv:1807.06209. [Google Scholar]
- Planck Collaboration; Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results. X. Constraints on inflation. arXiv 2018, arXiv:1807.06211. [Google Scholar]
- Planck Collaboration; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Band ay, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VII. Isotropy and Statistics of the CMB. arXiv 2019, arXiv:1906.02552. [Google Scholar]
- Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results. V. CMB power spectra and likelihoods. arXiv 2019, arXiv:1907.12875. [Google Scholar]
- Percival, W.J.; Baugh, C.M.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Cole, S.; Colless, M.; Collins, C.; Couch, W.; Dalton, G.; et al. The 2dF Galaxy Redshift Survey: The power spectrum and the matter content of the Universe. Mon. Not. R. Astron. Soc. 2001, 327, 1297. [Google Scholar] [CrossRef]
- Pope, A.C.; Matsubara, T.; Szalay, A.S.; Blanton, M.R.; Eisenstein, D.J.; Gray, J.; Jain, B.; Bahcall, N.A.; Brinkmann, J.; Budavari, T.; et al. Cosmological Parameters from Eigenmode Analysis of Sloan Digital Sky Survey Galaxy Redshifts. Astrophys. J. 2004, 607, 655. [Google Scholar] [CrossRef]
- Tegmark, M.; Blanton, M.R.; Strauss, M.A.; Hoyle, F.; Schlegel, D.; Scoccimarro, R.; Vogeley, M.S.; Weinberg, D.H.; Zehavi, I.; Berlind, A.; et al. The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey. Astrophys. J. 2004, 606, 702–740. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Riess, A.G.; Strolger, L.G.; Tonry, J.; Casertano, S.; Ferguson, H.C.; Mobasher, B.; Challis, P.; Filippenko, A.V.; Jha, S.; Li, W.; et al. Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution. Astrophys. J. 2004, 607, 665–687. [Google Scholar] [CrossRef]
- Astier, P.; Guy, J.; Regnault, N.; Pain, R.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R.G.; Fabbro, S.; Fouchez, D.; et al. The Supernova Legacy Survey: Measurement of ΩM, ΩΛ and w from the first year data set. Astron. Astrophys. 2006, 447, 31–48. [Google Scholar] [CrossRef]
- Davis, T.M.; Mörtsell, E.; Sollerman, J.; Becker, A.C.; Blondin, S.; Challis, P.; Clocchiatti, A.; Filippenko, A.V.; Foley, R.J.; Garnavich, P.M.; et al. Scrutinizing Exotic Cosmological Models Using ESSENCE Supernova Data Combined with Other Cosmological Probes. Astrophys. J. 2007, 666, 716–725. [Google Scholar] [CrossRef]
- Kowalski, M.; Rubin, D.; Aldering, G.; Agostinho, R.J.; Amadon, A.; Amanullah, R.; Balland, C.; Barbary, K.; Blanc, G.; Challis, P.J.; et al. Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets. Astrophys. J. 2008, 686, 749–778. [Google Scholar] [CrossRef]
- Amanullah, R.; Lidman, C.; Rubin, D.; Aldering, G.; Astier, P.; Barbary, K.; Burns, M.S.; Conley, A.; Dawson, K.S.; Deustua, S.E.; et al. Spectra and Hubble Space Telescope Light Curves of Six Type Ia Supernovae at 0.511 < z < 1.12 and the Union2 Compilation. Astrophys. J. 2010, 716, 712–738. [Google Scholar] [CrossRef]
- Suzuki, N.; Rubin, D.; Lidman, C.; Aldering, G.; Amanullah, R.; Barbary, K.; Barrientos, L.F.; Botyanszki, J.; Brodwin, M.; Connolly, N.; et al. The Hubble Space Telescope Cluster Supernova Survey. V. Improving the Dark-energy Constraints above z>1 and Building an Early-type-hosted Supernova Sample. Astrophys. J. 2012, 746, 85. [Google Scholar] [CrossRef]
- Jimenez, R.; Verde, L.; Treu, T.; Stern, D. Constraints on the Equation of State of Dark Energy and the Hubble Constant from Stellar Ages and the Cosmic Microwave Background. Astrophys. J. 2003, 593, 622–629. [Google Scholar] [CrossRef]
- Simon, J.; Verde, L.; Jimenez, R. Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D 2005, 71, 123001. [Google Scholar] [CrossRef]
- Stern, D.; Jimenez, R.; Verde, L.; Kamionkowski, M.; Stanford, S.A. Cosmic chronometers: Constraining the equation of state of dark energy. I: H(z) measurements. J. Cosmol. Astropart. Phys. 2010, 2010, 008. [Google Scholar] [CrossRef]
- Moresco, M.; Cimatti, A.; Jimenez, R.; Pozzetti, L.; Zamorani, G.; Bolzonella, M.; Dunlop, J.; Lamareille, F.; Mignoli, M.; Pearce, H.; et al. Improved constraints on the expansion rate of the Universe up to z ~1.1 from the spectroscopic evolution of cosmic chronometers. J. Cosmol. Astropart. Phys. 2012, 2012, 006. [Google Scholar] [CrossRef]
- Moresco, M.; Verde, L.; Pozzetti, L.; Jimenez, R.; Cimatti, A. New constraints on cosmological parameters and neutrino properties using the expansion rate of the Universe to z∼1.75. J. Cosmol. Astropart. Phys. 2012, 2012, 053. [Google Scholar] [CrossRef]
- Génova-Santos, R.T. The establishment of the Standard Cosmological Model through observations. In Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology; Kabath, P., Jones, D., Skarka, M., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; Chapter 11. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Rubakov, V.A. Relaxation of the cosmological constant at inflation? Phys. Rev. D 2000, 61, 061501. [Google Scholar] [CrossRef]
- Steinhardt, P.J.; Turok, N. Why the Cosmological Constant Is Small and Positive. Science 2006, 312, 1180–1183. [Google Scholar] [CrossRef]
- Weinberg, S. Anthropic bound on the cosmological constant. Phys. Rev. Lett. 1987, 59, 2607–2610. [Google Scholar] [CrossRef]
- Capolupo, A. Cosmological Effects of Quantum Vacuum Condensates. Galaxies 2017, 5, 98. [Google Scholar] [CrossRef]
- Capolupo, A. Condensates as components of dark matter and dark energy. J. Phys. Conf. Ser. 2017, 880, 012059. [Google Scholar] [CrossRef]
- Capolupo, A.; De Martino, I.; Lambiase, G.; Stabile, A. Axion-photon mixing in quantum field theory and vacuum energy. Phys. Lett. B 2019, 790, 427–435. [Google Scholar] [CrossRef]
- Brax, P. What makes the Universe accelerate? A review on what dark energy could be and how to test it. Rep. Prog. Phys. 2017, 81, 016902. [Google Scholar] [CrossRef]
- Huterer, D.; Shafer, D.L. Dark energy two decades after: Observables, probes, consistency tests. Rep. Prog. Phys. 2018, 81, 016901. [Google Scholar] [CrossRef] [PubMed]
- Frusciante, N.; Perenon, L. Effective Field Theory of Dark Energy: A Review. arXiv 2019, arXiv:1907.03150. [Google Scholar] [CrossRef]
- Riess, A.G.; Macri, L.M.; Hoffmann, S.L.; Scolnic, D.; Casertano, S.; Filippenko, A.V.; Tucker, B.E.; Reid, M.J.; Jones, D.O.; Silverman, J.M.; et al. A 2.4% Determination of the Local Value of the Hubble Constant. Astrophys. J. 2016, 826, 56. [Google Scholar] [CrossRef]
- Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.M.; Scolnic, D. Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM. Astrophys. J. 2019, 876, 85. [Google Scholar] [CrossRef]
- Hildebrandt, H.; Viola, M.; Heymans, C.; Joudaki, S.; Kuijken, K.; Blake, C.; Erben, T.; Joachimi, B.; Klaes, D.; Miller, L.; et al. KiDS-450: Cosmological parameter constraints from tomographic weak gravitational lensing. Mon. Not. R. Astron. Soc. 2017, 465, 1454–1498. [Google Scholar] [CrossRef]
- Di Valentino, E.; Melchiorri, A.; Silk, J. Planck evidence for a closed Universe and a possible crisis for cosmology. Nat. Astron. 2019. [Google Scholar] [CrossRef]
- McCarthy, I.G.; Bower, R.G.; Balogh, M.L. Revisiting the baryon fractions of galaxy clusters: A comparison with WMAP 3-yr results. Mon. Not. R. Astron. Soc. 2007, 377, 1457–1463. [Google Scholar] [CrossRef]
- Eckert, D.; Ettori, S.; Molendi, S.; Vazza, F.; Paltani, S. The X-ray/SZ view of the virial region. Astron. Astrophys. 2013, 551, A23. [Google Scholar] [CrossRef]
- Rubin, V.C.; Ford, W.K.J.; Thonnard, N.; Burstein, D. Rotational properties of 23Sb galaxies. Astrophys. J. 1982, 261, 439–456. [Google Scholar] [CrossRef]
- Bosma, A. 21-cm line studies of spiral galaxies. II. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types. Astron. J. 1981, 86, 1825–1846. [Google Scholar] [CrossRef]
- Kuhlen, M.; Vogelsberger, M.; Angulo, R. Numerical simulations of the dark universe: State of the art and the next decade. Phys. Dark Universe 2012, 1, 50–93. [Google Scholar] [CrossRef]
- Bertone, G.; Hooper, D.; Silk, J. Particle dark matter: Evidence, candidates and constraints. Phys. Rep. 2005, 405, 279–390. [Google Scholar] [CrossRef]
- Boyarsky, A.; Ruchayskiy, O.; Shaposhnikov, M. The Role of Sterile Neutrinos in Cosmology and Astrophysics. Annu. Rev. Nucl. Part. Sci. 2009, 59, 191–214. [Google Scholar] [CrossRef]
- Feng, J.L. Dark Matter Candidates from Particle Physics and Methods of Detection. Ann. Rev. Astron. Astrophys. 2010, 48, 495–545. [Google Scholar] [CrossRef]
- Kawasaki, M.; Nakayama, K. Axions: Theory and Cosmological Role. Annu. Rev. Nucl. Part. Sci. 2013, 63, 69–95. [Google Scholar] [CrossRef]
- Servant, G.; Tait, T.M.P. Is the lightest Kaluza-Klein particle a viable dark matter candidate? Nucl. Phys. B 2003, 650, 391–419. [Google Scholar] [CrossRef]
- Aprile, E.; Arisaka, K.; Arneodo, F.; Askin, A.; Baudis, L.; Behrens, A.; Bokeloh, K.; Brown, E.; Bruch, T.; Bruno, G.; et al. Dark Matter Results from 100 Live Days of XENON100 Data. Phys. Rev. Lett. 2011, 107, 131302. [Google Scholar] [CrossRef]
- Choi, K.; Abe, K.; Haga, Y.; Hayato, Y.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; et al. Search for Neutrinos from Annihilation of Captured Low-Mass Dark Matter Particles in the Sun by Super-Kamiokande. Phys. Rev. Lett. 2015, 114, 141301. [Google Scholar] [CrossRef]
- Baur, S. Dark Matter Searches with the IceCube Upgrade. In Proceedings of the 36th International Cosmic Ray Conference (ICRC2019), Madison, WI, USA, 24 July–1 August 2019; Volume 36, p. 506. [Google Scholar]
- Avrorin, A.D.; Avrorin, A.V.; Aynutdinov, V.M.; Bannasch, R.; Belolaptikov, I.A.; Bogorodsky, D.Y.; Brudanin, V.B.; Budnev, N.M.; Danilchenko, I.A.; Demidov, S.V.; et al. Search for neutrino emission from relic dark matter in the sun with the Baikal NT200 detector. Astropart. Phys. 2015, 62, 12–20. [Google Scholar] [CrossRef][Green Version]
- Bergström, L.; Bringmann, T.; Cholis, I.; Hooper, D.; Weniger, C. New Limits on Dark Matter Annihilation from Alpha Magnetic Spectrometer Cosmic Ray Positron Data. Phys. Rev. Lett. 2013, 111, 171101. [Google Scholar] [CrossRef]
- Tanabashi, M.; Hagiwara, K.; Hikasa, K.; Nakamura, K.; Sumino, Y.; Takahashi, F.; Tanaka, J.; Agashe, K.; Aielli, G.; Amsler, C.; et al. Review of Particle Physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef]
- Kroupa, P. The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology. Publ. Astron. Soc. Aust. 2012, 29, 395–433. [Google Scholar] [CrossRef]
- Weinberg, D.H.; Bullock, J.S.; Governato, F.; Kuzio de Naray, R.; Peter, A.H.G. Cold dark matter: Controversies on small scales. Proc. Natl. Acad. Sci. USA 2015, 112, 12249–12255. [Google Scholar] [CrossRef] [PubMed]
- Begeman, K.G.; Broeils, A.H.; Sanders, R.H. Extended rotation curves of spiral galaxies: Dark haloes and modified dynamics. Mon. Not. R. Astron. Soc. 1991, 249, 523. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. The Structure of Cold Dark Matter Halos. Astrophys. J. 1996, 462, 563. [Google Scholar] [CrossRef]
- Bryan, G.L.; Norman, M.L. Statistical Properties of X-ray Clusters: Analytic and Numerical Comparisons. Astrophys. J. 1998, 495, 80–99. [Google Scholar] [CrossRef]
- White, M. The mass of a halo. Astron. Astrophys. 2001, 367, 27–32. [Google Scholar] [CrossRef]
- Haghi, H.; Khodadadi, A.; Ghari, A.; Zonoozi, A.H.; Kroupa, P. Rotation curves of galaxies and the stellar mass-to-light ratio. Mon. Not. R. Astron. Soc. 2018, 477, 4187–4199. [Google Scholar] [CrossRef]
- Van Albada, T.S.; Bahcall, J.N.; Begeman, K.; Sancisi, R. Distribution of dark matter in the spiral galaxy NGC 3198. Astrophys. J. 1985, 295, 305–313. [Google Scholar] [CrossRef]
- Aniyan, S.; Freeman, K.C.; Arnaboldi, M.; Gerhard, O.E.; Coccato, L.; Fabricius, M.; Kuijken, K.; Merrifield, M.; Ponomareva, A.A. Resolving the disc-halo degeneracy - I: A look at NGC 628. Mon. Not. R. Astron. Soc. 2018, 476, 1909–1930. [Google Scholar] [CrossRef]
- Persic, M.; Salucci, P.; Stel, F. The universal rotation curve of spiral galaxies — I. The dark matter connection. Mon. Not. R. Astron. Soc. 1996, 281, 27–47. [Google Scholar] [CrossRef]
- Salucci, P.; Lapi, A.; Tonini, C.; Gentile, G.; Yegorova, I.; Klein, U. The universal rotation curve of spiral galaxies - II. The dark matter distribution out to the virial radius. Mon. Not. R. Astron. Soc. 2007, 378, 41–47. [Google Scholar] [CrossRef]
- McGaugh, S.S.; Schombert, J.M.; Bothun, G.D.; de Blok, W.J.G. The Baryonic Tully-Fisher Relation. Astrophys. J. Lett. 2000, 533, L99–L102. [Google Scholar] [CrossRef] [PubMed]
- McGaugh, S.S. The Baryonic Tully-Fisher Relation of Galaxies with Extended Rotation Curves and the Stellar Mass of Rotating Galaxies. Astrophys. J. 2005, 632, 859–871. [Google Scholar] [CrossRef]
- McGaugh, S.S.; Lelli, F.; Schombert, J.M. Radial Acceleration Relation in Rotationally Supported Galaxies. Phys. Rev. Lett. 2016, 117, 201101. [Google Scholar] [CrossRef]
- Lelli, F.; McGaugh, S.S.; Schombert, J.M.; Pawlowski, M.S. One Law to Rule Them All: The Radial Acceleration Relation of Galaxies. Astrophys. J. 2017, 836, 152. [Google Scholar] [CrossRef]
- Li, P.; Lelli, F.; McGaugh, S.; Schombert, J. Fitting the radial acceleration relation to individual SPARC galaxies. Astron. Astrophys. 2018, 615, A3. [Google Scholar] [CrossRef]
- Lelli, F.; McGaugh, S.S.; Schombert, J.M. SPARC: Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves. Astron. J. 2016, 152, 157. [Google Scholar] [CrossRef]
- Bullock, J.S.; Kolatt, T.S.; Sigad, Y.; Somerville, R.S.; Kravtsov, A.V.; Klypin, A.A.; Primack, J.R.; Dekel, A. Profiles of dark haloes: Evolution, scatter and environment. Mon. Not. R. Astron. Soc. 2001, 321, 559–575. [Google Scholar] [CrossRef]
- Wechsler, R.H.; Bullock, J.S.; Primack, J.R.; Kravtsov, A.V.; Dekel, A. Concentrations of Dark Halos from Their Assembly Histories. Astrophys. J. 2002, 568, 52–70. [Google Scholar] [CrossRef]
- Neto, A.F.; Gao, L.; Bett, P.; Cole, S.; Navarro, J.F.; Frenk, C.S.; White, S.D.M.; Springel, V.; Jenkins, A. The statistics of Λ CDM halo concentrations. Mon. Not. R. Astron. Soc. 2007, 381, 1450–1462. [Google Scholar] [CrossRef]
- Klypin, A.A.; Trujillo-Gomez, S.; Primack, J. Dark Matter Halos in the Standard Cosmological Model: Results from the Bolshoi Simulation. Astrophys. J. 2011, 740, 102. [Google Scholar] [CrossRef]
- McGaugh, S.S. The Baryonic Tully-Fisher Relation of Gas-rich Galaxies as a Test of ΛCDM and MOND. Astron. J. 2012, 143, 40. [Google Scholar] [CrossRef]
- Lelli, F.; McGaugh, S.S.; Schombert, J.M. The Small Scatter of the Baryonic Tully-Fisher Relation. Astrophys. J. Lett. 2016, 816, L14. [Google Scholar] [CrossRef]
- Pildis, R.A.; Schombert, J.M.; Eder, A. Gas-rich Dwarf Galaxies from the Second Palomar Sky Survey. II. Optical Properties. Astrophys. J. 1997, 481, 157. [Google Scholar] [CrossRef]
- Bothun, G.D.; Aaronson, M.; Schommer, B.; Mould, J.; Huchra, J.; Sullivan, W.T.I. A catalog of radio, optical, and infrared observations of spiral galaxies in clusters. Astrophys. J. Suppl. Ser. 1985, 57, 423–472. [Google Scholar] [CrossRef]
