Critical Evaluation of Common Claims in Loop Quantum Cosmology
Abstract
1. Introduction
2. Quanta of Loop Quantum Cosmology
2.1. Loop Quantum Classicality
2.2. Loop Quantum Serendipity
2.2.1. Loop Quantum Cosmology as a Discrete Affine Theory
2.2.2. Loop Quantum Bounceology
3. Effective Field Theory
3.1. Ineffective Theory
3.2. A Good Run of Loop Quantum Cosmology
4. Covariance
5. What’s Left?
- “As we saw in sections II–IV, although this brilliant vision [of Wheeler’s] did not materialize in the WDW theory, it is realized in all the cosmological models that have been studied in detail in LQC. However the mechanism is much deeper than just the ‘finite width of the wave packet’: the key lies in the quantum effects of geometry that descend from full LQG to the cosmological settings. These effects produce an unforeseen repulsive force. Away from the Planck regime the force is completely negligible. But it rises very quickly as curvature approaches the Planck scale, overwhelms the enormous gravitational attraction and causes the quantum bounce.” This statement overemphasizes the role of quantum geometry, while it ignores the fact that fluctuation effects explain much of the volume and density bounds obtained in loop quantum cosmology. Potential singularity resolution in loop quantum cosmology is therefore not dissimilar from what has been found in certain Wheeler–DeWitt-type quantizations; see for instance [81,82,83,84]. The mistake is repeated in “In LQC the repulsive force has its origin in quantum geometry rather than quantum matter and it always overwhelms the classical gravitational attraction.” which also overstates the prevalence of bounces, as non-bouncing solutions are possible in general loop quantum cosmology [10].
- “To obtain good behavior in both the ultraviolet and the infrared requires a great deal of care and sufficient control on rather subtle conceptual and mathematical issues” erroneously assumes that a single effective theory must be used through a wide energy or curvature range.
- In “Finally, it is pleasing to see that even in models that are not exactly soluble, states that are semi-classical at a late initial time continue to remain sharply peaked throughout the low curvature domain. […] Initially this is surprising because of one’s experience with the spread of wave functions in non-relativistic quantum mechanics.” no surprise is warranted because in this regime one is dealing with a macroscopic object. Conversely, “The third notable feature is the powerful role of effective equations discussed in section V. As is not uncommon in physics, their domain of validity is much larger than one might have naively expected from the assumptions that go into their derivation. Specifically, in all models in which detailed simulations of quantum evolution have been carried out, wave functions which resemble coherent states at late times follow the dynamical trajectories given by effective equations even in the deep Planck regime” should have raised a severe warning. This statement hides the unmentioned (but wrong) assumption that macroscopic averaging regions may be used even “in the deep Planck regime.”
- The claim that effective equations “arise from a (first order) covariant action” is incorrect because the proposed action fails in vacuum models. Similarly, more advanced recent versions which include a scalar field [85,86] fail to describe anisotropic or inhomogeneous modes in congruence with loop quantum cosmology [87,88,89,90].
- “The very considerable research in the BKL conjecture in general relativity suggests that, as generic space-like singularities are approached, ‘terms containing time derivatives in the dynamical equations dominate over those containing spatial derivatives’ and dynamics of fields at any fixed spatial point is better and better described by the homogeneous Bianchi models. Therefore, to handle the Planck regime to an adequate approximation, it may well suffice to treat just the homogeneous modes using LQG and regard inhomogeneitys as small deviations propagating on the resulting homogeneous LQC quantum geometries” gives a correct qualitative description of the BKL scenario but then misapplies it by referring to entire homogeneous models rather than microscopic homogeneous regions.
- “Returning to the more restricted setting of cosmology, it seems fair to say that LQC provides a coherent and conceptually complete paradigm that is free of the difficulties associated with the big-bang and big-crunch. Therefore, the field is now sufficiently mature to address observational issues” is premature, given the serious problems of the approach reviewed in [1]. In particular, quantization ambiguities, effective theory, and covariance must be under control for reliable observational predictions.