- Verheijen, M. The Ursa Major Cluster of Galaxies: TF-Relations and Dark Matter; Rijksuniversiteit Groningen: Groningen, The Netherlands, 1997. [Google Scholar]
- McGaugh, S.S.; de Blok, W.J.G. Testing the Dark Matter Hypothesis with Low Surface Brightness Galaxies and Other Evidence. Astrophys. J. 1998, 499, 41–65. [Google Scholar] [CrossRef]
- Matthews, L.D.; van Driel, W.; Gallagher, J.S.I. High-Resolution, High Signal-to-Noise, Global H i Spectra of Southern, Extreme Late-Type Spiral Galaxies. Astron. J. 1998, 116, 1169–1185. [Google Scholar] [CrossRef]
- Eder, J.A.; Schombert, J.M. Gas-rich Dwarfs from the PSS-II. III. H I Profiles and Dynamical Masses. Astrophys. J. Suppl. Ser. 2000, 131, 47–70. [Google Scholar] [CrossRef]
- Dutton, A.A. The baryonic Tully-Fisher relation and galactic outflows. Mon. Not. R. Astron. Soc. 2012, 424, 3123–3128. [Google Scholar] [CrossRef]
- Di Cintio, A.; Lelli, F. The mass discrepancy acceleration relation in a ΛCDM context. Mon. Not. R. Astron. Soc. 2016, 456, L127–L131. [Google Scholar] [CrossRef]
- Desmond, H.; Wechsler, R.H. The Tully-Fisher and mass-size relations from halo abundance matching. Mon. Not. R. Astron. Soc. 2015, 454, 322–343. [Google Scholar] [CrossRef]
- McGaugh, S.S. The Mass Discrepancy-Acceleration Relation: Disk Mass and the Dark Matter Distribution. Astrophys. J. 2004, 609, 652–666. [Google Scholar] [CrossRef]
- Sanders, R.H.; McGaugh, S.S. Modified Newtonian Dynamics as an Alternative to Dark Matter. Ann. Rev. Astron. Astrophys. 2002, 40, 263–317. [Google Scholar] [CrossRef]
- Bell, E.F.; de Jong, R.S. Stellar Mass-to-Light Ratios and the Tully-Fisher Relation. Astrophys. J. 2001, 550, 212–229. [Google Scholar] [CrossRef]
- Famaey, B.; McGaugh, S.S. Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions. Living Rev. Relativ. 2012, 15, 10. [Google Scholar] [CrossRef] [PubMed]
- Santos-Santos, I.M.E.; Navarro, J.F.; Robertson, A.; Benítez-Llambay, A.; Oman, K.A.; Lovell, M.R.; Frenk, C.S.; Ludlow, A.D.; Fattahi, A.; Ritz, A. Baryonic clues to the puzzling diversity of dwarf galaxy rotation curves. Mon. Not. R. Astron. Soc. 2020. [Google Scholar] [CrossRef]
- Di Paolo, C.; Salucci, P.; Fontaine, J.P. The Radial Acceleration Relation (RAR): Crucial Cases of Dwarf Disks and Low-surface-brightness Galaxies. Astrophys. J. 2019, 873, 106. [Google Scholar] [CrossRef]
- Cesare, V.; Diaferio, A.; Matsakos, T.; Angus, G. Dynamics of DiskMass Survey galaxies in refracted gravity. Astron. Astrophys. 2020, 637, A70. [Google Scholar] [CrossRef]
- Kent, S.M. Dark Matter in Spiral Galaxies. II. Galaxies with H I Rotation Curves. Astron. J. 1987, 93, 816. [Google Scholar] [CrossRef]
- Sancisi, R.; van Albada, T.S. HI Rotation Curves of Galaxies; Dark Matter in the Universe, Kormendy, J., Knapp, G.R., Eds.; Cambridge University Press: Cambridge, UK, 1987; Volume 117, p. 67. [Google Scholar]
- Sanders, R.H. Mass discrepancies in galaxies: Dark matter and alternatives. Astron. Astrophys. Rev. 1990, 2, 1–28. [Google Scholar] [CrossRef]
- Bissantz, N.; Gerhard, O. Spiral arms, bar shape and bulge microlensing in the Milky Way. Mon. Not. R. Astron. Soc. 2002, 330, 591–608. [Google Scholar] [CrossRef]
- Alcock, C.; Allsman, R.A.; Alves, D.R.; Axelrod, T.S.; Becker, A.C.; Bennett, D.P.; Cook, K.H.; Drake, A.J.; Freeman, K.C.; Geha, M.; et al. The MACHO Project: Microlensing Optical Depth toward the Galactic Bulge from Difference Image Analysis. Astrophys. J. 2000, 541, 734–766. [Google Scholar] [CrossRef]
- Popowski, P.; Cook, K.H.; Drake, A.J.; Marshall, S.L.; Nelson, C.A.; Alcock, C.; Allsman, R.A.; Axelrod, T.S.; Freeman, K.C.; Peterson, B.A.; et al. MACHO Project Analysis of the Galactic Bulge Microlensing Events with Clump Giants as Sources; American Astronomical Society Meeting Abstracts; Astronomical Society of the Pacific: San Francisco, CA, USA, 2000; Volume 197, pp. 04–17. [Google Scholar]
- McGaugh, S.S.; Schombert, J.M. WEIGHING GALAXY DISKS WITH THE BARYONIC TULLY-FISHER RELATION. Astrophys. J. 2015, 802, 18. [Google Scholar] [CrossRef]
- Sellwood, J.A.; Debattista, V.P. Re-interpretation of “Bar slowdown and the distribution of dark matter in barred galaxies” by Athanassoula. arXiv 2014, arXiv:1410.0834. [Google Scholar]
- Strigari, L.E.; Bullock, J.S.; Kaplinghat, M.; Simon, J.D.; Geha, M.; Willman, B.; Walker, M.G. A common mass scale for satellite galaxies of the Milky Way. Nat. Phys. 2008, 454, 1096–1097. [Google Scholar] [CrossRef] [PubMed]
- Di Paolo, C.; Salucci, P.; Erkurt, A. The universal rotation curve of low surface brightness galaxies—IV. The interrelation between dark and luminous matter. Mon. Not. R. Astron. Soc. 2019, 490, 5451–5477. [Google Scholar] [CrossRef]
- Karukes, E.V.; Salucci, P. The universal rotation curve of dwarf disc galaxies. Mon. Not. R. Astron. Soc. 2017, 465, 4703–4722. [Google Scholar] [CrossRef]
- van den Bosch, F.C.; Dalcanton, J.J. Semianalytical Models for the Formation of Disk Galaxies. II. Dark Matter versus Modified Newtonian Dynamics. Astrophys. J. 2000, 534, 146–164. [Google Scholar] [CrossRef]
- Trujillo-Gomez, S.; Klypin, A.; Primack, J.; Romanowsky, A.J. Galaxies in ΛCDM with Halo Abundance Matching: Luminosity-Velocity Relation, Baryonic Mass-Velocity Relation, Velocity Function, and Clustering. Astrophys. J. 2011, 742, 16. [Google Scholar] [CrossRef]
- Santos-Santos, I.M.; Brook, C.B.; Stinson, G.; Di Cintio, A.; Wadsley, J.; Domínguez-Tenreiro, R.; Gottlöber, S.; Yepes, G. The distribution of mass components in simulated disc galaxies. Mon. Not. R. Astron. Soc. 2016, 455, 476–483. [Google Scholar] [CrossRef]
- Dutton, A.A.; Macciò, A.V. Cold dark matter haloes in the Planck era: Evolution of structural parameters for Einasto and NFW profiles. Mon. Not. R. Astron. Soc. 2014, 441, 3359–3374. [Google Scholar] [CrossRef]
- Papastergis, E.; Cattaneo, A.; Huang, S.; Giovanelli, R.; Haynes, M.P. A Direct Measurement of the Baryonic Mass Function of Galaxies and Implications for the Galactic Baryon Fraction. Astrophys. J. 2012, 759, 138. [Google Scholar] [CrossRef]
- Lange, R.; Driver, S.P.; Robotham, A.S.G.; Kelvin, L.S.; Graham, A.W.; Alpaslan, M.; Andrews, S.K.; Baldry, I.K.; Bamford, S.; Bland-Hawthorn, J.; et al. Galaxy And Mass Assembly (GAMA): Mass-size relations of z < 0.1 galaxies subdivided by Sérsic index, colour and morphology. Mon. Not. R. Astron. Soc. 2015, 447, 2603–2630. [Google Scholar] [CrossRef]
- Gadotti, D.A. Structural properties of pseudo-bulges, classical bulges and elliptical galaxies: A Sloan Digital Sky Survey perspective. Mon. Not. R. Astron. Soc. 2009, 393, 1531–1552. [Google Scholar] [CrossRef]
- Di Cintio, A.; Brook, C.B.; Macciò, A.V.; Stinson, G.S.; Knebe, A.; Dutton, A.A.; Wadsley, J. The dependence of dark matter profiles on the stellar-to-halo mass ratio: A prediction for cusps versus cores. Mon. Not. R. Astron. Soc. 2014, 437, 415–423. [Google Scholar] [CrossRef]
- Di Cintio, A.; Brook, C.B.; Dutton, A.A.; Macciò, A.V.; Stinson, G.S.; Knebe, A. A mass-dependent density profile for dark matter haloes including the influence of galaxy formation. Mon. Not. R. Astron. Soc. 2014, 441, 2986–2995. [Google Scholar] [CrossRef]
- Dubinski, J.; Carlberg, R.G. The Structure of cold dark matter halos. Astrophys. J. 1991, 378, 496. [Google Scholar] [CrossRef]
- Jing, Y.P.; Suto, Y. The Density Profiles of the Dark Matter Halo Are Not Universal. Astrophys. J. 2000, 529, L69–L72. [Google Scholar] [CrossRef]
- Carignan, C.; Freeman, K.C. DDO 154: A “Dark” Galaxy? Astrophys. J. Lett. 1988, 332, L33. [Google Scholar] [CrossRef]
- Carignan, C.; Beaulieu, S. Optical and H i Studies of the “Gas-rich” Dwarf Irregular Galaxy DDO 154. Astrophys. J. 1989, 347, 760. [Google Scholar] [CrossRef]
- Mateo, M.L. Dwarf Galaxies of the Local Group. Ann. Rev. Astron. Astrophys. 1998, 36, 435–506. [Google Scholar] [CrossRef]
- McConnachie, A.W. The Observed Properties of Dwarf Galaxies in and around the Local Group. Astron. J. 2012, 144, 4. [Google Scholar] [CrossRef]
- Javanmardi, B.; Martinez-Delgado, D.; Kroupa, P.; Henkel, C.; Crawford, K.; Teuwen, K.; Gabany, R.J.; Hanson, M.; Chonis, T.S.; Neyer, F. DGSAT: Dwarf Galaxy Survey with Amateur Telescopes. I. Discovery of low surface brightness systems around nearby spiral galaxies. Astron. Astrophys. 2016, 588, A89. [Google Scholar] [CrossRef]
- Mateo, M.; Olszewski, E.W.; Pryor, C.; Welch, D.L.; Fischer, P. The Carina Dwarf Spheroidal Galaxy: How Dark is it? Astron. J. 1993, 105, 510. [Google Scholar] [CrossRef]
- Willman, B.; Dalcanton, J.J.; Martinez-Delgado, D.; West, A.A.; Blanton, M.R.; Hogg, D.W.; Barentine, J.C.; Brewington, H.J.; Harvanek, M.; Kleinman, S.J.; et al. A New Milky Way Dwarf Galaxy in Ursa Major. Astrophys. J. Lett. 2005, 626, L85–L88. [Google Scholar] [CrossRef]
- Zucker, D.B.; Belokurov, V.; Evans, N.W.; Wilkinson, M.I.; Irwin, M.J.; Sivarani, T.; Hodgkin, S.; Bramich, D.M.; Irwin, J.M.; Gilmore, G.; et al. A New Milky Way Dwarf Satellite in Canes Venatici. Astrophys. J. Lett. 2006, 643, L103–L106. [Google Scholar] [CrossRef]
- Zucker, D.B.; Belokurov, V.; Evans, N.W.; Kleyna, J.T.; Irwin, M.J.; Wilkinson, M.I.; Fellhauer, M.; Bramich, D.M.; Gilmore, G.; Newberg, H.J.; et al. A Curious Milky Way Satellite in Ursa Major. Astrophys. J. Lett. 2006, 650, L41–L44. [Google Scholar] [CrossRef]
- Belokurov, V.; Zucker, D.B.; Evans, N.W.; Kleyna, J.T.; Koposov, S.; Hodgkin, S.T.; Irwin, M.J.; Gilmore, G.; Wilkinson, M.I.; Fellhauer, M.; et al. Cats and Dogs, Hair and a Hero: A Quintet of New Milky Way Companions. Astrophys. J. 2007, 654, 897–906. [Google Scholar] [CrossRef]
- Letarte, B.; Chapman, S.C.; Collins, M.; Ibata, R.A.; Irwin, M.J.; Ferguson, A.M.N.; Lewis, G.F.; Martin, N.; McConnachie, A.; Tanvir, N. A Keck/DEIMOS spectroscopic survey of the faint M31 satellites AndXV and AndXVI. Mon. Not. R. Astron. Soc. 2009, 400, 1472–1478. [Google Scholar] [CrossRef][Green Version]
- Torrealba, G.; Koposov, S.E.; Belokurov, V.; Irwin, M. The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater. Mon. Not. R. Astron. Soc. 2016, 459, 2370–2378. [Google Scholar] [CrossRef]
- Caldwell, N.; Walker, M.G.; Mateo, M.; Olszewski, E.W.; Koposov, S.; Belokurov, V.; Torrealba, G.; Geringer-Sameth, A.; Johnson, C.I. Crater 2: An Extremely Cold Dark Matter Halo. Astrophys. J. 2017, 839, 20. [Google Scholar] [CrossRef]
- Haslbauer, M.; Banik, I.; Kroupa, P.; Grishunin, K. The ultra-diffuse dwarf galaxies NGC 1052-DF2 and 1052-DF4 are in conflict with standard cosmology. Mon. Not. R. Astron. Soc. 2019, 489, 2634–2651. [Google Scholar] [CrossRef]
- Torrealba, G.; Belokurov, V.; Koposov, S.E.; Li, T.S.; Walker, M.G.; Sanders, J.L.; Geringer-Sameth, A.; Zucker, D.B.; Kuehn, K.; Evans, N.W.; et al. The hidden giant: Discovery of an enormous Galactic dwarf satellite in Gaia DR2. Mon. Not. R. Astron. Soc. 2019, 488, 2743–2766. [Google Scholar] [CrossRef]
- Côté, S.; Carignan, C.; Freeman, K.C. The Various Kinematics of Dwarf Irregular Galaxies in Nearby Groups and Their Dark Matter Distributions. Astron. J. 2000, 120, 3027–3059. [Google Scholar] [CrossRef]
- Borriello, A.; Salucci, P. The dark matter distribution in disc galaxies. Mon. Not. R. Astron. Soc. 2001, 323, 285–292. [Google Scholar] [CrossRef]
- Will, C.M. Theory and Experiment in Gravitational Physics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- De Blok, W.J.G.; Bosma, A. High-resolution rotation curves of low surface brightness galaxies. Astron. Astrophys. 2002, 385, 816–846. [Google Scholar] [CrossRef]
- De Blok, W.J.G.; Bosma, A.; McGaugh, S. Simulating observations of dark matter dominated galaxies: Towards the optimal halo profile. Mon. Not. R. Astron. Soc. 2003. [Google Scholar] [CrossRef]
- Gentile, G.; Salucci, P.; Klein, U.; Vergani, D.; Kalberla, P. The cored distribution of dark matter in spiral galaxies. Mon. Not. R. Astron. Soc. 2004, 351, 903–922. [Google Scholar] [CrossRef]
- Salucci, P.; Burkert, A. Dark Matter Scaling Relations. Astrophys. J. Lett. 2000, 537, L9–L12. [Google Scholar] [CrossRef]
- Kuzio de Naray, R.; McGaugh, S.S.; de Blok, W.J.G.; Bosma, A. High-Resolution Optical Velocity Fields of 11 Low Surface Brightness Galaxies. Astrophys. J. Suppl. Ser. 2006, 165, 461–479. [Google Scholar] [CrossRef]
- McGaugh, S.S.; Rubin, V.C.; de Blok, W.J.G. High-Resolution Rotation Curves of Low Surface Brightness Galaxies. I. Data. Astron. J. 2001, 122, 2381–2395. [Google Scholar] [CrossRef]
- van der Hulst, J.M.; Skillman, E.D.; Smith, T.R.; Bothun, G.D.; McGaugh, S.S.; de Blok, W.J.G. Star Formation Thresholds in Low Surface Brightness Galaxies. Astron. J. 1993, 106, 548. [Google Scholar] [CrossRef]
- Chen, D.M.; McGaugh, S. Contradiction between strong lensing statistics and a feedback solution to the cusp/core problem. Res. Astron. Astrophys. 2010, 10, 1215–1222. [Google Scholar] [CrossRef][Green Version]
- de Blok, W.J.G.; McGaugh, S.S. The dark and visible matter content of low surface brightness disc galaxies. Mon. Not. R. Astron. Soc. 1997, 290, 533–552. [Google Scholar] [CrossRef]
- Spekkens, K.; Giovanelli, R.; Haynes, M.P. The Cusp/Core Problem in Galactic Halos: Long-Slit Spectra for a Large Dwarf Galaxy Sample. Astron. J. 2005, 129, 2119–2137. [Google Scholar] [CrossRef]
- Weldrake, D.T.F.; de Blok, W.J.G.; Walter, F. A high-resolution rotation curve of NGC 6822: A test-case for cold dark matter. Mon. Not. R. Astron. Soc. 2003, 340, 12–28. [Google Scholar] [CrossRef]
- Gentile, G.; Salucci, P.; Klein, U.; Granato, G.L. NGC 3741: The dark halo profile from the most extended rotation curve. Mon. Not. R. Astron. Soc. 2007, 375, 199–212. [Google Scholar] [CrossRef]
- Oh, S.H.; Hunter, D.A.; Brinks, E.; Elmegreen, B.G.; Schruba, A.; Walter, F.; Rupen, M.P.; Young, L.M.; Simpson, C.E.; Johnson, M.C.; et al. High-Resolution mass modles of dwarf galaxies from little things. Astron. J. 2015, 149, 180. [Google Scholar] [CrossRef]
- Gilmore, G.; Wilkinson, M.; Kleyna, J.; Koch, A.; Evans, W.; Wyse, R.F.G.; Grebel, E.K. Observed Properties of Dark Matter: Dynamical studies of dSph galaxies. Nucl. Phys. B Proc. Suppl. 2007, 173, 15–18. [Google Scholar] [CrossRef]
- Walker, M.G.; Mateo, M.; Olszewski, E.W.; Peñarrubia, J.; Evans, N.W.; Gilmore, G. Erratum: “A Universal Mass Profile For Dwarf Spheroidal Galaxies?” (2009, ApJ, 704, 1274). Astrophys. J. 2010, 710, 886–890. [Google Scholar] [CrossRef]
- Binney, J.; Tremaine, S. Galactic Dynamics; Princeton University Press: Princeton, NJ, USA, 1987. [Google Scholar]
- Mamon, G.A.; Łokas, E.L. Dark matter in elliptical galaxies—II. Estimating the mass within the virial radius. Mon. Not. R. Astron. Soc. 2005, 363, 705–722. [Google Scholar] [CrossRef]
- Walker, M.G.; Peñarrubia, J. A Method for Measuring (Slopes of) the Mass Profiles of Dwarf Spheroidal Galaxies. Astrophys. J. 2011, 742, 20. [Google Scholar] [CrossRef]
- Zhu, L.; Romanowsky, A.J.; van de Ven, G.; Long, R.J.; Watkins, L.L.; Pota, V.; Napolitano, N.R.; Forbes, D.A.; Brodie, J.; Foster, C. A discrete chemo-dynamical model of the giant elliptical galaxy NGC 5846: Dark matter fraction, internal rotation, and velocity anisotropy out to six effective radii. Mon. Not. R. Astron. Soc. 2016, 462, 4001–4017. [Google Scholar] [CrossRef]
- Zhu, L.; van de Ven, G.; Watkins, L.L.; Posti, L. A discrete chemo-dynamical model of the dwarf spheroidal galaxy Sculptor: Mass profile, velocity anisotropy and internal rotation. Mon. Not. R. Astron. Soc. 2016, 463, 1117–1135. [Google Scholar] [CrossRef]
- Łokas, E.L.; Mamon, G.A. Dark matter distribution in the Coma cluster from galaxy kinematics: Breaking the mass-anisotropy degeneracy. Mon. Not. R. Astron. Soc. 2003, 343, 401–412. [Google Scholar] [CrossRef]
- Read, J.I.; Steger, P. How to break the density-anisotropy degeneracy in spherical stellar systems. Mon. Not. R. Astron. Soc. 2017, 471, 4541–4558. [Google Scholar] [CrossRef]
- Webb, J.J.; Vesperini, E. The Structural and Kinematic Evolution of Central Star Clusters in Dwarf Galaxies and Their Dependence on Dark Matter Halo Profiles. Mon. Not. R. Astron. Soc. 2018, 479, 3708–3714. [Google Scholar] [CrossRef]
- Battaglia, G.; Helmi, A.; Tolstoy, E.; Irwin, M.; Hill, V.; Jablonka, P. The Kinematic Status and Mass Content of the Sculptor Dwarf Spheroidal Galaxy. Astrophys. J. Lett. 2008, 681, L13. [Google Scholar] [CrossRef]
- Hayashi, E.; Navarro, J.F.; Power, C.; Jenkins, A.; Frenk, C.S.; White, S.D.M.; Springel, V.; Stadel, J.; Quinn, T.R. The inner structure of ΛCDM haloes - II. Halo mass profiles and low surface brightness galaxy rotation curves. Mon. Not. R. Astron. Soc. 2004, 355, 794–812. [Google Scholar] [CrossRef]
- Jardel, J.R.; Gebhardt, K.; Fabricius, M.H.; Drory, N.; Williams, M.J. Measuring dark matter profiles non-parametrically in dwarf spheroidals: An application to draco. Astrophys. J. 2013, 763, 91. [Google Scholar] [CrossRef]
- Read, J.I.; Walker, M.G.; Steger, P. The case for a cold dark matter cusp in Draco. Mon. Not. R. Astron. Soc. 2018, 481, 860–877. [Google Scholar] [CrossRef]
- Van Dokkum, P.; Cohen, Y.; Danieli, S.; Kruijssen, J.M.D.; Romanowsky, A.J.; Merritt, A.; Abraham, R.; Brodie, J.; Conroy, C.; Lokhorst, D.; et al. An Enigmatic Population of Luminous Globular Clusters in a Galaxy Lacking Dark Matter. Astrophys. J. Lett. 2018, 856, L30. [Google Scholar] [CrossRef]
- Van Dokkum, P.; Danieli, S.; Cohen, Y.; Romanowsky, A.J.; Conroy, C. The Distance of the Dark Matter Deficient Galaxy NGC 1052-DF2. Astrophys. J. Lett. 2018, 864, L18. [Google Scholar] [CrossRef]
- Van Dokkum, P.; Danieli, S.; Cohen, Y.; Merritt, A.; Romanowsky, A.J.; Abraham, R.; Brodie, J.; Conroy, C.; Lokhorst, D.; Mowla, L.; et al. A galaxy lacking dark matter. Nat. Phys. 2018, 555, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Van Dokkum, P.; Cohen, Y.; Danieli, S.; Romanowsky, A.; Abraham, R.; Brodie, J.; Conroy, C.; Kruijssen, J.M.D.; Lokhorst, D.; Merritt, A.; et al. A Revised Velocity for the Globular Cluster GC-98 in the Ultra Diffuse Galaxy NGC 1052-DF2. Res. Notes Am. Astron. Soc. 2018, 2, 54. [Google Scholar] [CrossRef]
- Van Dokkum, P.; Danieli, S.; Abraham, R.; Conroy, C.; Romanowsky, A.J. A Second Galaxy Missing Dark Matter in the NGC 1052 Group. Astrophys. J. Lett. 2019, 874, L5. [Google Scholar] [CrossRef]
- Danieli, S.; van Dokkum, P.; Conroy, C.; Abraham, R.; Romanowsky, A.J. Still Missing Dark Matter: KCWI High-resolution Stellar Kinematics of NGC1052-DF2. Astrophys. J. Lett. 2019, 874, L12. [Google Scholar] [CrossRef]
- Nusser, A. Orbital Decay of Globular Clusters in the Galaxy with Little Dark Matter. Astrophys. J. Lett. 2018, 863, L17. [Google Scholar] [CrossRef]
- Nusser, A. Towards a higher mass for NGC 1052-DF2: An analysis based on full distribution functions. Mon. Not. R. Astron. Soc. 2019, 484, 510–519. [Google Scholar] [CrossRef]
- Nusser, A. A scenario for ultra-diffuse satellite galaxies with low velocity dispersions: The case of [KKS 2000]04. arXiv 2019, arXiv:1907.08035. [Google Scholar]
- Trujillo, I.; Beasley, M.A.; Borlaff, A.; Carrasco, E.R.; Di Cintio, A.; Filho, M.; Monelli, M.; Montes, M.; Román, J.; Ruiz-Lara, T.; et al. A distance of 13 Mpc resolves the claimed anomalies of the galaxy lacking dark matter. Mon. Not. R. Astron. Soc. 2019, 486, 1192–1219. [Google Scholar] [CrossRef]
- Martin, N.F.; Collins, M.L.M.; Longeard, N.; Tollerud, E. Current Velocity Data on Dwarf Galaxy NGC 1052-DF2 do not Constrain it to Lack Dark Matter. Astrophys. J. 2018, 859, L5. [Google Scholar] [CrossRef]
- Weinberg, M.D.; Katz, N. Bar-driven Dark Halo Evolution: A Resolution of the Cusp-Core Controversy. Astrophys. J. 2002, 580, 627–633. [Google Scholar] [CrossRef]
- Dubinski, J.; Berentzen, I.; Shlosman, I. Anatomy of the bar instability in cuspy dark matter halos. Astrophys. J. 2009, 697, 293–310. [Google Scholar] [CrossRef]
- Mashchenko, S.; Couchman, H.M.P.; Wadsley, J. The removal of cusps from galaxy centres by stellar feedback in the early Universe. Nat. Phys. 2006, 442, 539–542. [Google Scholar] [CrossRef]
- Gnedin, O.Y.; Zhao, H. Maximum feedback and dark matter profiles of dwarf galaxies. Mon. Not. R. Astron. Soc. 2002, 333, 299–306. [Google Scholar] [CrossRef]
- Mashchenko, S.; Wadsley, J.; Couchman, H.M.P. Stellar Feedback in Dwarf Galaxy Formation. Science 2008, 319, 174–177. [Google Scholar] [CrossRef]
- Ogiya, G.; Mori, M. The Core-Cusp Problem in Cold Dark Matter Halos and Supernova Feedback: Effects of Oscillation. Astrophys. J. 2014, 793, 46. [Google Scholar] [CrossRef]
- Li, L.X.; Ostriker, J.P. Semianalytical Models for Lensing by Dark Halos. I. Splitting Angles. Astrophys. J. 2002, 566, 652–666. [Google Scholar] [CrossRef]
- Chen, D.M. Nonsingular Density Profiles of Dark Matter Halos and Strong Gravitational Lensing. Astrophys. J. 2005, 629, 23–28. [Google Scholar] [CrossRef]
- Read, J.I.; Agertz, O.; Collins, M.L.M. Dark matter cores all the way down. Mon. Not. R. Astron. Soc. 2016, 459, 2573–2590. [Google Scholar] [CrossRef]
- Bose, S.; Frenk, C.S.; Jenkins, A.; Fattahi, A.; Gómez, F.A.; Grand, R.J.J.; Marinacci, F.; Navarro, J.F.; Oman, K.A.; Pakmor, R.; et al. No cores in dark matter-dominated dwarf galaxies with bursty star formation histories. Mon. Not. R. Astron. Soc. 2019, 486, 4790–4804. [Google Scholar] [CrossRef]
- El-Zant, A.; Shlosman, I.; Hoffman, Y. Dark Halos: The Flattening of the Density Cusp by Dynamical Friction. Astrophys. J. 2001, 560, 636–643. [Google Scholar] [CrossRef]
- Romano-Díaz, E.; Shlosman, I.; Hoffman, Y.; Heller, C. Erasing Dark Matter Cusps in Cosmological Galactic Halos with Baryons. Astrophys. J. 2008, 685, L105–L108. [Google Scholar] [CrossRef]
- Jardel, J.R.; Sellwood, J.A. Halo Density Reduction by Baryonic Settling? Astrophys. J. 2009, 691, 1300–1306. [Google Scholar] [CrossRef]
- Kaufmann, T.; Mayer, L.; Wadsley, J.; Stadel, J.; Moore, B. Cooling flows within galactic haloes: The kinematics and properties of infalling multiphase gas. Mon. Not. R. Astron. Soc. 2006, 370, 1612–1622. [Google Scholar] [CrossRef]
- Nipoti, C.; Binney, J. Early flattening of dark matter cusps in dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. 2014, 446, 1820–1828. [Google Scholar] [CrossRef]
- Arata, S.; Yajima, H.; Nagamine, K. Gas clump formation via thermal instability in high-redshift dwarf galaxy mergers. Mon. Not. R. Astron. Soc. 2018, 475, 4252–4262. [Google Scholar] [CrossRef]
- Boldrini, P.; Mohayaee, R.; Silk, J. Embedding globular clusters in dark matter minihaloes solves the cusp-core and timing problems in the Fornax dwarf galaxy. Mon. Not. R. Astron. Soc. 2020, 492, 3169–3178. [Google Scholar] [CrossRef]
- de Blok, W.J.G. The Core-Cusp Problem. Adv. Astron. 2010, 2010, 1–14. [Google Scholar] [CrossRef]
- Marchesini, D.; D’Onghia, E.; Chincarini, G.; Firmani, C.; Conconi, P.; Molinari, E.; Zacchei, A. Hα Rotation Curves: The Soft Core Question. Astrophys. J. 2002, 575, 801–813. [Google Scholar] [CrossRef]
- Swaters, R.A.; Madore, B.F.; van den Bosch, F.C.; Balcells, M. The Central Mass Distribution in Dwarf and Low Surface Brightness Galaxies. Astrophys. J. 2003, 583, 732–751. [Google Scholar] [CrossRef]
- Trachternach, C.; de Blok, W.J.G.; Walter, F.; Brinks, E.; Kennicutt, R.C. Dynamical centers and noncircular motions in things galaxies: Implications for dark matter halos. Astron. J. 2008, 136, 2720–2760. [Google Scholar] [CrossRef]
- Van Eymeren, J.; Trachternach, C.; Koribalski, B.S.; Dettmar, R.-J. Non-circular motions and the cusp-core discrepancy in dwarf galaxies. A&A 2009, 505, 1–20. [Google Scholar] [CrossRef]
- Moore, B.; Ghigna, S.; Governato, F.; Lake, G.; Quinn, T.; Stadel, J.; Tozzi, P. Dark Matter Substructure within Galactic Halos. Astrophys. J. Lett. 1999, 524, L19–L22. [Google Scholar] [CrossRef]
- Drlica-Wagner, A.; Bechtol, K.; Rykoff, E.S.; Luque, E.; Queiroz, A.; Mao, Y.Y.; Wechsler, R.H.; Simon, J.D.; Santiago, B.; Yanny, B.; et al. Eight Ultra-faint Galaxy Candidates Discovered in Year Two of the Dark Energy Survey. Astrophys. J. 2015, 813, 109. [Google Scholar] [CrossRef]
- Antoja, T.; Mateu, C.; Aguilar, L.; Figueras, F.; Antiche, E.; Hernández-Pérez, F.; Brown, A.G.A.; Valenzuela, O.; Aparicio, A.; Hidalgo, S.; et al. Detection of satellite remnants in the Galactic halo with Gaia- III. Detection limits for ultrafaint dwarf galaxies. Mon. Not. R. Astron. Soc. 2015, 453, 541–560. [Google Scholar] [CrossRef]
- Ciucă, I.; Kawata, D.; Ando, S.; Calore, F.; Read, J.I.; Mateu, C. A Gaia DR2 search for dwarf galaxies towards Fermi-LAT sources: Implications for annihilating dark matter. Mon. Not. R. Astron. Soc. 2018, 480, 2284–2291. [Google Scholar] [CrossRef]
- Read, J.I.; Erkal, D. Abundance matching with the mean star formation rate: There is no missing satellites problem in the Milky Way above M200∼ 109 M⊙. Mon. Not. R. Astron. Soc. 2019, 487, 5799–5812. [Google Scholar] [CrossRef]
- Efstathiou, G. Suppressing the formation of dwarf galaxies via photoionization. Mon. Not. R. Astron. Soc. 1992, 256, 43P–47P. [Google Scholar] [CrossRef]
- Sawala, T.; Frenk, C.S.; Fattahi, A.; Navarro, J.F.; Bower, R.G.; Crain, R.A.; Dalla Vecchia, C.; Furlong, M.; Helly, J.C.; Jenkins, A.; et al. The APOSTLE simulations: Solutions to the Local Group’s cosmic puzzles. Mon. Not. R. Astron. Soc. 2016, 457, 1931–1943. [Google Scholar] [CrossRef]
- Rees, M.J.; Ostriker, J.P. Cooling, dynamics and fragmentation of massive gas clouds: Clues to the masses and radii of galaxies and clusters. Mon. Not. R. Astron. Soc. 1977, 179, 541–559. [Google Scholar] [CrossRef]
- Wuyts, S.; Franx, M.; Cox, T.J.; Hernquist, L.; Hopkins, P.F.; Robertson, B.E.; van Dokkum, P.G. Recovering Stellar Population Properties and Redshifts from Broadband Photometry of Simulated Galaxies: Lessons for SED Modeling. Astrophys. J. 2009, 696, 348–369. [Google Scholar] [CrossRef]
- Walcher, J.; Groves, B.; Budavári, T.; Dale, D. Fitting the integrated spectral energy distributions of galaxies. Astrophys. Space Sci. 2011, 331, 1–52. [Google Scholar] [CrossRef]
- Mitchell, P.D.; Lacey, C.G.; Baugh, C.M.; Cole, S. How well can we really estimate the stellar masses of galaxies from broad-band photometry? Mon. Not. R. Astron. Soc. 2013, 435, 87–114. [Google Scholar] [CrossRef]
- Mandelbaum, R.; Seljak, U.; Kauffmann, G.; Hirata, C.M.; Brinkmann, J. Galaxy halo masses and satellite fractions from galaxy-galaxy lensing in the Sloan Digital Sky Survey: Stellar mass, luminosity, morphology and environment dependencies. Mon. Not. R. Astron. Soc. 2006, 368, 715–731. [Google Scholar] [CrossRef]
- Moster, B.P.; Somerville, R.S.; Maulbetsch, C.; van den Bosch, F.C.; Macciò, A.V.; Naab, T.; Oser, L. Constraints on the Relationship between Stellar Mass and Halo Mass at Low and High Redshift. Astrophys. J. 2010, 710, 903–923. [Google Scholar] [CrossRef]
- Katz, H.; Lelli, F.; McGaugh, S.S.; Di Cintio, A.; Brook, C.B.; Schombert, J.M. Testing feedback-modified dark matter haloes with galaxy rotation curves: Estimation of halo parameters and consistency with ΛCDM scaling relations. Mon. Not. R. Astron. Soc. 2017, 466, 1648–1668. [Google Scholar] [CrossRef]
- Garrison-Kimmel, S.; Bullock, J.S.; Boylan-Kolchin, M.; Bardwell, E. Organized chaos: Scatter in the relation between stellar mass and halo mass in small galaxies. Mon. Not. R. Astron. Soc. 2017, 464, 3108–3120. [Google Scholar] [CrossRef][Green Version]
- Behroozi, P.S.; Wechsler, R.H.; Conroy, C. The Average Star Formation Histories of Galaxies in Dark Matter Halos from z = 0–8. Astrophys. J. 2013, 770, 57. [Google Scholar] [CrossRef]
- Garrison-Kimmel, S.; Boylan-Kolchin, M.; Bullock, J.S.; Lee, K. ELVIS: Exploring the Local Volume in Simulations. Mon. Not. R. Astron. Soc. 2014, 438, 2578–2596. [Google Scholar] [CrossRef]
- Moster, B.P.; Naab, T.; White, S.D.M. Galactic star formation and accretion histories from matching galaxies to dark matter haloes. Mon. Not. R. Astron. Soc. 2013, 428, 3121–3138. [Google Scholar] [CrossRef]
- Brook, C.B.; Di Cintio, A.; Knebe, A.; Gottlöber, S.; Hoffman, Y.; Yepes, G.; Garrison-Kimmel, S. The Stellar-to-halo Mass Relation for Local Group Galaxies. Astrophys. J. Lett. 2014, 784, L14. [Google Scholar] [CrossRef][Green Version]
- Dooley, G.A.; Peter, A.H.G.; Yang, T.; Willman, B.; Griffen, B.F.; Frebel, A. An observer’s guide to the (Local Group) dwarf galaxies: Predictions for their own dwarf satellite populations. Mon. Not. R. Astron. Soc. 2017, 471, 4894–4909. [Google Scholar] [CrossRef]
- Hargis, J.R.; Willman, B.; Peter, A.H.G. Too Many, Too Few, or Just Right? The Predicted Number and Distribution of Milky Way Dwarf Galaxies. Astrophys. J. Lett. 2014, 795, L13. [Google Scholar] [CrossRef]
- Geha, M.; Blanton, M.R.; Yan, R.; Tinker, J.L. A Stellar Mass Threshold for Quenching of Field Galaxies. Astrophys. J. 2012, 757, 85. [Google Scholar] [CrossRef]
- Gatto, A.; Fraternali, F.; Read, J.I.; Marinacci, F.; Lux, H.; Walch, S. Unveiling the corona of the Milky Way via ram-pressure stripping of dwarf satellites. Mon. Not. R. Astron. Soc. 2013, 433, 2749–2763. [Google Scholar] [CrossRef]
- Read, J.I.; Wilkinson, M.I.; Evans, N.W.; Gilmore, G.; Kleyna, J.T. The tidal stripping of satellites. Mon. Not. R. Astron. Soc. 2006, 366, 429–437. [Google Scholar] [CrossRef]
- Tomozeiu, M.; Mayer, L.; Quinn, T. Tidal Stirring of Satellites with Shallow Density Profiles Prevents Them from Being Too Big to Fail. Astrophys. J. Lett. 2016, 827, L15. [Google Scholar] [CrossRef]
- Contreras, S.; Baugh, C.M.; Norberg, P.; Padilla, N. The galaxy-dark matter halo connection: Which galaxy properties are correlated with the host halo mass? Mon. Not. R. Astron. Soc. 2015, 452, 1861–1876. [Google Scholar] [CrossRef]
- Ural, U.; Wilkinson, M.I.; Read, J.I.; Walker, M.G. A low pre-infall mass for the Carina dwarf galaxy from disequilibrium modelling. Nat. Commun. 2015, 6, 7599. [Google Scholar] [CrossRef] [PubMed]
- Read, J.I.; Iorio, G.; Agertz, O.; Fraternali, F. The stellar mass-halo mass relation of isolated field dwarfs: A critical test of ΛCDM at the edge of galaxy formation. Mon. Not. R. Astron. Soc. 2017, 467, 2019–2038. [Google Scholar] [CrossRef]