Funding
Conflicts of Interest
References
- Ashtekar, A.; Singh, P. Loop Quantum Cosmology: A Status Report. Class. Quant. Grav. 2011, 28, 213001. [Google Scholar] [CrossRef]
- Barrau, A.; Bolliet, B. Some conceptual issues in loop quantum cosmology. Int. J. Mod. Phys. D 2016, 25, 1642008. [Google Scholar] [CrossRef]
- Barrau, A.; Cailleteau, T.; Grain, J.; Mielczarek, J. Observational issues in loop quantum cosmology. Class. Quant. Grav. 2014, 31, 053001. [Google Scholar] [CrossRef]
- Kaminski, W. The volume operator in loop quantum cosmology. arXiv 2019, arXiv:1906.07554. [Google Scholar]
- Kaminski, W.; Kolanowski, M.; Lewandowski, J. Dressed metric predictions revisited. arXiv 2019, arXiv:1912.02556. [Google Scholar] [CrossRef]
- Bojowald, M. Homogeneous loop quantum cosmology. Class. Quantum Grav. 2003, 20, 2595–2615. [Google Scholar] [CrossRef]
- Bojowald, M. Isotropic Loop Quantum Cosmology. Class. Quantum Grav. 2002, 19, 2717–2741. [Google Scholar] [CrossRef]
- Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum Nature of the Big Bang: An Analytical and Numerical Investigation. Phys. Rev. D 2006, 73, 124038. [Google Scholar] [CrossRef]
- Bojowald, M. The BKL scenario, infrared renormalization, and quantum cosmology. JCAP 2019, 01, 026. [Google Scholar] [CrossRef]
- Bojowald, M. Non-bouncing solutions in loop quantum cosmology. arXiv 2019, arXiv:1906.02231. [Google Scholar]
- Bojowald, M. Comment (2) on “Quantum Transfiguration of Kruskal Black Holes”. arXiv 2019, arXiv:1906.04650. [Google Scholar]
- Belinskii, V.A.; Khalatnikov, I.M.; Lifschitz, E.M. A general solution of the Einstein equations with a time singularity. Adv. Phys. 1982, 13, 639–667. [Google Scholar] [CrossRef]
- Dapor, A.; Liegener, K. Cosmological Effective Hamiltonian from full Loop Quantum Gravity Dynamics. Phys. Lett. B 2018, 785, 506–510. [Google Scholar] [CrossRef]
- Thiemann, T. Quantum Spin Dynamics (QSD). Class. Quantum Grav. 1998, 15, 839–873. [Google Scholar] [CrossRef]
- Mielczarek, J.; Szydłowski, M. Emerging singularities in the bouncing loop cosmology. Phys. Rev. D 2008, 77, 124008. [Google Scholar] [CrossRef]
- Yang, J.; Ding, Y.; Ma, Y. Alternative quantization of the Hamiltonian in loop quantum cosmology II: Including the Lorentz term. Phys. Lett. B 2009, 682, 1–7. [Google Scholar] [CrossRef]
- Barbero, J.F. Real Ashtekar Variables for Lorentzian Signature Space-Times. Phys. Rev. D 1995, 51, 5507–5510. [Google Scholar] [CrossRef]
- Immirzi, G. Real and Complex Connections for Canonical Gravity. Class. Quantum Grav. 1997, 14, L177–L181. [Google Scholar] [CrossRef]
- Rovelli, C.; Smolin, L. Discreteness of Area and Volume in Quantum Gravity. Nucl. Phys. B 1995, 442, 593–619, Erratum: Nucl. Phys. B 1995, 456, 753. [Google Scholar] [CrossRef]
- Ashtekar, A.; Lewandowski, J. Quantum Theory of Geometry II: Volume Operators. Adv. Theor. Math. Phys. 1998, 1, 388–429. [Google Scholar] [CrossRef]
- Loll, R. Volume Operator in Discretized Quantum Gravity. Phys. Rev. Lett. 1995, 75, 3048–3051. [Google Scholar] [CrossRef] [PubMed]
- Thiemann, T. Closed Formula for the Matrix Elements of the Volume Operator in Canonical Quantum Gravity. J. Math. Phys. 1998, 39, 3347–3371. [Google Scholar] [CrossRef]