- Zentner, A.R.; Berlind, A.A.; Bullock, J.S.; Kravtsov, A.V.; Wechsler, R.H. The Physics of Galaxy Clustering. I. A Model for Subhalo Populations. Astrophys. J. 2005, 624, 505–525. [Google Scholar] [CrossRef]
- Baugh, C.M. A primer on hierarchical galaxy formation: The semi-analytical approach. Rep. Prog. Phys. 2006, 69, 3101–3156. [Google Scholar] [CrossRef]
- Blanton, M.R.; Lupton, R.H.; Schlegel, D.J.; Strauss, M.A.; Brinkmann, J.; Fukugita, M.; Loveday, J. The Properties and Luminosity Function of Extremely Low Luminosity Galaxies. Astrophys. J. 2005, 631, 208–230. [Google Scholar] [CrossRef]
- Bauer, A.E.; Hopkins, A.M.; Gunawardhana, M.; Taylor, E.N.; Baldry, I.; Bamford, S.P.; Bland -Hawthorn, J.; Brough, S.; Brown, M.J.I.; Cluver, M.E.; et al. Galaxy And Mass Assembly (GAMA): Linking star formation histories and stellar mass growth. Mon. Not. R. Astron. Soc. 2013, 434, 209–221. [Google Scholar] [CrossRef]
- Hill, A.R.; Muzzin, A.; Franx, M.; Marchesini, D. The Mass Growth and Stellar Ages of Galaxies: Observations versus Simulations. Astrophys. J. 2017, 849, L26. [Google Scholar] [CrossRef]
- Kim, S.Y.; Peter, A.H.G.; Hargis, J.R. There is No Missing Satellites Problem. arXiv 2017, arXiv:1711.06267. [Google Scholar]
- Jethwa, P.; Erkal, D.; Belokurov, V. The upper bound on the lowest mass halo. Mon. Not. R. Astron. Soc. 2017, 473, 2060–2083. [Google Scholar] [CrossRef]
- Contenta, F.; Balbinot, E.; Petts, J.A.; Read, J.I.; Gieles, M.; Collins, M.L.M.; Peñarrubia, J.; Delorme, M.; Gualandris, A. Probing dark matter with star clusters: A dark matter core in the ultra-faint dwarf Eridanus II. Mon. Not. R. Astron. Soc. 2018, 476, 3124–3136. [Google Scholar] [CrossRef]
- Koposov, S.; Belokurov, V.; Evans, N.W.; Hewett, P.C.; Irwin, M.J.; Gilmore, G.; Zucker, D.B.; Rix, H.W.; Fellhauer, M.; Bell, E.F.; et al. The Luminosity Function of the Milky Way Satellites. Astrophys. J. 2008, 686, 279–291. [Google Scholar] [CrossRef]
- Koposov, S.E.; Belokurov, V.; Torrealba, G.; Evans, N.W. Beasts of the southern wild: Discovery of nine ultra faint satellites in the vicinity of the magellanic clouds. Astrophys. J. 2015, 805, 130. [Google Scholar] [CrossRef]
- Bechtol, K.; Drlica-Wagner, A.; Balbinot, E.; Pieres, A.; Simon, J.D.; Yanny, B.; Santiago, B.; Wechsler, R.H.; Frieman, J.; Walker, A.R.; et al. Eight New Milky Way Companions Discovered in First-year Dark Energy Survey Data. Astrophys. J. 2015, 807, 50. [Google Scholar] [CrossRef]
- Read, J.I.; Pontzen, A.P.; Viel, M. On the formation of dwarf galaxies and stellar haloes. Mon. Not. R. Astron. Soc. 2006, 371, 885–897. [Google Scholar] [CrossRef]
- Wolf, J.; Martinez, G.D.; Bullock, J.S.; Kaplinghat, M.; Geha, M.; Muñoz, R.R.; Simon, J.D.; Avedo, F.F. Accurate masses for dispersion-supported galaxies. Mon. Not. R. Astron. Soc. 2010, 406, 1220–1237. [Google Scholar] [CrossRef]
- Springel, V.; Wang, J.; Vogelsberger, M.; Ludlow, A.; Jenkins, A.; Helmi, A.; Navarro, J.F.; Frenk, C.S.; White, S.D.M. The Aquarius Project: The subhaloes of galactic haloes. Mon. Not. R. Astron. Soc. 2008, 391, 1685–1711. [Google Scholar] [CrossRef]
- Tollerud, E.J.; Boylan-Kolchin, M.; Bullock, J.S. M31 satellite masses compared to ΛCDM subhaloes. Mon. Not. R. Astron. Soc. 2014, 440, 3511–3519. [Google Scholar] [CrossRef]
- Kirby, E.N.; Bullock, J.S.; Boylan-Kolchin, M.; Kaplinghat, M.; Cohen, J.G. The dynamics of isolated Local Group galaxies. Mon. Not. R. Astron. Soc. 2014, 439, 1015–1027. [Google Scholar] [CrossRef]
- Papastergis, E.; Giovanelli, R.; Haynes, M.P.; Shankar, F. Is there a “too big to fail” problem in the field? Astron. Astrophys. 2015, 574, A113. [Google Scholar] [CrossRef]
- Smercina, A.; Bell, E.F.; Price, P.A.; D’Souza, R.; Slater, C.T.; Bailin, J.; Monachesi, A.; Nidever, D. A Lonely Giant: The Sparse Satellite Population of M94 Challenges Galaxy Formation. Astrophys. J. 2018, 863, 152. [Google Scholar] [CrossRef]
- Danieli, S.; van Dokkum, P.; Merritt, A.; Abraham, R.; Zhang, J.; Karachentsev, I.D.; Makarova, L.N. The Dragonfly Nearby Galaxies Survey. III. The Luminosity Function of the M101 Group. Astrophys. J. 2017, 837, 136. [Google Scholar] [CrossRef]
- Bennet, P.; Sand, D.J.; Crnojević, D.; Spekkens, K.; Karunakaran, A.; Zaritsky, D.; Mutlu-Pakdil, B. The Satellite Luminosity Function of M101 into the Ultra-faint Dwarf Galaxy Regime. Astrophys. J. Lett. 2020, 893, L9. [Google Scholar] [CrossRef]
- Xue, X.X.; Rix, H.W.; Zhao, G.; Re Fiorentin, P.; Naab, T.; Steinmetz, M.; van den Bosch, F.C.; Beers, T.C.; Lee, Y.S.; Bell, E.F.; et al. The Milky Way’s Circular Velocity Curve to 60 kpc and an Estimate of the Dark Matter Halo Mass from the Kinematics of ~2400 SDSS Blue Horizontal-Branch Stars. Astrophys. J. 2008, 684, 1143–1158. [Google Scholar] [CrossRef]
- Brown, W.R.; Geller, M.J.; Kenyon, S.J.; Diaferio, A. Velocity Dispersion Profile of the Milky Way Halo. Astron. J. 2010, 139, 59–67. [Google Scholar] [CrossRef]
- Gnedin, O.Y.; Brown, W.R.; Geller, M.J.; Kenyon, S.J. The Mass Profile of the Galaxy to 80 kpc. Astrophys. J. Lett. 2010, 720, L108–L112. [Google Scholar] [CrossRef]
- Cautun, M.; Benítez-Llambay, A.; Deason, A.J.; Frenk, C.S.; Fattahi, A.; Gómez, F.A.; Grand, R.J.J.; Oman, K.A.; Navarro, J.F.; Simpson, C.M. The milky way total mass profile as inferred from Gaia DR2. Mon. Not. R. Astron. Soc. 2020, 494, 4291–4313. [Google Scholar] [CrossRef]
- Sakamoto, T.; Chiba, M.; Beers, T.C. The mass of the Milky Way: Limits from a newly assembled set of halo objects. Astron. Astrophys. 2003, 397, 899–911. [Google Scholar] [CrossRef][Green Version]
- Sohn, S.T.; Watkins, L.L.; Fardal, M.A.; van der Marel, R.P.; Deason, A.J.; Besla, G.; Bellini, A. Absolute Hubble Space Telescope Proper Motion (HSTPROMO) of Distant Milky Way Globular Clusters: Galactocentric Space Velocities and the Milky Way Mass. Astrophys. J. 2018, 862, 52. [Google Scholar] [CrossRef]
- Brooks, A.M.; Zolotov, A. Why Baryons Matter: The Kinematics of Dwarf Spheroidal Satellites. Astrophys. J. 2014, 786, 87. [Google Scholar] [CrossRef]
- Dutton, A.A.; Macciò, A.V.; Frings, J.; Wang, L.; Stinson, G.S.; Penzo, C.; Kang, X. NIHAO V: Too big does not fail - reconciling the conflict between ΛCDM predictions and the circular velocities of nearby field galaxies. Mon. Not. R. Astron. Soc. 2016, 457, L74–L78. [Google Scholar] [CrossRef]
- Buck, T.; Macciò, A.V.; Dutton, A.A.; Obreja, A.; Frings, J. NIHAO XV: The environmental impact of the host galaxy on galactic satellite and field dwarf galaxies. Mon. Not. R. Astron. Soc. 2019, 483, 1314–1341. [Google Scholar] [CrossRef]
- Fattahi, A.; Navarro, J.F.; Sawala, T.; Frenk, C.S.; Sales, L.V.; Oman, K.; Schaller, M.; Wang, J. The cold dark matter content of Galactic dwarf spheroidals: No cores, no failures, no problem. arXiv 2016, arXiv:1607.06479. [Google Scholar]
- Fattahi, A.; Navarro, J.F.; Frenk, C.S.; Oman, K.A.; Sawala, T.; Schaller, M. Tidal stripping and the structure of dwarf galaxies in the Local Group. Mon. Not. R. Astron. Soc. 2018, 476, 3816–3836. [Google Scholar] [CrossRef]
- Crain, R.A.; Schaye, J.; Bower, R.G.; Furlong, M.; Schaller, M.; Theuns, T.; Dalla Vecchia, C.; Frenk, C.S.; McCarthy, I.G.; Helly, J.C.; et al. The EAGLE simulations of galaxy formation: Calibration of subgrid physics and model variations. Mon. Not. R. Astron. Soc. 2015, 450, 1937–1961. [Google Scholar] [CrossRef]
- Schaye, J.; Crain, R.A.; Bower, R.G.; Furlong, M.; Schaller, M.; Theuns, T.; Dalla Vecchia, C.; Frenk, C.S.; McCarthy, I.G.; Helly, J.C.; et al. The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 2015, 446, 521–554. [Google Scholar] [CrossRef]
- Garrison-Kimmel, S.; Hopkins, P.F.; Wetzel, A.; Bullock, J.S.; Boylan-Kolchin, M.; Kereš, D.; Faucher-Giguère, C.A.; El-Badry, K.; Lamberts, A.; Quataert, E.; et al. The Local Group on FIRE: Dwarf galaxy populations across a suite of hydrodynamic simulations. Mon. Not. R. Astron. Soc. 2019, 487, 1380–1399. [Google Scholar] [CrossRef]
- Robles, V.H.; Kelley, T.; Bullock, J.S.; Kaplinghat, M. The Milky Way’s halo and subhaloes in self-interacting dark matter. Mon. Not. R. Astron. Soc. 2019, 490, 2117–2123. [Google Scholar] [CrossRef]
- Ostriker, J.P.; Choi, E.; Chow, A.; Guha, K. Mind the Gap: Is the Too Big to Fail Problem Resolved? Astrophys. J. 2019, 885, 97. [Google Scholar] [CrossRef]
- Pawlowski, M.S.; Pflamm-Altenburg, J.; Kroupa, P. The VPOS: A vast polar structure of satellite galaxies, globular clusters and streams around the Milky Way. Mon. Not. R. Astron. Soc. 2012, 423, 1109–1126. [Google Scholar] [CrossRef]
- Ibata, R.A.; Lewis, G.F.; Conn, A.R.; Irwin, M.J.; McConnachie, A.W.; Chapman, S.C.; Collins, M.L.; Fardal, M.; Ferguson, A.M.N.; Ibata, N.G.; et al. A vast, thin plane of corotating dwarf galaxies orbiting the Andromeda galaxy. Nature 2013, 493, 62–65. [Google Scholar] [CrossRef]
- Conn, A.R.; Lewis, G.F.; Ibata, R.A.; Parker, Q.A.; Zucker, D.B.; McConnachie, A.W.; Martin, N.F.; Valls-Gabaud, D.; Tanvir, N.; Irwin, M.J.; et al. The three-dimensional structure of the m31 satellite system; strong evidence for an inhomogeneous distribution of satellites. Astrophys. J. 2013, 766, 120. [Google Scholar] [CrossRef]
- Tully, R.B.; Libeskind, N.I.; Karachentsev, I.D.; Karachentseva, V.E.; Rizzi, L.; Shaya, E.J. Two Planes of Satellites in the Centaurus A Group. Astrophys. J. 2015, 802, L25. [Google Scholar] [CrossRef]
- Crnojević, D.; Sand, D.J.; Caldwell, N.; Guhathakurta, P.; McLeod, B.; Seth, A.; Simon, J.D.; Strader, J.; Toloba, E. Discovery of a close pair of faint dwarf galaxies in the halo of Centaurus A. Astrophys. J. 2014, 795, L35. [Google Scholar] [CrossRef]
- Crnojević, D.; Sand, D.J.; Spekkens, K.; Caldwell, N.; Guhathakurta, P.; McLeod, B.; Seth, A.; Simon, J.D.; Strader, J.; Toloba, E. The extended halo of centaurus a: Uncovering satellites, streams, and substructures. Astrophys. J. 2016, 823, 19. [Google Scholar] [CrossRef]
- Müller, O.; Jerjen, H.; Pawlowski, M.S.; Binggeli, B. Testing the two planes of satellites in the Centaurus Group. Astron. Astrophys. 2016, 595, A119. [Google Scholar] [CrossRef]
- Müller, O.; Pawlowski, M.S.; Jerjen, H.; Lelli, F. A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology. Science 2018, 359, 534. [Google Scholar] [CrossRef]
- Pawlowski, M.S. The Planes of Satellite Galaxies Problem, Suggested Solutions, and Open Questions. Mod. Phys. Lett. 2018, A33, 1830004. [Google Scholar] [CrossRef]
- Lynden-Bell, D. Dwarf Galaxies and Globular Clusters in High Velocity Hydrogen Streams. Mon. Not. R. Astron. Soc. 1976, 174, 695–710. [Google Scholar] [CrossRef]
- Kunkel, W.E.; Demers, S. The Magellanic Plane; Royal Observatory Greenwich: London, UK, 1976; Volume 182, p. 241. [Google Scholar]
- York, D.G.; Adelman, J.; Anderson, J.E., Jr.; Anderson, S.F.; Annis, J.; Bahcall, N.A.; Boroski, W.N. The Sloan Digital Sky Survey: Technical Summary. Astron. J. 2000, 120, 1579–1587. [Google Scholar] [CrossRef]
- Dark Energy Survey Collaboration. The dark energy survey. arXiv 2005, arXiv:astro-ph/0510346. [Google Scholar]
- Pawlowski, M.S. The alignment of SDSS satellites with the VPOS: Effects of the survey footprint shape. Mon. Not. Roy. Astron. Soc. 2016, 456, 448–458. [Google Scholar] [CrossRef]
- Pawlowski, M.S.; Kroupa, P. The rotationally stabilized VPOS and predicted proper motions of the Milky Way satellite galaxies. Mon. Not. R. Astron. Soc. 2013, 435, 2116–2131. [Google Scholar] [CrossRef]
- Pawlowski, M.S.; Dabringhausen, J.; Famaey, B.; Flores, H.; Hammer, F.; Hensler, G.; Ibata, R.A.; Kroupa, P.; Lewis, G.F.; Libeskind, N.I.; et al. Considerations on how to investigate planes of satellite galaxies. Astron. Nachrichten 2017, 338, 854–861. [Google Scholar] [CrossRef][Green Version]
- Helmi, A.; van Leeuwen, F.; McMillan, P.J.; Massari, D.; Antoja, T.; Robin, A.C.; Lindegren, L.; Bastian, U.; Arenou, F.; Babusiaux, C.; et al. Gaia Data Release 2: Kinematics of globular clusters and dwarf galaxies around the Milky Way. Astron. Astrophys. 2018, 616, A12. [Google Scholar] [CrossRef]
- Pawlowski, M.S.; Kroupa, P. The Milky Way’s Disk of Classical Satellite Galaxies in Light of Gaia DR2. Mon. Not. Roy. Astron. Soc. 2020, 491, 3042–3059. [Google Scholar] [CrossRef]
- McConnachie, A.W.; Irwin, M.J.; Ibata, R.A.; Dubinski, J.; Widrow, L.M.; Martin, N.F.; Côté, P.; Dotter, A.L.; Navarro, J.F.; Ferguson, A.M.N.; et al. The remnants of galaxy formation from a panoramic survey of the region around M31. Nature 2009, 461, 66–69. [Google Scholar] [CrossRef]
- Pawlowski, M.S.; Kroupa, P.; Jerjen, H. Dwarf Galaxy Planes: The discovery of symmetric structures in the Local Group. Mon. Not. Roy. Astron. Soc. 2013, 435, 1928. [Google Scholar] [CrossRef]
- Pawlowski, M.S.; McGaugh, S.S. Perseus I and the NGC 3109 association in the context of the Local Group dwarf galaxy structures. Mon. Not. Roy. Astron. Soc. 2014, 440, 908–919. [Google Scholar] [CrossRef]
- Kroupa, P.; Theis, C.; Boily, C.M. The Great disk of Milky Way satellites and cosmological sub-structures. Astron. Astrophys. 2005, 431, 517–521. [Google Scholar] [CrossRef]
- Libeskind, N.I.; Frenk, C.S.; Cole, S.; Helly, J.C.; Jenkins, A.; Navarro, J.F.; Power, C. The Distribution of satellite galaxies: The Great pancake. Mon. Not. Roy. Astron. Soc. 2005, 363, 146–152. [Google Scholar] [CrossRef][Green Version]
- Zentner, A.R.; Kravtsov, A.V.; Gnedin, O.Y.; Klypin, A.A. The Anisotropic distribution of Galactic satellites. Astrophys. J. 2005, 629, 219. [Google Scholar] [CrossRef]
- Wang, J.; Frenk, C.S.; Cooper, A.P. The Spatial Distribution of Galactic Satellites in the LCDM Cosmology. Mon. Not. Roy. Astron. Soc. 2013, 429, 1502. [Google Scholar] [CrossRef]
- Lovell, M.; Eke, V.; Frenk, C.; Jenkins, A. The Link between Galactic Satellite Orbits and Subhalo Accretion. Mon. Not. Roy. Astron. Soc. 2011, 413, 3013. [Google Scholar] [CrossRef]
- Libeskind, N.I.; Knebe, A.; Hoffman, Y.; Gottloeber, S.; Yepes, G.; Steinmetz, M. The preferred direction of infalling satellite galaxies in the Local Group. Mon. Not. Roy. Astron. Soc. 2011, 411, 1525. [Google Scholar] [CrossRef]
- Libeskind, N.I.; Hoffman, Y.; Tully, R.B.; Courtois, H.M.; Pomarède, D.; Gottlöber, S.; Steinmetz, M. Planes of satellite galaxies and the cosmic web. Mon. Not. Roy. Astron. Soc. 2015, 452, 1052–1059. [Google Scholar] [CrossRef]
- Libeskind, N.I.; Knebe, A.; Hoffman, Y.; Gottlöber, S. The universal nature of subhalo accretion. Mon. Not. Roy. Astron. Soc. 2014, 443, 1274–1280. [Google Scholar] [CrossRef]
- Pawlowski, M.S.; Kroupa, P.; Angus, G.; de Boer, K.S.; Famaey, B.; Hensler, G. Can filamentary accretion explain the orbital poles of the Milky Way satellites? Mon. Not. Roy. Astron. Soc. 2012, 424, 80. [Google Scholar] [CrossRef]
- Lynden-Bell, D.; Lynden-Bell, R.M. Ghostly streams from the formation of the Galaxy’s halo. Mon. Not. Roy. Astron. Soc. 1995, 275, 429–442. [Google Scholar] [CrossRef]
- Metz, M.; Kroupa, P.; Theis, C.; Hensler, G.; Jerjen, H. Did the Milky Way dwarf satellites enter the halo as a group? Astrophys. J. 2009, 697, 269–274. [Google Scholar] [CrossRef]
- Lake, G.; D’Onghia, E. Small Dwarf Galaxies Within Larger Dwarfs: Why Some Are Luminous While Most Go Dark. Astrophys. J. 2008, 686, L61. [Google Scholar] [CrossRef]
- Nichols, M.; Colless, J.; Colless, M.; Bland-Hawthorn, J. Accretion of the Magellanic system onto the Galaxy. Astrophys. J. 2011, 742, 110. [Google Scholar] [CrossRef]
- Li, Y.S.; Helmi, A. Infall of Substructures onto a Milky Way-like Dark Halo. Mon. Not. Roy. Astron. Soc. 2008, 385, 1365. [Google Scholar] [CrossRef]
- Wetzel, A.R.; Deason, A.J.; Garrison-Kimmel, S. Satellite Dwarf Galaxies in a Hierarchical Universe: Infall Histories, Group Preprocessing, and Reionization. Astrophys. J. 2015, 807, 49. [Google Scholar] [CrossRef]
- Shao, S.; Cautun, M.; Frenk, C.S.; Grand, R.J.J.; Gómez, F.A.; Marinacci, F.; Simpson, C. The multiplicity and anisotropy of galactic satellite accretion. Mon. Not. Roy. Astron. Soc. 2018, 476, 1796–1810. [Google Scholar] [CrossRef]
- Angus, G.W.; Diaferio, A.; Kroupa, P. Using dwarf satellite proper motions to determine their origin. Mon. Not. R. Astron. Soc. 2011, 416, 1401–1409. [Google Scholar] [CrossRef]
- Angus, G.W.; Coppin, P.; Gentile, G.; Diaferio, A. The potential role of NGC 205 in generating Andromeda’s vast thin corotating plane of satellite galaxies. Mon. Not. R. Astron. Soc. 2016, 462, 3221–3242. [Google Scholar] [CrossRef]
- Weilbacher, P.M.; Duc, P.A.; Fritze v. Alvensleben, U.; Martin, P.; Fricke, K.J. Tidal dwarf candidates in a sample of interacting galaxies. Astron. Astrophys. 2000, 358, 819–834. [Google Scholar]
- Bournaud, F.; Duc, P.A. From Tidal Dwarf Galaxies to Satellite Galaxies. Astron. Astrophys. 2006, 456, 481. [Google Scholar] [CrossRef]
- Wetzstein, M.; Naab, T.; Burkert, A. Do dwarf galaxies form in tidal tails? Mon. Not. R. Astron. Soc. 2007, 375, 805–820. [Google Scholar] [CrossRef]
- Ploeckinger, S.; Sharma, K.; Schaye, J.; Crain, R.A.; Schaller, M.; Barber, C. Tidal dwarf galaxies in cosmological simulations. Mon. Not. R. Astron. Soc. 2017, 474, 580–596. [Google Scholar] [CrossRef]
- Metz, M.; Kroupa, P. Dwarf-spheroidal satellites: Are they of tidal origin? Mon. Not. Roy. Astron. Soc. 2007, 376, 387–392. [Google Scholar] [CrossRef]
- Recchi, S.; Kroupa, P.; Ploeckinger, S. The mass-metallicity relation of tidal dwarf galaxies. Mon. Not. R. Astron. Soc. 2015, 450, 2367–2372. [Google Scholar] [CrossRef][Green Version]
- Kroupa, P. Dwarf spheroidal satellite galaxies without dark matter. New Astron. 1997, 2, 139–164. [Google Scholar] [CrossRef]
- Yang, Y.; Hammer, F.; Fouquet, S.; Flores, H.; Puech, M.; Pawlowski, M.S.; Kroupa, P. Reproducing properties of MW dSphs as descendants of DM-free TDGs. Mon. Not. Roy. Astron. Soc. 2014, 442, 2419–2433. [Google Scholar] [CrossRef]
- Foot, R.; Silagadze, Z.K. Thin disk of co-rotating dwarfs: A fingerprint of dissipative (mirror) dark matter? Phys. Dark Univ. 2013, 2, 163–165. [Google Scholar] [CrossRef]
- Randall, L.; Scholtz, J. Dissipative Dark Matter and the Andromeda Plane of Satellites. JCAP 2015, 1509, 057. [Google Scholar] [CrossRef]
- Schutz, K.; Lin, T.; Safdi, B.R.; Wu, C.L. Constraining a Thin Dark Matter Disk with Gaia. Phys. Rev. Lett. 2018, 121, 081101. [Google Scholar] [CrossRef]
- Buch, J.; Leung, S.C.J.; Fan, J. Using Gaia DR2 to Constrain Local Dark Matter Density and Thin Dark Disk. JCAP 2019, 1904, 026. [Google Scholar] [CrossRef]
- Tiret, O.; Combes, F. Interacting Galaxies with MOND. ASP Conf. Ser. 2008, 396, 259. [Google Scholar]
- Renaud, F.; Famaey, B.; Kroupa, P. Star formation triggered by galaxy interactions in modified gravity. Mon. Not. R. Astron. Soc. 2016, 463, 3637–3652. [Google Scholar] [CrossRef]
- Buckley, M.R.; Peter, A.H.G. Gravitational probes of dark matter physics. Phys. Rep. 2018, 761, 1–60. [Google Scholar] [CrossRef]
- Smith, R.E.; Markovic, K. Testing the warm dark matter paradigm with large-scale structures. Phys. Rev. D 2011, 84, 063507. [Google Scholar] [CrossRef]
- Schneider, A.; Anderhalden, D.; Macciò, A.V.; Diemand, J. Warm dark matter does not do better than cold dark matter in solving small-scale inconsistencies. Mon. Not. R. Astron. Soc. Lett. 2014, 441, L6–L10. [Google Scholar] [CrossRef]
- Narayanan, V.K.; Spergel, D.N.; Davé, R.; Ma, C.P. Constraints on the Mass of Warm Dark Matter Particles and the Shape of the Linear Power Spectrum from the Lyα Forest. Astrophys. J. 2000, 543, L103–L106. [Google Scholar] [CrossRef]
- Seljak, U.C.V.; Makarov, A.; McDonald, P.; Trac, H. Can Sterile Neutrinos Be the Dark Matter? Phys. Rev. Lett. 2006, 97, 191303. [Google Scholar] [CrossRef]
- Abazajian, K. Linear cosmological structure limits on warm dark matter. Phys. Rev. D 2006, 73, 063513. [Google Scholar] [CrossRef]
- Viel, M.; Becker, G.D.; Bolton, J.S.; Haehnelt, M.G.; Rauch, M.; Sargent, W.L.W. How Cold Is Cold Dark Matter? Small-Scales Constraints from the Flux Power Spectrum of the High-Redshift Lyman-α Forest. Phys. Rev. Lett. 2008, 100, 041304. [Google Scholar] [CrossRef]
- Kennedy, R.; Frenk, C.; Cole, S.; Benson, A. Constraining the warm dark matter particle mass with Milky Way satellites. Mon. Not. R. Astron. Soc. 2014, 442, 2487–2495. [Google Scholar] [CrossRef]
- Yèche, C.; Palanque-Delabrouille, N.; Baur, J.; Bourboux, H.d.M.d. Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100. J. Cosmol. Astropart. Phys. 2017, 2017, 047. [Google Scholar] [CrossRef]
- Dodelson, S.; Widrow, L.M. Sterile neutrinos as dark matter. Phys. Rev. Lett. 1994, 72, 17–20. [Google Scholar] [CrossRef]
- Dolgov, A.D.; Hansen, S.H. Massive sterile neutrinos as warm dark matter. Astropart. Phys. 2002, 16, 339–344. [Google Scholar] [CrossRef]
- Horiuchi, S.; Humphrey, P.J.; Oñorbe, J.; Abazajian, K.N.; Kaplinghat, M.; Garrison-Kimmel, S. Sterile neutrino dark matter bounds from galaxies of the Local Group. Phys. Rev. D 2014, 89, 025017. [Google Scholar] [CrossRef]
- Malyshev, D.; Neronov, A.; Eckert, D. Constraints on 3.55 keV line emission from stacked observations of dwarf spheroidal galaxies. Phys. Rev. D 2014, 90. [Google Scholar] [CrossRef]
- Tamura, T.; Iizuka, R.; Maeda, Y.; Mitsuda, K.; Yamasaki, N.Y. An X-ray spectroscopic search for dark matter in the Perseus cluster with Suzaku. Publ. Astron. Soc. Jpn. 2015, 67. [Google Scholar] [CrossRef]
- Ng, K.C.; Horiuchi, S.; Gaskins, J.M.; Smith, M.; Preece, R. Improved limits on sterile neutrino dark matter using full-sky Fermi Gamma-ray Burst Monitor data. Phys. Rev. D 2015, 92. [Google Scholar] [CrossRef]
- Abazajian, K.N. Sterile neutrinos in cosmology. Phys. Rep. 2017, 711–712, 1–28. [Google Scholar] [CrossRef]
- Iakubovskyi, D.; Bulbul, E.; Foster, A.R.; Savchenko, D.; Sadova, V. Testing the origin of ~3.55 keV line in individual galaxy clusters observed with XMM-Newton. arXiv 2015, arXiv:1508.05186. [Google Scholar]
- Hsueh, J.W.; Enzi, W.; Vegetti, S.; Auger, M.W.; Fassnacht, C.D.; Despali, G.; Koopmans, L.V.E.; McKean, J.P. SHARP—VII. New constraints on the dark matter free-streaming properties and substructure abundance from gravitationally lensed quasars. Mon. Not. R. Astron. Soc. 2019, 492, 3047–3059. [Google Scholar] [CrossRef]
- Bolton, J.S.; Viel, M.; Kim, T.S.; Haehnelt, M.G.; Carswell, R.F. Possible evidence for an inverted temperature-density relation in the intergalactic medium from the flux distribution of the Lyα forest. Mon. Not. R. Astron. Soc. 2008, 386, 1131–1144. [Google Scholar] [CrossRef]
- Iršič, V.; Viel, M.; Haehnelt, M.G.; Bolton, J.S.; Cristiani, S.; Becker, G.D.; D’Odorico, V.; Cupani, G.; Kim, T.S.; Berg, T.A.M.; et al. New constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data. Phys. Rev. D 2017, 96, 023522. [Google Scholar] [CrossRef]
- Garzilli, A.; Magalich, A.; Theuns, T.; Frenk, C.S.; Weniger, C.; Ruchayskiy, O.; Boyarsky, A. The Lyman-α forest as a diagnostic of the nature of the dark matter. Mon. Not. R. Astron. Soc. 2019, 489, 3456–3471. [Google Scholar] [CrossRef]
- Bode, P.; Ostriker, J.P.; Turok, N. Halo Formation in Warm Dark Matter Models. Astrophys. J. 2001, 556, 93–107. [Google Scholar] [CrossRef]
- Viel, M.; Lesgourgues, J.; Haehnelt, M.G.; Matarrese, S.; Riotto, A. Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-αforest. Phys. Rev. D 2005, 71. [Google Scholar] [CrossRef]
- Zavala, J.; Jing, Y.P.; Faltenbacher, A.; Yepes, G.; Hoffman, Y.; Gottlöber, S.; Catinella, B. The velocity function in the local environment from ΛCDM and ΛWDM constrained simulations. Astrophys. J. 2009, 700, 1779–1793. [Google Scholar] [CrossRef]
- Papastergis, E.; Martin, A.M.; Giovanelli, R.; Haynes, M.P. The Velocity Width Function of Galaxies from the 40% ALFALFA Survey: Shedding Light on the Cold Dark Matter Overabundance Problem. Astrophys. J. 2011, 739, 38. [Google Scholar] [CrossRef][Green Version]
- Tremaine, S.; Gunn, J.E. Dynamical Role of Light Neutral Leptons in Cosmology. Phys. Rev. Lett. 1979, 42, 407–410. [Google Scholar] [CrossRef]
- Villaescusa-Navarro, F.; Dalal, N. Cores and cusps in warm dark matter halos. J. Cosmol. Astropart. Phys. 2011, 2011, 024. [Google Scholar] [CrossRef]
- Macció, A.V.; Paduroiu, S.; Anderhalden, D.; Schneider, A.; Moore, B. Cores in warm dark matter haloes: A Catch 22 problem. Mon. Not. R. Astron. Soc. 2012, 424, 1105–1112. [Google Scholar] [CrossRef]
- Polisensky, E.; Ricotti, M. Constraints on the dark matter particle mass from the number of Milky Way satellites. Phys. Rev. D 2011, 83, 043506. [Google Scholar] [CrossRef]
- Lovell, M.R.; Eke, V.; Frenk, C.S.; Gao, L.; Jenkins, A.; Theuns, T.; Wang, J.; White, S.D.M.; Boyarsky, A.; Ruchayskiy, O. The haloes of bright satellite galaxies in a warm dark matter universe. Mon. Not. R. Astron. Soc. 2012, 420, 2318–2324. [Google Scholar] [CrossRef]
- Anderhalden, D.; Diemand, J.; Bertone, G.; Macciò, A.V.; Schneider, A. The galactic halo in mixed dark matter cosmologies. J. Cosmol. Astropart. Phys. 2012, 2012, 047. [Google Scholar] [CrossRef]
- Schneider, A.; Smith, R.E.; Macciò, A.V.; Moore, B. Non-linear evolution of cosmological structures in warm dark matter models. Mon. Not. R. Astron. Soc. 2012, 424, 684–698. [Google Scholar] [CrossRef]
- Angulo, R.E.; Hahn, O.; Abel, T. The warm dark matter halo mass function below the cut-off scale. Mon. Not. R. Astron. Soc. 2013, 434, 3337–3347. [Google Scholar] [CrossRef]
- Kang, X.; Macciò, A.V.; Dutton, A.A. The Effect of Warm Dark Matter on Galaxy Properties: Constraints from the Stellar Mass Function and the Tully-Fisher Relation. Astrophys. J. 2013, 767, 22. [Google Scholar] [CrossRef][Green Version]
- Lovell, M.R.; Gonzalez-Perez, V.; Bose, S.; Boyarsky, A.; Cole, S.; Frenk, C.S.; Ruchayskiy, O. Addressing the too big to fail problem with baryon physics and sterile neutrino dark matter. Mon. Not. R. Astron. Soc. 2017, 468, 2836–2849. [Google Scholar] [CrossRef]
- Kang, X. Warm dark matter model with a few keV mass is bad for the too-big-to-fail problem. Mon. Not. R. Astron. Soc. 2020, 491, 2520–2535. [Google Scholar] [CrossRef]
- Carlson, E.D.; Machacek, M.E.; Hall, L.J. Self-interacting dark matter. Astrophys. J. 1992, 398, 43–52. [Google Scholar] [CrossRef]
- Machacek, M.E. Growth of Adiabatic Perturbations in Self-interacting Dark Matter. Astrophys. J. 1994, 431, 41. [Google Scholar] [CrossRef]
- de Laix, A.A.; Scherrer, R.J.; Schaefer, R.K. Constraints of selfinteracting dark matter. Astrophys. J. 1995, 452, 495. [Google Scholar] [CrossRef]
- Spergel, D.N.; Steinhardt, P.J. Observational evidence for selfinteracting cold dark matter. Phys. Rev. Lett. 2000, 84, 3760–3763. [Google Scholar] [CrossRef]
- Tulin, S.; Yu, H.B. Dark Matter Self-interactions and Small Scale Structure. Phys. Rep. 2018, 730, 1–57. [Google Scholar] [CrossRef]
- Dave, R.; Spergel, D.N.; Steinhardt, P.J.; Wandelt, B.D. Halo properties in cosmological simulations of selfinteracting cold dark matter. Astrophys. J. 2001, 547, 574–589. [Google Scholar] [CrossRef]
- Yoshida, N.; Springel, V.; White, S.D.M.; Tormen, G. Weakly self-interacting dark matter and the structure of dark halos. Astrophys. J. 2000, 544, L87–L90. [Google Scholar] [CrossRef]
- Rocha, M.; Peter, A.H.G.; Bullock, J.S.; Kaplinghat, M.; Garrison-Kimmel, S.; Onorbe, J.; Moustakas, L.A. Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure. Mon. Not. Roy. Astron. Soc. 2013, 430, 81–104. [Google Scholar] [CrossRef]
- Elbert, O.D.; Bullock, J.S.; Garrison-Kimmel, S.; Rocha, M.; Oñorbe, J.; Peter, A.H.G. Core formation in dwarf haloes with self-interacting dark matter: No fine-tuning necessary. Mon. Not. Roy. Astron. Soc. 2015, 453, 29–37. [Google Scholar] [CrossRef]
- Firmani, C.; D’Onghia, E.; Avila-Reese, V.; Chincarini, G.; Hernandez, X. Evidence of self-interacting cold dark matter from galactic to galaxy cluster scales. Mon. Not. Roy. Astron. Soc. 2000, 315, L29. [Google Scholar] [CrossRef]
- Meneghetti, M.; Yoshida, N.; Bartelmann, M.; Moscardini, L.; Springel, V.; Tormen, G.; White, S.D.M. Giant cluster arcs as a constraint on the scattering cross-section of dark matter. Mon. Not. Roy. Astron. Soc. 2001, 325, 435. [Google Scholar] [CrossRef]
- Firmani, C.; D’Onghia, E.; Chincarini, G.; Hernandez, X.; Avila-Reese, V. Constraints on dark matter physics from dwarf galaxies through galaxy cluster haloes. Mon. Not. Roy. Astron. Soc. 2001, 321, 713. [Google Scholar] [CrossRef][Green Version]
- Colin, P.; Avila-Reese, V.; Valenzuela, O.; Firmani, C. Structure and subhalo population of halos in a selfinteracting dark matter cosmology. Astrophys. J. 2002, 581, 777–793. [Google Scholar] [CrossRef]
- Vogelsberger, M.; Zavala, J.; Loeb, A. Subhaloes in Self-Interacting Galactic Dark Matter Haloes. Mon. Not. Roy. Astron. Soc. 2012, 423, 3740. [Google Scholar] [CrossRef]
- Zavala, J.; Vogelsberger, M.; Walker, M.G. Constraining Self-Interacting Dark Matter with the Milky Way’s dwarf spheroidals. Mon. Not. Roy. Astron. Soc. 2013, 431, L20–L24. [Google Scholar] [CrossRef]
- Peter, A.H.G.; Rocha, M.; Bullock, J.S.; Kaplinghat, M. Cosmological Simulations with Self-Interacting Dark Matter II: Halo Shapes vs. Observations. Mon. Not. Roy. Astron. Soc. 2013, 430, 105. [Google Scholar] [CrossRef]
- Feng, J.L.; Kaplinghat, M.; Yu, H.B. Halo Shape and Relic Density Exclusions of Sommerfeld-Enhanced Dark Matter Explanations of Cosmic Ray Excesses. Phys. Rev. Lett. 2010, 104, 151301. [Google Scholar] [CrossRef] [PubMed]
- Gnedin, O.Y.; Ostriker, J.P. Limits on collisional dark matter from elliptical galaxies in clusters. Astrophys. J. 2001, 561, 61. [Google Scholar] [CrossRef]
- Vogelsberger, M.; Zavala, J.; Simpson, C.; Jenkins, A. Dwarf galaxies in CDM and SIDM with baryons: Observational probes of the nature of dark matter. Mon. Not. Roy. Astron. Soc. 2014, 444, 3684–3698. [Google Scholar] [CrossRef]