- Rovelli, C.; Smolin, L. Loop Space Representation of Quantum General Relativity. Nucl. Phys. B 1990, 331, 80–152. [Google Scholar] [CrossRef]
- Ashtekar, A.; Lewandowski, J.; Marolf, D.; Mourão, J.; Thiemann, T. Quantization of Diffeomorphism Invariant Theories of Connections with Local Degrees of Freedom. J. Math. Phys. 1995, 36, 6456–6493. [Google Scholar] [CrossRef]
- Rovelli, C.; Smolin, L. The physical Hamiltonian in nonperturbative quantum gravity. Phys. Rev. Lett. 1994, 72, 446–449. [Google Scholar] [CrossRef]
- Bojowald, M. What happened before the big bang? Nat. Phys. 2007, 3, 523–525. [Google Scholar] [CrossRef]
- Bojowald, M. Harmonic cosmology: How much can we know about a universe before the big bang? Proc. Roy. Soc. A 2008, 464, 2135–2150. [Google Scholar] [CrossRef]
- Gielen, S.; Polaczek, A. Generalised effective cosmology from group field theory. arXiv 2019, arXiv:1912.06143. [Google Scholar]
- Calcagni, G.; Gielen, S.; Oriti, D. Group field cosmology: A cosmological field theory of quantum geometry. Class. Quantum Grav. 2012, 29, 105005. [Google Scholar] [CrossRef]
- Gielen, S.; Oriti, D.; Sindoni, L. Cosmology from Group Field Theory Formalism for Quantum Gravity. Phys. Rev. Lett. 2013, 111, 031301. [Google Scholar] [CrossRef]
- Gielen, S.; Oriti, D.; Sindoni, L. Homogeneous cosmologies as group field theory condensates. J. High Energy Phys. 2014, 2014, 013. [Google Scholar] [CrossRef]
- Gielen, S.; Oriti, D. Quantum cosmology from quantum gravity condensates: Cosmological variables and lattice-refined dynamics. New J. Phys. 2014, 16, 123004. [Google Scholar] [CrossRef]
- Kaminski, W.; Pawlowski, T. Cosmic recall and the scattering picture of Loop Quantum Cosmology. Phys. Rev. D 2010, 81, 084027. [Google Scholar] [CrossRef]
- Bojowald, M.; Tsobanjan, A. Effective Casimir conditions and group coherent states. Class. Quantum Grav. 2014, 31, 115006. [Google Scholar] [CrossRef]
- Kuchař, K.V. Time and interpretations of quantum gravity. In Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics; Kunstatter, G., Vincent, D.E., Williams, J.G., Eds.; World Scientific: Singapore, 1992. [Google Scholar]
- Isham, C.J. Canonical quantum gravity and the problem of time. In Integrable Systems, Quantum Groups, and Quantum Field Theory; Kluwer: Dordrecht, The Netherlands, 1993; pp. 157–287. [Google Scholar]
- Anderson, E. The Problem of Time in Quantum Gravity. In Classical and Quantum Gravity: Theory, Analysis and Applications; Frignanni, V.R., Ed.; Nova: New York, NY, USA, 2012. [Google Scholar]
- Malkiewicz, P. Multiple choices of time in quantum cosmology. Class. Quantum Grav. 2015, 32, 135004. [Google Scholar] [CrossRef]
- Bojowald, M.; Halnon, T. Time in quantum cosmology. Phys. Rev. D 2018, 98, 066001. [Google Scholar] [CrossRef]
- Klauder, J. Affine Quantum Gravity. Int. J. Mod. Phys. D 2003, 12, 1769–1774. [Google Scholar] [CrossRef]
- Bergeron, H.; Czuchry, E.; Gazeau, J.P.; Malkiewicz, P.; Piechocki, W. Smooth Quantum Dynamics of Mixmaster Universe. Phys. Rev. D 2015, 92, 061302. [Google Scholar] [CrossRef]
- Bergeron, H.; Czuchry, E.; Gazeau, J.P.; Malkiewicz, P.; Piechocki, W. Singularity avoidance in a quantum model of the Mixmaster universe. Phys. Rev. D 2015, 92, 124018. [Google Scholar] [CrossRef]
- Bergeron, H.; Czuchry, E.; Gazeau, J.P.; Malkiewicz, P.; Piechocki, W. Spectral properties of the quantum Mixmaster universe. Phys. Rev. D 2017, 96, 043521. [Google Scholar] [CrossRef]