- Fry, A.B.; Governato, F.; Pontzen, A.; Quinn, T.; Tremmel, M.; Anderson, L.; Menon, H.; Brooks, A.M.; Wadsley, J. All about baryons: Revisiting SIDM predictions at small halo masses. Mon. Not. Roy. Astron. Soc. 2015, 452, 1468–1479. [Google Scholar] [CrossRef]
- Kaplinghat, M.; Keeley, R.E.; Linden, T.; Yu, H.B. Tying Dark Matter to Baryons with Self-interactions. Phys. Rev. Lett. 2014, 113, 021302. [Google Scholar] [CrossRef]
- Kaplinghat, M.; Tulin, S.; Yu, H.B. Dark Matter Halos as Particle Colliders: Unified Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters. Phys. Rev. Lett. 2016, 116, 041302. [Google Scholar] [CrossRef]
- Oman, K.A.; Navarro, J.F.; Fattahi, A.; Frenk, C.S.; Sawala, T.; White, S.D.; Bower, R.; Crain, R.A.; Furlong, M.; Schaller, M.; et al. The unexpected diversity of dwarf galaxy rotation curves. Mon. Not. Roy. Astron. Soc. 2015, 452, 3650–3665. [Google Scholar] [CrossRef]
- Kamada, A.; Kaplinghat, M.; Pace, A.B.; Yu, H.B. How the Self-Interacting Dark Matter Model Explains the Diverse Galactic Rotation Curves. Phys. Rev. Lett. 2017, 119, 111102. [Google Scholar] [CrossRef]
- Ren, T.; Kwa, A.; Kaplinghat, M.; Yu, H.B. Reconciling the Diversity and Uniformity of Galactic Rotation Curves with Self-Interacting Dark Matter. Phys. Rev. 2019, X9, 031020. [Google Scholar] [CrossRef]
- Dooley, G.A.; Peter, A.H.G.; Vogelsberger, M.; Zavala, J.; Frebel, A. Enhanced Tidal Stripping of Satellites in the Galactic Halo from Dark Matter Self-Interactions. Mon. Not. Roy. Astron. Soc. 2016, 461, 710–727. [Google Scholar] [CrossRef]
- Loeb, A.; Weiner, N. Cores in Dwarf Galaxies from Dark Matter with a Yukawa Potential. Phys. Rev. Lett. 2011, 106, 171302. [Google Scholar] [CrossRef] [PubMed]
- Markevitch, M.; Gonzalez, A.H.; David, L.; Vikhlinin, A.; Murray, S.; Forman, W.; Jones, C.; Tucker, W. A Textbook example of a bow shock in the merging galaxy cluster 1E0657-56. Astrophys. J. 2002, 567, L27. [Google Scholar] [CrossRef]
- Markevitch, M.; Gonzalez, A.H.; Clowe, D.; Vikhlinin, A.; David, L.; Forman, W.; Jones, C.; Murray, S.; Tucker, W. Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56. Astrophys. J. 2004, 606, 819–824. [Google Scholar] [CrossRef]
- Bento, M.C.; Bertolami, O.; Rosenfeld, R.; Teodoro, L. Selfinteracting dark matter and invisibly decaying Higgs. Phys. Rev. 2000, D62, 041302. [Google Scholar] [CrossRef]
- McDonald, J. Thermally generated gauge singlet scalars as selfinteracting dark matter. Phys. Rev. Lett. 2002, 88, 091304. [Google Scholar] [CrossRef]
- Burgess, C.P.; Pospelov, M.; ter Veldhuis, T. The Minimal model of nonbaryonic dark matter: A Singlet scalar. Nucl. Phys. 2001, B619, 709–728. [Google Scholar] [CrossRef]
- Tulin, S.; Yu, H.B.; Zurek, K.M. Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure. Phys. Rev. 2013, D87, 115007. [Google Scholar] [CrossRef]
- Buckley, M.R.; Fox, P.J. Dark Matter Self-Interactions and Light Force Carriers. Phys. Rev. 2010, D81, 083522. [Google Scholar] [CrossRef]
- Tulin, S.; Yu, H.B.; Zurek, K.M. Resonant Dark Forces and Small Scale Structure. Phys. Rev. Lett. 2013, 110, 111301. [Google Scholar] [CrossRef] [PubMed]
- Braaten, E.; Hammer, H.W. Universal Two-body Physics in Dark Matter near an S-wave Resonance. Phys. Rev. 2013, D88, 063511. [Google Scholar] [CrossRef]
- Peccei, R.D.; Quinn, H.R. CP Conservation in the Presence of Instantons. Phys. Rev. Lett. 1977, 38, 1440–1443. [Google Scholar] [CrossRef]
- Peccei, R.D.; Quinn, H.R. Constraints Imposed by CP Conservation in the Presence of Instantons. Phys. Rev. 1977, D16, 1791–1797. [Google Scholar] [CrossRef]
- Abbott, L.F.; Sikivie, P. A cosmological bound on the invisible axion. Phys. Lett. B 1983, 120, 133–136. [Google Scholar] [CrossRef]
- Preskill, J.; Wise, M.B.; Wilczek, F. Cosmology of the invisible axion. Phys. Lett. B 1983, 120, 127–132. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W. The Not So Harmless Axion. Phys. Lett. 1983, 120B, 137–141. [Google Scholar] [CrossRef]
- Crewther, R.J.; Di Vecchia, P.; Veneziano, G.; Witten, E. Chiral Estimate of the Electric Dipole Moment of the Neutron in Quantum Chromodynamics. Phys. Lett. 1979, 88B, 123. [Google Scholar] [CrossRef]
- Baker, C.A.; Doyle, D.D.; Geltenbort, P.; Green, K.; Van der Grinten, M.G.D.; Harris, P.G.; Richardson, J.D. An Improved experimental limit on the electric dipole moment of the neutron. Phys. Rev. Lett. 2006, 97, 131801. [Google Scholar] [CrossRef]
- Weinberg, S. The U(1) Problem. Phys. Rev. 1975, D11, 3583–3593. [Google Scholar] [CrossRef]
- Peccei, R.D. The Strong CP problem and axions. Lect. Notes Phys. 2008, 741, 3–17. [Google Scholar] [CrossRef]
- Kim, J.E.; Carosi, G. Axions and the Strong CP Problem. Rev. Mod. Phys. 2010, 82, 557–602. [Google Scholar] [CrossRef]
- Hook, A. TASI Lectures on the Strong CP Problem and Axions. arXiv 2019, arXiv:1812.02669. [Google Scholar]
- Sikivie, P. Axion Cosmology. Lect. Notes Phys. 2008, 741, 19–50. [Google Scholar]
- Kim, J.E. Weak Interaction Singlet and Strong CP Invariance. Phys. Rev. Lett. 1979, 43, 103. [Google Scholar] [CrossRef]
- Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I. Can Confinement Ensure Natural CP Invariance of Strong Interactions? Nucl. Phys. 1980, B166, 493–506. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W.; Srednicki, M. A Simple Solution to the Strong CP Problem with a Harmless Axion. Phys. Lett. 1981, 104B, 199–202. [Google Scholar] [CrossRef]
- Zhitnitsky, A.R. On Possible Suppression of the Axion Hadron Interactions. (In Russian). Sov. J. Nucl. Phys. 1980, 31, 260. [Google Scholar]
- Marsh, D.J.E. Axion Cosmology. Phys. Rep. 2016, 643, 1–79. [Google Scholar] [CrossRef]
- Raffelt, G.G. Astrophysical axion bounds. Lect. Notes Phys. 2008, 741, 51–71. [Google Scholar]
- Armengaud, E. Physics potential of the International Axion Observatory (IAXO). JCAP 2019, 1906, 047. [Google Scholar] [CrossRef]
- Sikivie, P. Experimental Tests of the Invisible Axion. Phys. Rev. Lett. 1983, 51, 1415–1417. [Google Scholar] [CrossRef]
- Du, N.; Force, N.; Khatiwada, R.; Lentz, E.; Ottens, R.; Rosenberg, L.J.; Rybka, G.; Carosi, G.; Woollett, N.; Bowring, D.; et al. A Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment. Phys. Rev. Lett. 2018, 120, 151301. [Google Scholar] [CrossRef] [PubMed]
- Anastassopoulos, V.; Aune, S.; Barth, K.; Belov, V.; Bräuninger, H.; Cantatore, G.; Carmona, J.M.; Castel, J.F.; Cetin, S.A.; Christensen, F.; et al. New CAST Limit on the Axion-Photon Interaction. Nat. Phys. 2017, 13, 584–590. [Google Scholar] [CrossRef]
- Kim, J.E. Light Pseudoscalars, Particle Physics and Cosmology. Phys. Rep. 1987, 150, 1–177. [Google Scholar] [CrossRef]
- Sikivie, P. Invisible Axion Search Methods. arXiv 2020, arXiv:2003.02206. [Google Scholar]
- Graham, P.W.; Irastorza, I.G.; Lamoreaux, S.K.; Lindner, A.; van Bibber, K.A. Experimental Searches for the Axion and Axion-Like Particles. Ann. Rev. Nucl. Part. Sci. 2015, 65, 485–514. [Google Scholar] [CrossRef]
- Axenides, M.; Brandenberger, R.H.; Turner, M.S. Development of Axion Perturbations in an Axion Dominated Universe. Phys. Lett. 1983, 126B, 178–182. [Google Scholar] [CrossRef]
- Seckel, D.; Turner, M.S. Isothermal Density Perturbations in an Axion Dominated Inflationary Universe. Phys. Rev. 1985, D32, 3178. [Google Scholar] [CrossRef]
- Lyth, D.H. A Limit on the Inflationary Energy Density From Axion Isocurvature Fluctuations. Phys. Lett. 1990, B236, 408–410. [Google Scholar] [CrossRef]
- Hogan, C.J.; Rees, M.J. AXION MINICLUSTERS. Phys. Lett. 1988, B205, 228–230. [Google Scholar] [CrossRef]
- Kolb, E.W.; Tkachev, I.I. Axion miniclusters and Bose stars. Phys. Rev. Lett. 1993, 71, 3051–3054. [Google Scholar] [CrossRef] [PubMed]
- Fairbairn, M.; Marsh, D.J.E.; Quevillon, J.; Rozier, S. Structure formation and microlensing with axion miniclusters. Phys. Rev. 2018, D97, 083502. [Google Scholar] [CrossRef]
- Dai, L.; Miralda-Escudé, J. Gravitational Lensing Signatures of Axion Dark Matter Minihalos in Highly Magnified Stars. arXiv 2019, arXiv:1908.01773. [Google Scholar] [CrossRef]
- Erken, O.; Sikivie, P.; Tam, H.; Yang, Q. Cosmic axion thermalization. Phys. Rev. 2012, D85, 063520. [Google Scholar] [CrossRef]
- Schive, H.Y.; Chiueh, T.; Broadhurst, T. Cosmic structure as the quantum interference of a coherent dark wave. Nat. Phys. 2014, 10, 496–499. [Google Scholar] [CrossRef]
- Sikivie, P.; Yang, Q. Bose-Einstein Condensation of Dark Matter Axions. Phys. Rev. Lett. 2009, 103, 111301. [Google Scholar] [CrossRef]
- Banik, N.; Sikivie, P. Axions and the Galactic Angular Momentum Distribution. Phys. Rev. 2013, D88, 123517. [Google Scholar] [CrossRef]
- Sikivie, P. The caustic ring singularity. Phys. Rev. 1999, D60, 063501. [Google Scholar] [CrossRef]
- Duffy, L.D.; Sikivie, P. The Caustic Ring Model of the Milky Way Halo. Phys. Rev. 2008, D78, 063508. [Google Scholar] [CrossRef]
- Sikivie, P. Evidence for ring caustics in the Milky Way. Phys. Lett. 2003, B567, 1–8. [Google Scholar] [CrossRef]
- Natarajan, A.; Sikivie, P. Does the Second Caustic Ring of Dark Matter Cause the Monoceros Ring of Stars ? Phys. Rev. 2007, D76, 023505. [Google Scholar] [CrossRef]
- Chakrabarty, S.S.; Sikivie, P. Effects of a caustic ring of dark matter on the distribution of stars and interstellar gas. Phys. Rev. 2018, D98, 103009. [Google Scholar] [CrossRef]
- van den Bosch, F.C.; Burkert, A.; Swaters, R.A. The angular momentum content of dwarf galaxies: New challenges for the theory of galaxy formation. Mon. Not. Roy. Astron. Soc. 2001, 326, 1205. [Google Scholar] [CrossRef]
- Braaten, E.; Mohapatra, A.; Zhang, H. Dense Axion Stars. Phys. Rev. Lett. 2016, 117, 121801. [Google Scholar] [CrossRef]
- Braaten, E.; Zhang, H. Colloquium: The physics of axion stars. Rev. Mod. Phys. 2019, 91, 041002. [Google Scholar] [CrossRef]
- Dumas, J.; Newberg, H.J.; Niedzielski, B.; Susser, A.; Thompson, J.M.; Weiss, J.; Lewis, K.M. Testing the Dark Matter Caustic Theory Against Observations in the Milky Way. Astrophys. J. 2015, 811, 36. [Google Scholar] [CrossRef]
- Marsh, D.J.E.; Pop, A.R. Axion dark matter, solitons and the cusp-core problem. Mon. Not. R. Astron. Soc. 2015, 451, 2479–2492. [Google Scholar] [CrossRef]
- Guth, A.H.; Hertzberg, M.P.; Prescod-Weinstein, C. Do Dark Matter Axions Form a Condensate with Long-Range Correlation? Phys. Rev. 2015, D92, 103513. [Google Scholar] [CrossRef]
- Chavanis, P.H. Collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction. Phys. Rev. 2016, D94, 083007. [Google Scholar] [CrossRef]
- Sikivie, P.; Todarello, E.M. Duration of classicality in highly degenerate interacting Bosonic systems. Phys. Lett. 2017, B770, 331–334. [Google Scholar] [CrossRef]
- Chakrabarty, S.S.; Enomoto, S.; Han, Y.; Sikivie, P.; Todarello, E.M. Gravitational self-interactions of a degenerate quantum scalar field. Phys. Rev. 2018, D97, 043531. [Google Scholar] [CrossRef]
- Svrcek, P.; Witten, E. Axions in string theory. J. High Energy Phys. 2006, 2006, 051. [Google Scholar] [CrossRef]
- Hui, L.; Ostriker, J.P.; Tremaine, S.; Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 2017, 95, 043541. [Google Scholar] [CrossRef]
- Broadhurst, T.; Nhan Luu, H.; Tye, S.H.H. Multiple Ultralight Axionic Wave Dark Matter and Astronomical Structures. arXiv 2018, arXiv:1811.03771. [Google Scholar]
- Widrow, L.M.; Kaiser, N. Using the Schroedinger Equation to Simulate Collisionless Matter. Astrophys. J. Lett. 1993, 416, L71. [Google Scholar] [CrossRef]
- Schive, H.Y.; Liao, M.H.; Woo, T.P.; Wong, S.K.; Chiueh, T.; Broadhurst, T.; Hwang, W.Y.P. Understanding the Core-Halo Relation of Quantum Wave Dark Matter from 3D Simulations. Phys. Rev. Lett. 2014, 113, 261302. [Google Scholar] [CrossRef]
- Mocz, P.; Vogelsberger, M.; Robles, V.H.; Zavala, J.; Boylan-Kolchin, M.; Fialkov, A.; Hernquist, L. Galaxy formation with BECDM - I. Turbulence and relaxation of idealized haloes. Mon. Not. R. Astron. Soc. 2017, 471, 4559–4570. [Google Scholar] [CrossRef]
- Veltmaat, J.; Niemeyer, J.C.; Schwabe, B. Formation and structure of ultralight bosonic dark matter halos. Phys. Rev. D 2018, 98, 043509. [Google Scholar] [CrossRef]
- De Martino, I.; Broadhurst, T.; Tye, S.H.H.; Chiueh, T.; Schive, H.Y.; Lazkoz, R. Recognising Axionic Dark Matter by Compton and de-Broglie Scale Modulation of Pulsar Timing. Phys. Rev. Lett. 2017, 119, 221103. [Google Scholar] [CrossRef]
- Calabrese, E.; Spergel, D.N. Ultra-light dark matter in ultra-faint dwarf galaxies. Mon. Not. R. Astron. Soc. 2016, 460, 4397–4402. [Google Scholar] [CrossRef]
- González-Morales, A.X.; Marsh, D.J.E.; Peñarrubia, J.; Ureña-López, L.A. Unbiased constraints on ultralight axion mass from dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. 2017, 472, 1346–1360. [Google Scholar] [CrossRef]
- Chen, S.R.; Schive, H.Y.; Chiueh, T. Jeans analysis for dwarf spheroidal galaxies in wave dark matter. Mon. Not. R. Astron. Soc. 2017, 468, 1338–1348. [Google Scholar] [CrossRef]
- Broadhurst, T.; de Martino, I.; Nhan Luu, H.; Smoot, G.F.; Tye, S.H.H. Ghostly Galaxies as Solitons of Bose-Einstein Dark Matter. arXiv 2019, arXiv:1902.10488. [Google Scholar]
- Pozo, A.; Broadhurst, T.; De Martino, I.; Nhan Luu, H.; Smoot, G.F.; Lim, J.; Neyrinck, M. Wave Dark Matter and Ultra Diffuse Galaxies. arXiv 2020, arXiv:2003.08313. [Google Scholar]
- Deng, H.; Hertzberg, M.P.; Namjoo, M.H.; Masoumi, A. Can light dark matter solve the core-cusp problem? Phys. Rev. D 2018, 98, 023513. [Google Scholar] [CrossRef]
- Rodrigues, D.C.; del Popolo, A.; Marra, V.; de Oliveira, P.L.C. Evidence against cuspy dark matter haloes in large galaxies. Mon. Not. R. Astron. Soc. 2017, 470, 2410–2426. [Google Scholar] [CrossRef]
- De Martino, I.; Broadhurst, T.; Tye, S.H.H.; Chiueh, T.; Schive, H.Y. Dynamical Evidence of a Solitonic Core of 109M⊙ in the Milky Way. Phys. Dark Universe 2020, 28, 100503. [Google Scholar] [CrossRef]
- Du, X.; Behrens, C.; Niemeyer, J.C. Substructure of fuzzy dark matter haloes. Mon. Not. R. Astron. Soc. 2017, 465, 941–951. [Google Scholar] [CrossRef]
- Bar, N.; Blum, K.; Eby, J.; Sato, R. Ultralight dark matter in disk galaxies. Phys. Rev. D 2019, 99, 103020. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, H.; Chu, M.C. Cosmological Simulation for Fuzzy Dark Matter Model. Front. Astron. Space Sci. 2018, 5, 48. [Google Scholar] [CrossRef]
- Baur, J.; Palanque-Delabrouille, N.; Yèche, C.; Magneville, C.; Viel, M. Lyman-alpha forests cool warm dark matter. J. Cosmol. Astropart. Phys. 2016, 2016, 012. [Google Scholar] [CrossRef]
- Marsh, D.J.E.; Silk, J. A model for halo formation with axion mixed dark matter. Mon. Not. R. Astron. Soc. 2014, 437, 2652–2663. [Google Scholar] [CrossRef]
- Viel, M.; Becker, G.D.; Bolton, J.S.; Haehnelt, M.G. Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data. Phys. Rev. D 2013, 88. [Google Scholar] [CrossRef]
- Zhang, J.; Kuo, J.L.; Liu, H.; Tsai, Y.L.S.; Cheung, K.; Chu, M.C. The Importance of Quantum Pressure of Fuzzy Dark Matter on Lyα Forest. Astrophys. J. 2018, 863, 73. [Google Scholar] [CrossRef]
- Garzilli, A.; Boyarsky, A.; Ruchayskiy, O. Cutoff in the Lyman-α forest power spectrum: Warm IGM or warm dark matter? Phys. Lett. B 2017, 773, 258–264. [Google Scholar] [CrossRef]
- Bekenstein, J.; Milgrom, M. Does the missing mass problem signal the breakdown of Newtonian gravity? Astrophys. J. 1984, 286, 7–14. [Google Scholar] [CrossRef]
- Sanders, R.H. Alternatives to dark matter. Mon. Not. R. Astron. Soc. 1986, 223, 539–555. [Google Scholar] [CrossRef]
- Finzi, A. On the validity of Newton’s law at a long distance. Mon. Not. R. Astron. Soc. 1963, 127, 21. [Google Scholar] [CrossRef]
- McGaugh, S.S. Milky Way Mass Models and MOND. Astrophys. J. 2008, 683, 137–148. [Google Scholar] [CrossRef]
- Milgrom, M. Dynamics with a Nonstandard Inertia-Acceleration Relation: An Alternative to Dark Matter in Galactic Systems. Ann. Phys. 1994, 229, 384–415. [Google Scholar] [CrossRef]
- Milgrom, M. The modified dynamics as a vacuum effect. Phys. Lett. A 1999, 253, 273–279. [Google Scholar] [CrossRef]
- Milgrom, M. MOND as modified inertia. EAS Publ. Ser. 2006, 20, 217–224. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Relativistic gravitation theory for the modified Newtonian dynamics paradigm. Phys. Rev. D 2004, 70, 083509. [Google Scholar] [CrossRef]
- Milgrom, M. Bimetric MOND gravity. Phys. Rev. D 2009, 80, 123536. [Google Scholar] [CrossRef]
- Cardone, V.F.; Radicella, N. Can MONDian vector theories explain the cosmic speed up? Phys. Rev. D 2009, 80, 063515. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef]
- Goldstein, A.; Veres, P.; Burns, E.; Briggs, M.S.; Hamburg, R.; Kocevski, D.; Wilson-Hodge, C.A.; Preece, R.D.; Poolakkil, S.; Roberts, O.J.; et al. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi -GBM Detection of GRB 170817A. Astrophys. J. 2017, 848, L14. [Google Scholar] [CrossRef]
- Savchenko, V.; Ferrigno, C.; Kuulkers, E.; Bazzano, A.; Bozzo, E.; Brandt, S.; Chenevez, J.; Courvoisier, T.J.L.; Diehl, R.; Domingo, A.; et al. INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817. Astrophys. J. 2017, 848, L15. [Google Scholar] [CrossRef]
- Gong, Y.; Hou, S.; Liang, D.; Papantonopoulos, E. Gravitational waves in Einstein-æther and generalized TeVeS theory after GW170817. Phys. Rev. D 2018, 97, 084040. [Google Scholar] [CrossRef]
- Skordis, C.; Złośnik, T. Gravitational alternatives to dark matter with tensor mode speed equaling the speed of light. Phys. Rev. D 2019, 100, 104013. [Google Scholar] [CrossRef]
- Angus, G.W. Is an 11eV sterile neutrino consistent with clusters, the cosmic microwave background and modified Newtonian dynamics? Mon. Not. R. Astron. Soc. 2009, 394, 527–532. [Google Scholar] [CrossRef]
- Aguilar-Arevalo, A.; Brown, B.; Bugel, L.; Cheng, G.; Conrad, J.; Cooper, R.; Dharmapalan, R.; Diaz, A.; Djurcic, Z.; Finley, D.; et al. Significant Excess of Electronlike Events in the MiniBooNE Short-Baseline Neutrino Experiment. Phys. Rev. Lett. 2018, 121. [Google Scholar] [CrossRef] [PubMed]
- Diaferio, A.; Angus, G.W. The Acceleration Scale, Modified Newtonian Dynamics, and Sterile Neutrinos. arXiv 2012, arXiv:1206.6231. [Google Scholar]
- Angus, G.W.; Diaferio, A. The abundance of galaxy clusters in modified Newtonian dynamics: Cosmological simulations with massive neutrinos. Mon. Not. R. Astron. Soc. 2011, 417, 941–949. [Google Scholar] [CrossRef]
- Angus, G.W.; Diaferio, A.; Famaey, B.; van der Heyden, K.J. Cosmological simulations in MOND: The cluster scale halo mass function with light sterile neutrinos. Mon. Not. R. Astron. Soc. 2013, 436, 202–211. [Google Scholar] [CrossRef]
- Angus, G.W.; Diaferio, A.; Famaey, B.; Gentile, G.; van der Heyden, K.J. Modified Baryonic Dynamics: Two-component cosmological simulations with light sterile neutrinos. J. Cosmol. Astropart. Phys. 2014, 2014, 079. [Google Scholar] [CrossRef][Green Version]
- Berezhiani, L.; Khoury, J. Theory of dark matter superfluidity. Phys. Rev. D 2015, 92, 103510. [Google Scholar] [CrossRef]
- Blanchet, L. Gravitational polarization and the phenomenology of MOND. Class. Quantum Gravity 2007, 24, 3529–3539. [Google Scholar] [CrossRef]
- Matsakos, T.; Diaferio, A. Dynamics of galaxies and clusters in {refracted gravity}. arXiv 2016, arXiv:1603.0494. [Google Scholar]
- Tully, R.B.; Fisher, J.R. A new method of determining distance to galaxies. Astron. Astrophys. 1977, 500, 105–117. [Google Scholar]
- McGaugh, S.; Lelli, F.; Li, P.; Schombert, J. Dynamical Regularities in Galaxies. arXiv 2019, arXiv:1909.02011. [Google Scholar]
- Lelli, F.; McGaugh, S.S.; Schombert, J.M.; Desmond, H.; Katz, H. The baryonic Tully-Fisher relation for different velocity definitions and implications for galaxy angular momentum. Mon. Not. R. Astron. Soc. 2019, 484, 3267–3278. [Google Scholar] [CrossRef]
- Lelli, F.; Fraternali, F.; Verheijen, M. A scaling relation for disc galaxies: Circular-velocity gradient versus central surface brightness. Mon. Not. R. Astron. Soc. 2013, 433, L30–L34. [Google Scholar] [CrossRef]
- Faber, S.M.; Jackson, R.E. Velocity dispersions and mass-to-light ratios for elliptical galaxies. Astrophys. J. 1976, 204, 668–683. [Google Scholar] [CrossRef]
- Sanders, R.H. The fundamental plane of elliptical galaxies with modified Newtonian dynamics. Mon. Not. R. Astron. Soc. 2000, 313, 767–774. [Google Scholar] [CrossRef]
- Cardone, V.F.; Angus, G.; Diaferio, A.; Tortora, C.; Molinaro, R. The modified Newtonian dynamics Fundamental Plane. Mon. Not. R. Astron. Soc. 2011, 412, 2617–2630. [Google Scholar] [CrossRef]
- Angus, G.W.; van der Heyden, K.J.; Diaferio, A. The dynamics of the bulge dominated galaxy NGC 7814 in MOND. Astron. Astrophys. 2012, 543, A76. [Google Scholar] [CrossRef][Green Version]
- McGaugh, S.S.; de Blok, W.J.G. Testing the Hypothesis of Modified Dynamics with Low Surface Brightness Galaxies and Other Evidence. Astrophys. J. 1998, 499, 66–81. [Google Scholar] [CrossRef]
- Swaters, R.A.; Sancisi, R.; van der Hulst, J.M.; van Albada, T.S. The link between the baryonic mass distribution and the rotation curve shape. Mon. Not. R. Astron. Soc. 2012, 425, 2299–2308. [Google Scholar] [CrossRef]
- Sancisi, R. The visible matter—dark matter coupling. In Dark Matter in Galaxies; Ryder, S., Pisano, D., Walker, M., Freeman, K., Eds.; Cambridge University Press: Cambridge, UK, 2004; Volume 220, p. 233. [Google Scholar]
- Sanders, R.H. The prediction of rotation curves in gas-dominated dwarf galaxies with modified dynamics. Mon. Not. R. Astron. Soc. 2019, 485, 513–521. [Google Scholar] [CrossRef]
- Miller, R.H.; Prendergast, K.H.; Quirk, W.J. Numerical Experiments on Spiral Structure. Astrophys. J. 1970, 161, 903. [Google Scholar] [CrossRef]
- Hohl, F. Numerical Experiments with a Disk of Stars. Astrophys. J. 1971, 168, 343. [Google Scholar] [CrossRef]
- Mihos, J.C.; McGaugh, S.S.; de Blok, W.J.G. Dynamical Stability and Environmental Influences in Low Surface Brightness Disk Galaxies. Astrophys. J. Lett. 1997, 477, L79–L83. [Google Scholar] [CrossRef]
- Athanassoula, E.; Bosma, A.; Papaioannou, S. Halo parameters of spiral galaxies. Astron. Astrophys. 1987, 179, 23–40. [Google Scholar]
- McGaugh, S.S.; Schombert, J.M.; Bothun, G.D. The Morphology of Low Surface Brightness Disk Galaxies. Astron. J. 1995, 109, 2019. [Google Scholar] [CrossRef]
- Schombert, J.M. On the Structural Differences between Disk and Dwarf Galaxies. Astron. J. 2006, 131, 296–303. [Google Scholar] [CrossRef][Green Version]
- Schombert, J.; Maciel, T.; McGaugh, S. Stellar Populations and the Star Formation Histories of LSB Galaxies—Part I: Optical and Hα Imaging. Adv. Astron. 2011, 2011, 143698. [Google Scholar] [CrossRef]
- Peters, W.; Kuzio de Naray, R. Characterizing bars in low surface brightness disc galaxies. Mon. Not. R. Astron. Soc. 2018, 476, 2938–2961. [Google Scholar] [CrossRef]
- Fuchs, B. Massive disks in low surface brightness galaxies. Astrophys. Space Sci. 2003, 284, 719–722. [Google Scholar] [CrossRef]
- Fuchs, B. Dynamics of the disks of nearby galaxies. Astron. Nachrichten 2008, 329, 916. [Google Scholar] [CrossRef]
- Saburova, A.S.; Zasov, A.V. Gravitational stability and mass estimation of stellar disks. Astron. Nachrichten 2013, 334, 785. [Google Scholar] [CrossRef]
- Milgrom, M. On Stability of Galactic Disks in the Modified Dynamics and the Distribution of Their Mean Surface-Brightness. Astrophys. J. 1989, 338, 121. [Google Scholar] [CrossRef]
- Brada, R.; Milgrom, M. Stability of Disk Galaxies in the Modified Dynamics. Astrophys. J. 1999, 519, 590–598. [Google Scholar] [CrossRef]
- Allen, R.J.; Shu, F.H. The extrapolated central surface brightness of galaxies. Astrophys. J. 1979, 227, 67–72. [Google Scholar] [CrossRef]
- van der Kruit, P.C.; Freeman, K.C. Galaxy Disks. Ann. Rev. Astron. Astrophys. 2011, 49, 301–371. [Google Scholar] [CrossRef]
- McGaugh, S.S.; Bothun, G.D.; Schombert, J.M. Galaxy Selection and the Surface Brightness Distribution. Astron. J. 1995, 110, 573. [Google Scholar] [CrossRef]
- Dalcanton, J.J.; Spergel, D.N.; Summers, F.J. The Formation of Disk Galaxies. Astrophys. J. 1997, 482, 659–676. [Google Scholar] [CrossRef]
- Tiret, O.; Combes, F. Evolution of spiral galaxies in modified gravity. II. Gas dynamics. Astron. Astrophys. 2008, 483, 719–726. [Google Scholar] [CrossRef]
- Jiménez, M.A.; Hernandez, X. Disk stability under MONDian gravity. arXiv 2014, arXiv:1406.0537. [Google Scholar]
- Thies, I.; Kroupa, P.; Famaey, B. Simulating disk galaxies and interactions in Milgromian dynamics. arXiv 2016, arXiv:1606.04942. [Google Scholar]
- Sánchez-Salcedo, F.J.; Martínez-Gómez, E.; Aguirre-Torres, V.M.; Hernández-Toledo, H.M. Low-mass disc galaxies and the issue of stability: MOND versus dark matter. Mon. Not. R. Astron. Soc. 2016, 462, 3918–3936. [Google Scholar] [CrossRef]
- Banik, I.; Milgrom, M.; Zhao, H. Toomre stability of disk galaxies in quasi-linear MOND. arXiv 2018, arXiv:1808.10545. [Google Scholar]
- Bershady, M.A.; Verheijen, M.A.W.; Swaters, R.A.; Andersen, D.R.; Westfall, K.B.; Martinsson, T. The DiskMass Survey. I. Overview. Astrophys. J. 2010, 716, 198–233. [Google Scholar] [CrossRef]
- Bershady, M.A.; Verheijen, M.A.W.; Westfall, K.B.; Andersen, D.R.; Swaters, R.A.; Martinsson, T. The DiskMass Survey. II. Error Budget. Astrophys. J. 2010, 716, 234–268. [Google Scholar] [CrossRef]
- Bershady, M.A.; Martinsson, T.P.K.; Verheijen, M.A.W.; Westfall, K.B.; Andersen, D.R.; Swaters, R.A. Galaxy Disks are Submaximal. Astrophys. J. Lett. 2011, 739, L47. [Google Scholar] [CrossRef]
- Martinsson, T.P.K.; Verheijen, M.A.W.; Westfall, K.B.; Bershady, M.A.; Schechtman-Rook, A.; Andersen, D.R.; Swaters, R.A. The DiskMass Survey. VI. Gas and stellar kinematics in spiral galaxies from PPak integral-field spectroscopy. Astron. Astrophys. 2013, 557, A130. [Google Scholar] [CrossRef]
- Martinsson, T.P.K.; Verheijen, M.A.W.; Westfall, K.B.; Bershady, M.A.; Andersen, D.R.; Swaters, R.A. The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies. Astron. Astrophys. 2013, 557, A131. [Google Scholar] [CrossRef]
- Angus, G.W.; Gentile, G.; Swaters, R.; Famaey, B.; Diaferio, A.; McGaugh, S.S.; Heyden, K.J.v.d. Mass models of disc galaxies from the DiskMass Survey in modified Newtonian dynamics. Mon. Not. R. Astron. Soc. 2015, 451, 3551–3580. [Google Scholar] [CrossRef][Green Version]
- Angus, G.W. The dynamics of face-on galaxies in MOND. J. Phys. Conf. Ser. 2016, 718, 032001. [Google Scholar] [CrossRef]
- Milgrom, M. Critical take on “Mass models of disk galaxies from the DiskMass Survey in MOND”. arXiv 2015, arXiv:1511.08087. [Google Scholar]
- Aniyan, S.; Freeman, K.C.; Gerhard, O.E.; Arnaboldi, M.; Flynn, C. The influence of a kinematically cold young component on disc-halo decompositions in spiral galaxies: Insights from solar neighbourhood K-giants. Mon. Not. R. Astron. Soc. 2016, 456, 1484–1494. [Google Scholar] [CrossRef][Green Version]
- Matthews, L.D.; Gallagher, J.S., III; van Driel, W. The Extraordinary “Superthin” Spiral Galaxy UGC 7321. I. Disk Color Gradients and Global Properties from Multiwavelength Observations. Astron. J. 1999, 118, 2751–2766. [Google Scholar] [CrossRef]
- Matthews, L.D. The Extraordinary “Superthin” Spiral Galaxy UGC 7321. II. The Vertical Disk Structure. Astron. J. 2000, 120, 1764–1778. [Google Scholar] [CrossRef][Green Version]
- Matthews, L.D.; Uson, J.M. H I Imaging Observations of Superthin Galaxies. II. IC 2233 and the Blue Compact Dwarf NGC 2537. Astron. J. 2008, 135, 291–318. [Google Scholar] [CrossRef][Green Version]
- Das, M.; McGaugh, S.S.; Ianjamasimanana, R.; Schombert, J.; Dwarakanath, K.S. Tracing the Dynamical Mass in Galaxy Disks Using H i Velocity Dispersion and Its Implications for the Dark Matter Distribution in Galaxies. Astrophys. J. 2020, 889, 10. [Google Scholar] [CrossRef]
- Nesti, F.; Salucci, P. The Dark Matter halo of the Milky Way, AD 2013. J. Cosmol. Astropart. Phys. 2013, 2013, 016. [Google Scholar] [CrossRef]
- Bienaymé, O.; Famaey, B.; Siebert, A.; Freeman, K.C.; Gibson, B.K.; Gilmore, G.; Grebel, E.K.; Bland-Hawthorn, J.; Kordopatis, G.; Munari, U.; et al. Weighing the local dark matter with RAVE red clump stars. Astron. Astrophys. 2014, 571, A92. [Google Scholar] [CrossRef]
- Zhou, Y.; Del Popolo, A.; Chang, Z. On the absence of a universal surface density, and a maximum Newtonian acceleration in dark matter haloes: Consequences for MOND. Phys. Dark Universe 2020, 28, 100468. [Google Scholar] [CrossRef]
- Mateo, M.; Olszewski, E.; Welch, D.L.; Fischer, P.; Kunkel, W. A Kinematic Study of the Fornax Dwarf Spheroid Galaxy. Astron. J. 1991, 102, 914. [Google Scholar] [CrossRef]
- Angus, G.W. Dwarf spheroidals in MOND. Mon. Not. R. Astron. Soc. 2008, 387, 1481–1488. [Google Scholar] [CrossRef]
- Serra, A.L.; Angus, G.W.; Diaferio, A. Implications for dwarf spheroidal mass content from interloper removal. Astron. Astrophys. 2010, 524, A16. [Google Scholar] [CrossRef]
- Angus, G.W.; Gentile, G.; Diaferio, A.; Famaey, B.; van der Heyden, K.J. N-body simulations of the Carina dSph in MOND. Mon. Not. R. Astron. Soc. 2014, 440, 746–761. [Google Scholar] [CrossRef]
- Maraston, C. Evolutionary population synthesis: Models, analysis of the ingredients and application to high-z galaxies. Mon. Not. R. Astron. Soc. 2005, 362, 799–825. [Google Scholar] [CrossRef]
- Hodson, A.O.; Diaferio, A.; Ostorero, L. On the Distribution of Phantom Dark Matter in Dwarf Spheroidals. arXiv 2020, arXiv:2005.13830. [Google Scholar] [CrossRef]
- The Theia Collaboration; Boehm, C.; Krone-Martins, A.; Amorim, A.; Anglada-Escude, G.; Brandeker, A.; Courbin, F.; Ensslin, T.; Falcao, A.; Freese, K.; et al. Theia: Faint objects in motion or the new astrometry frontier. arXiv 2017, arXiv:1707.01348. [Google Scholar]
- Malbet, F.; Abbas, U.; Alves, J.; Boehm, C.; Brown, W.; Chemin, L.; Correia, A.; Courbin, F.; Darling, J.; Diaferio, A.; et al. ESA Voyage 2050 white paper—Faint objects in motion: The new frontier of high precision astrometry. arXiv 2019, arXiv:1910.08028. [Google Scholar]