- Bergeron, H.; Czuchry, E.; Gazeau, J.P.; Malkiewicz, P.; Piechocki, W. Quantum Mixmaster as a model of the Primordial Universe. Universe 2020, 6, 7. [Google Scholar] [CrossRef]
- Bojowald, M. Large scale effective theory for cosmological bounces. Phys. Rev. D 2007, 75, 081301(R). [Google Scholar] [CrossRef]
- Bargmann, V. Irreducible unitary representations of the Lorentz group. Ann. Math. 1947, 48, 568–640. [Google Scholar] [CrossRef]
- Bojowald, M. Inverse Scale Factor in Isotropic Quantum Geometry. Phys. Rev. D 2001, 64, 084018. [Google Scholar] [CrossRef]
- Bojowald, M.; Calcagni, G.; Tsujikawa, S. Observational test of inflation in loop quantum cosmology. J. Cosmol. Astropart. Phys. 2011, 2011, 046. [Google Scholar] [CrossRef]
- Bojowald, M. Loop quantum cosmology and inhomogeneities. Gen. Rel. Grav. 2006, 38, 1771–1795. [Google Scholar] [CrossRef]
- Bojowald, M.; Brahma, S. Minisuperspace models as infrared contributions. Phys. Rev. D 2015, 92, 065002. [Google Scholar] [CrossRef]
- Coleman, S.; Weinberg, E. Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D 1973, 7, 1888–1910. [Google Scholar] [CrossRef]
- Bahr, B. On background-independent renormalization of spin foam models. arXiv 2014, arXiv:1407.7746. [Google Scholar]
- Dittrich, B.; Mizera, S.; Steinhaus, S. Decorated tensor network renormalization for lattice gauge theories and spin foam models. New J. Phys. 2016, 18, 053009. [Google Scholar] [CrossRef]
- Bahr, B.; Steinhaus, S. Numerical evidence for a phase transition in 4d spin foam quantum gravity. Phys. Rev. Lett. 2016, 117, 141302. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, B.; Schnetter, E.; Seth, C.J.; Steinhaus, S. Coarse graining flow of spin foam intertwiners. Phys. Rev. D 2016, 94, 124050. [Google Scholar] [CrossRef]
- Bahr, B.; Steinhaus, S. Hypercuboidal renormalization in spin foam quantum gravity. Phys. Rev. D 2017, 95, 126006. [Google Scholar] [CrossRef]
- Bahr, B.; Rabuffo, G.; Steinhaus, S. Renormalization of symmetry restricted spin foam models with curvature in the asymptotic regime. Phys. Rev. D 2018, 98, 106026. [Google Scholar] [CrossRef]
- Dapor, A.; Liegener, K.; Pawlowski, T. Challenges in recovering a consistent cosmology from the effective dynamics of loop quantum gravity. Phys. Rev. D 2019, 100, 106016. [Google Scholar] [CrossRef]
- Han, M.; Liu, H. Improved (-Scheme) Effective Dynamics of Full Loop Quantum Gravity. arXiv 2019, arXiv:1912.08668. [Google Scholar]
- Olmo, G.J.; Singh, P. Covariant Effective Action for Loop Quantum Cosmology a la Palatini. J. Cosmol. Astropart. Phys 2009, 2009, 030. [Google Scholar] [CrossRef]
- Olmo, G.J. The gravity lagrangian according to solar system experiments. Phys. Rev. Lett. 2005, 95, 261102. [Google Scholar] [CrossRef]
- Buchdahl, H.A. Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. Soc. 1970, 150, 1–8. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The theory of gravitation in Hamiltonian form. Proc. Roy. Soc. A 1958, 246, 333–343. [Google Scholar]
- Hojman, S.A.; Kuchař, K.; Teitelboim, C. Geometrodynamics Regained. Ann. Phys. 1976, 96, 88–135. [Google Scholar] [CrossRef]
- Bojowald, M. Non-covariance of the dressed-metric approach in loop quantum cosmology. arXiv 2020, arXiv:2002.04986. [Google Scholar]