- Tiret, O.; Combes, F. Interacting Galaxies with Modified Newtonian Dynamics. In Formation and Evolution of Galaxy Disks; Funes, J.G., Corsini, E.M., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2008; Volume 396, p. 259. [Google Scholar]
- Bournaud, F.; Duc, P.A.; Brinks, E.; Boquien, M.; Amram, P.; Lisenfeld, U.; Koribalski, B.S.; Walter, F.; Charmandaris, V. Missing Mass in Collisional Debris from Galaxies. Science 2007, 316, 1166. [Google Scholar] [CrossRef]
- Lelli, F.; Duc, P.A.; Brinks, E.; Bournaud, F.; McGaugh, S.S.; Lisenfeld, U.; Weilbacher, P.M.; Boquien, M.; Revaz, Y.; Braine, J.; et al. Gas dynamics in tidal dwarf galaxies: Disc formation at z = 0. Astron. Astrophys. 2015, 584, A113. [Google Scholar] [CrossRef]
- Flores, H.; Hammer, F.; Fouquet, S.; Puech, M.; Kroupa, P.; Yang, Y.; Pawlowski, M. Young tidal dwarf galaxies cannot be used to probe dark matter in galaxies. Mon. Not. R. Astron. Soc. 2016, 457, L14–L18. [Google Scholar] [CrossRef]
- Dabringhausen, J.; Kroupa, P. Dwarf elliptical galaxies as ancient tidal dwarf galaxies. Mon. Not. R. Astron. Soc. 2013, 429, 1858–1871. [Google Scholar] [CrossRef]
- Moffat, J.W.; Rahvar, S. The MOG weak field approximation and observational test of galaxy rotation curves. Mon. Not. R. Astron. Soc. 2013, 436, 1439–1451. [Google Scholar] [CrossRef]
- Moffat, J.W.; Toth, V.T. Fundamental parameter-free solutions in modified gravity. Class. Quantum Gravity 2009, 26, 085002. [Google Scholar] [CrossRef]
- Moffat, J.W.; Toth, V.T. The bending of light and lensing in modified gravity. Mon. Not. R. Astron. Soc. 2009, 397, 1885–1892. [Google Scholar] [CrossRef]
- Rahvar, S.; Moffat, J.W. Propagation of electromagnetic waves in MOG: Gravitational lensing. Mon. Not. R. Astron. Soc. 2018, 482, 4514–4518. [Google Scholar] [CrossRef]
- Izmailov, R.N.; Karimov, R.K.; Zhdanov, E.R.; Nand, I.K.K. Modified gravity black hole lensing observables in weak and strong field of gravity. Mon. Not. R. Astron. Soc. 2019, 483, 3754–3761. [Google Scholar] [CrossRef]
- Moffat, J.W.; Rahvar, S. The MOG weak field approximation—II. Observational test of Chandra X-ray clusters. Mon. Not. R. Astron. Soc. 2014, 441, 3724–3732. [Google Scholar] [CrossRef]
- Brownstein, J.R.; Moffat, J.W. The Bullet Cluster 1E0657-558 evidence shows modified gravity in the absence of dark matter. Mon. Not. R. Astron. Soc. 2007, 382, 29–47. [Google Scholar] [CrossRef]
- De Martino, I.; De Laurentis, M. On the universality of MOG weak field approximation at galaxy cluster scale. Phys. Lett. B 2017, 770, 440–444. [Google Scholar] [CrossRef]
- Moffat, J.W. Late-time inhomogeneity and acceleration without dark energy. J. Cosmol. Astropart. Phys. 2006, 2006, 001. [Google Scholar] [CrossRef]
- Roshan, M. Exact cosmological solutions for MOG. Eur. Phys. J. C 2015, 75, 405. [Google Scholar] [CrossRef]
- Moffat, J.W.; Toth, V.T. Rotational velocity curves in the Milky Way as a test of modified gravity. Phys. Rev. D 2015, 91, 043004. [Google Scholar] [CrossRef]
- Roshan, M.; Abbassi, S. On the Stability of a Galactic Disk in Modified Gravity. Astrophys. J. 2015, 802, 9. [Google Scholar] [CrossRef]
- Zhoolideh Haghighi, M.H.; Rahvar, S. Testing MOG, non-local gravity and MOND with rotation curves of dwarf galaxies. Mon. Not. R. Astron. Soc. 2017, 468, 4048–4055. [Google Scholar] [CrossRef]
- Green, M.A.; Moffat, J.W. Modified Gravity (MOG) fits to observed radial acceleration of SPARC galaxies. Phys. Dark Universe 2019, 25, 100323. [Google Scholar] [CrossRef]
- Moffat, J.W.; Toth, V.T. NGC 1052-DF2 and modified gravity (MOG) without dark matter. Mon. Not. R. Astron. Soc. 2019, 482, L1–L3. [Google Scholar] [CrossRef]
- Negrelli, C.; Benito, M.; Landau, S.; Iocco, F.; Kraiselburd, L. Testing modified gravity theory in the Milky Way. Phys. Rev. D 2018, 98, 104061. [Google Scholar] [CrossRef]
- Haghi, H.; Amiri, V. Testing modified gravity with dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. 2016, 463, 1944–1951. [Google Scholar] [CrossRef][Green Version]
- de Martino, I. Giant low-surface-brightness dwarf galaxy as a test bench for MOdified Gravity. Mon. Not. R. Astron. Soc. 2020, 493, 2373–2376. [Google Scholar] [CrossRef]
- Roshan, M. Stellar Bar Evolution in the Absence of Dark Matter Halo. Astrophys. J. 2018, 854, 38. [Google Scholar] [CrossRef]
- Jamali, S.; Roshan, M.; Amendola, L. Linear cosmological perturbations in scalar-tensor-vector gravity. Phys. Lett. B 2020, 802, 135238. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. f( R) Theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Capozziello, S.; Laurentis, M.D. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167–321. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Starobinsky, A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99. [Google Scholar] [CrossRef]
- Hu, W.; Sawicki, I. Models of f(R) cosmic acceleration that evade solar system tests. Phys. Rev. D 2007, 76, 064004. [Google Scholar] [CrossRef]
- Starobinsky, A. Disappearing cosmological constant in f(R) gravity. JETP Lett. 2007, 86, 157. [Google Scholar] [CrossRef]
- Capozziello, S.; Francaviglia, M. Extended theories of gravity and their cosmological and astrophysical applications. Gen. Relativ. Gravit. 2008, 40, 357–420. [Google Scholar] [CrossRef]
- Miranda, V.; Jorás, S.E.; Waga, I.; Quartin, M. Viable Singularity-Free f(R) Gravity without a Cosmological Constant. Phys. Rev. Lett. 2009, 102, 221101. [Google Scholar] [CrossRef]
- Li, B.; Barrow, J. Cosmology of f(R) gravity in the metric variational approach. Phys. Rev. D 2007, 75, 084010. [Google Scholar] [CrossRef]
- Amendola, L.; Tsujikawa, S. Phantom crossing, equation-of-state singularities, and local gravity constraints in f(R) models. Phys. Lett. B 2008, 660, 125–132. [Google Scholar] [CrossRef]
- Gannouji, R.; Moraes, B.; Polarski, D. The growth of matter perturbations in f(R) models. J. Cosmol. Astropart. Phys. 2009, 2009, 034. [Google Scholar] [CrossRef]
- de Martino, I.; De Laurentis, M.; Capozziello, S. Constraining f(R) gravity by the Large Scale Structure. Universe 2015, 1, 123–157. [Google Scholar] [CrossRef]
- Chen, Y.C.; Geng, C.Q.; Lee, C.C.; Yu, H. Matter power spectra in viable f( R) gravity models with dynamical background. Eur. Phys. J. C 2019, 79, 93. [Google Scholar] [CrossRef]
- Lee, S. Reconstruction of f(R) gravity models from observations. Phys. Dark Universe 2019, 25, 100305. [Google Scholar] [CrossRef]
- Lazkoz, R.; Ortiz-Baños, M.; Salzano, V. f(R) gravity modifications: From the action to the data. Eur. Phys. J. C 2018, 78. [Google Scholar] [CrossRef]
- Hough, R.; Abebe, A.; Ferreira, S. f(R)-gravity models constrained with cosmological data. arXiv 2019, arXiv:1911.05983. [Google Scholar]
- Stelle, K.S. Renormalization of higher-derivative quantum gravity. Phys. Rev. D 1977, 16, 953–969. [Google Scholar] [CrossRef]
- Capozziello, S.; Cardone, V.F.; Carloni, S.; Troisi, A. Can higher order curvature theories explain rotation curves of galaxies? Phys. Lett. A 2004, 326, 292–296. [Google Scholar] [CrossRef]
- Capozziello, S.; Cardone, V.F.; Troisi, A. Low surface brightness galaxy rotation curves in the low energy limit of Rn gravity: No need for dark matter? Mon. Not. R. Astron. Soc. 2007, 375, 1423–1440. [Google Scholar] [CrossRef]
- Frigerio Martins, C.; Salucci, P. Analysis of rotation curves in the framework of Rn gravity. Mon. Not. R. Astron. Soc. 2007, 381, 1103–1108. [Google Scholar] [CrossRef]
- Capozziello, S.; Piedipalumbo, E.; Rubano, C.; Scudellaro, P. Testing an exact f(R)-gravity model at Galactic and local scales. Astron. Astrophys. 2009, 505, 21–28. [Google Scholar] [CrossRef][Green Version]
- Cardone, V.F.; Capozziello, S. Systematic biases on galaxy haloes parameters from Yukawa-like gravitational potentials. Mon. Not. R. Astron. Soc. 2011, 414, 1301–1313. [Google Scholar] [CrossRef]
- Capozziello, S.; de Laurentis, M.; de Martino, I.; Formisano, M.; Odintsov, S.D. Jeans analysis of self-gravitating systems in f(R) gravity. Phys. Rev. D 2012, 85, 044022. [Google Scholar] [CrossRef]
- De Laurentis, M.; De Martino, I. Testing f (R) theories using the first time derivative of the orbital period of the binary pulsars. Mon. Not. R. Astron. Soc. 2013, 431, 741–748. [Google Scholar] [CrossRef]
- De Martino, I.; De Laurentis, M.; Atrio-Barandela, F.; Capozziello, S. Constraining f(R) gravity with Planck data on galaxy cluster profiles. Mon. Not. R. Astron. Soc. 2014, 442, 921–928. [Google Scholar] [CrossRef]
- de Laurentis, M.; de Martino, I. Probing the physical and mathematical structure of f(R)-gravity by PSR J0348 + 0432. Int. J. Geom. Methods Mod. Phys. 2015, 12, 1550040. [Google Scholar] [CrossRef]
- De Martino, I. f (R )-gravity model of the Sunyaev-Zeldovich profile of the Coma cluster compatible with Planck data. Phys. Rev. D 2016, 93, 124043. [Google Scholar] [CrossRef]
- De Laurentis, M.; De Martino, I.; Lazkoz, R. Analysis of the Yukawa gravitational potential in f (R ) gravity. II. Relativistic periastron advance. Phys. Rev. D 2018, 97, 104068. [Google Scholar] [CrossRef]
- De Martino, I.; Lazkoz, R.; De Laurentis, M. Analysis of the Yukawa gravitational potential in f (R ) gravity. I. Semiclassical periastron advance. Phys. Rev. D 2018, 97, 104067. [Google Scholar] [CrossRef]
- De Laurentis, M.; De Martino, I.; Lazkoz, R. Modified gravity revealed along geodesic tracks. Eur. Phys. J. C 2018, 78, 916. [Google Scholar] [CrossRef]
- Salucci, P.; Frigerio Martins, C.; Karukes, E. Rn gravity is kicking and alive: The cases of Orion and NGC 3198. Int. J. Mod. Phys. D 2014, 23, 1442005. [Google Scholar] [CrossRef]
- de Almeida, Á.; Amendola, L.; Niro, V. Galaxy rotation curves in modified gravity models. J. Cosmol. Astropart. Phys. 2018, 2018, 012. [Google Scholar] [CrossRef]
- Brax, P.; van de Bruck, C.; Davis, A.C.; Shaw, D.J. f(R)gravity and chameleon theories. Phys. Rev. D 2008, 78. [Google Scholar] [CrossRef]
- Naik, A.P.; Puchwein, E.; Davis, A.C.; Sijacki, D.; Desmond, H. Constraints on chameleon f(R)-gravity from galaxy rotation curves of the SPARC sample. Mon. Not. R. Astron. Soc. 2019, 489, 771–787. [Google Scholar] [CrossRef]
- Brada, R.; Milgrom, M. Dwarf Satellite Galaxies in the Modified Dynamics. Astrophys. J. 2000, 541, 556–564. [Google Scholar] [CrossRef][Green Version]
- McGaugh, S.S.; Wolf, J. Local Group Dwarf Spheroidals: Correlated Deviations from the Baryonic Tully-Fisher Relation. Astrophys. J. 2010, 722, 248–261. [Google Scholar] [CrossRef]
- McGaugh, S.S. MOND Prediction for the Velocity Dispersion of the “Feeble Giant” Crater II. Astrophys. J. Lett. 2016, 832, L8. [Google Scholar] [CrossRef]
- Li, B.; Zhao, G.B.; Teyssier, R.; Koyama, K. ECOSMOG: An Efficient COde for Simulating MOdified Gravity. J. Cosmol. Astropart. Phys. 2012, 2012, 051. [Google Scholar] [CrossRef]
- Puchwein, E.; Baldi, M.; Springel, V. Modified-Gravity-GADGET: A new code for cosmological hydrodynamical simulations of modified gravity models. Mon. Not. R. Astron. Soc. 2013, 436, 348–360. [Google Scholar] [CrossRef]
- Llinares, C.; Mota, D.F.; Winther, H.A. ISIS: A new N-body cosmological code with scalar fields based on RAMSES. Code presentation and application to the shapes of clusters. Astron. Astrophys. 2014, 562, A78. [Google Scholar] [CrossRef]
- Baldi, M.; Villaescusa-Navarro, F.; Viel, M.; Puchwein, E.; Springel, V.; Moscardini, L. Cosmic degeneracies—I. Joint N-body simulations of modified gravity and massive neutrinos. Mon. Not. R. Astron. Soc. 2014, 440, 75–88. [Google Scholar] [CrossRef]
- Baldi, M.; Villaescusa-Navarro, F. Cosmic degeneracies - II. Structure formation in joint simulations of warm dark matter and f(R) gravity. Mon. Not. R. Astron. Soc. 2017, 473, 3226–3240. [Google Scholar] [CrossRef]
- Arnold, C.; Li, B. Simulating galaxy formation in f(R) modified gravity: Matter, halo, and galaxy statistics. Mon. Not. R. Astron. Soc. 2019, 490, 2507–2520. [Google Scholar] [CrossRef]
- Kobayashi, T.; Murgia, R.; De Simone, A.; Iršič, V.; Viel, M. Lyman-α constraints on ultralight scalar dark matter: Implications for the early and late universe. Phys. Rev. D 2017, 96, 123514. [Google Scholar] [CrossRef]
- Li, T.S.; Kaplinghat, M.; Bechtol, K.; Bolton, A.S.; Bovy, J.; Carleton, T.; Chang, C.; Drlica-Wagner, A.; Erkal, D.; Geha, M.; et al. Astrophysical Tests of Dark Matter with Maunakea Spectroscopic Explorer. arXiv 2019, arXiv:1903.03155. [Google Scholar]
- Drlica-Wagner, A.; Mao, Y.Y.; Adhikari, S.; Armstrong, R.; Banerjee, A.; Banik, N.; Bechtol, K.; Bird, S.; Boddy, K.K.; Bonaca, A.; et al. Probing the Fundamental Nature of Dark Matter with the Large Synoptic Survey Telescope. arXiv 2019, arXiv:1902.01055. [Google Scholar]
1. | The virial radius at redshift z is the radius of a spherical volume within which the mean mass density is times the critical density of the Universe M Mpc−3, with , and and the parameters of the background Friedmann model. is the solution to the collapse of a spherical top-hat density perturbation at the time of virialization. The virial mass is thus [118,119]. |
2. | In the relevant literature, adopting the expression cumulative distribution function for , namely the number of objects with a physical properties X larger than a threshold , dates back to the pioneering paper by Moore et al. [253]. However, in statistics, the cumulative distribution function actually is . is the complementary cumulative distribution function. Here, we prefer to adopt this more rigorous terminology. |
3. | The radius at redshift z is the radius of a spherical volume within which the mean mass density is 200 times the critical density of the Universe . The mass enclosed within is thus . is approximately equal to the viral mass , defined in the footnote 1, in a Universe with [119]. |
4. | In [410], the numerical value was mistakenly reported as 0.1 Gyr−1. |
Rotation Curves and Scaling Relations | Cusp/Core Problem | Missing Satellites Problem | Too-Big-to-Fail Problem | Planes of Satellites Problem | Large Scale Structure Cosmological Scales | |
---|---|---|---|---|---|---|
Warm DM | ||||||
Self-interacting DM | ||||||
QCD axions | ||||||
Fuzzy DM | ||||||
MOND | ||||||
MOG | ||||||
-gravity |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Martino, I.; Chakrabarty, S.S.; Cesare, V.; Gallo, A.; Ostorero, L.; Diaferio, A. Dark Matters on the Scale of Galaxies. Universe 2020, 6, 107. https://doi.org/10.3390/universe6080107
de Martino I, Chakrabarty SS, Cesare V, Gallo A, Ostorero L, Diaferio A. Dark Matters on the Scale of Galaxies. Universe. 2020; 6(8):107. https://doi.org/10.3390/universe6080107
Chicago/Turabian Stylede Martino, Ivan, Sankha S. Chakrabarty, Valentina Cesare, Arianna Gallo, Luisa Ostorero, and Antonaldo Diaferio. 2020. "Dark Matters on the Scale of Galaxies" Universe 6, no. 8: 107. https://doi.org/10.3390/universe6080107
APA Stylede Martino, I., Chakrabarty, S. S., Cesare, V., Gallo, A., Ostorero, L., & Diaferio, A. (2020). Dark Matters on the Scale of Galaxies. Universe, 6(8), 107. https://doi.org/10.3390/universe6080107