- Ashtekar, A.; Olmedo, J.; Singh, P. Quantum Transfiguration of Kruskal Black Holes. Phys. Rev. Lett. 2018, 121, 241301. [Google Scholar] [CrossRef] [PubMed]
- Bodendorfer, N.; Mele, F.M.; Münch, J. A note on the Hamiltonian as a polymerisation parameter. arXiv 2019, arXiv:1902.04032. [Google Scholar] [CrossRef]
- Bouhmadi-López, M.; Brahma, S.; Chen, C.Y.; Chen, P.; Yeom, D.H. Comment on “Quantum Transfiguration of Kruskal Black Holes”. arXiv 2019, arXiv:1902.07874. [Google Scholar]
- Ashtekar, A.; Bojowald, M. Quantum Geometry and the Schwarzschild Singularity. Class. Quantum Grav. 2006, 23, 391–411. [Google Scholar] [CrossRef]
- Strobl, T. Gravity in Two Spacetime Dimensions. arXiv 2000, arXiv:hep-th/0011240. [Google Scholar]
- Reyes, J.D. Spherically Symmetric Loop Quantum Gravity: Connections to 2-Dimensional Models and Applications to Gravitational Collapse. Ph.D. Thesis, The Pennsylvania State University, State College, PA, USA, 2009. [Google Scholar]
- Bojowald, M.; Reyes, J.D.; Tibrewala, R. Non-marginal LTB-like models with inverse triad corrections from loop quantum gravity. Phys. Rev. D 2009, 80, 084002. [Google Scholar] [CrossRef]
- Bojowald, M.; Paily, G.M.; Reyes, J.D. Discreteness corrections and higher spatial derivatives in effective canonical quantum gravity. Phys. Rev. D 2014, 90, 025025. [Google Scholar] [CrossRef]
- Brahma, S. Spherically symmetric canonical quantum gravity. Phys. Rev. D 2015, 91, 124003. [Google Scholar] [CrossRef]
- Cuttell, R.; Sakellariadou, M. Fourth order deformed general relativity. Phys. Rev. D 2014, 90, 104026. [Google Scholar] [CrossRef]
- Aruga, D.; Ben Achour, J.; Noui, K. Deformed General Relativity and Quantum Black Holes Interior. arXiv 2019, arXiv:1912.02459. [Google Scholar]
- Cuttell, R. Deformed General Relativity. Ph.D. Thesis, King’s College London, London, UK, 2019. [Google Scholar]
- Bojowald, M.; Brahma, S.; Büyükçam, U.; D’Ambrosio, F. Hypersurface-deformation algebroids and effective space-time models. Phys. Rev. D 2016, 94, 104032. [Google Scholar] [CrossRef]
- Bojowald, M.; Brahma, S.; Yeom, D.H. Effective line elements and black-hole models in canonical (loop) quantum gravity. Phys. Rev. D 2018, 98, 046015. [Google Scholar] [CrossRef]
- Bilski, J. Regularization of the cosmological sector of loop quantum gravity with bosonic matter and the related problems with general covariance of quantum corrections. arXiv 2020, arXiv:2001.04491. [Google Scholar]
- Acacio de Barros, J.; Pinto-Neto, N.; Sagiaro-Leal, M.A. The causal interpretation of dust and radiation fluids non-singular quantum cosmologies. Phys. Lett. A 1998, 241, 229–239. [Google Scholar] [CrossRef]
- Falciano, F.T.; Pinto-Neto, N.; Santini, E.S. An inflationary non-singular quantum cosmological model. Phys. Rev. D 2007, 76, 083521. [Google Scholar] [CrossRef]
- Kiefer, C.; Kwidzinski, N.; Piontek, D. Singularity avoidance in Bianchi I quantum cosmology. Eur. Phys. J. C 2019, 79, 686. [Google Scholar] [CrossRef]
- Kiefer, C.; Schmitz, T. Singularity avoidance for collapsing quantum dust in the Lemaitre-Tolman-Bondi model. Phys. Rev. D 2019, 99, 126010. [Google Scholar] [CrossRef]
- Bodendorfer, N.; Schäfer, A.; Schliemann, J. On the canonical structure of general relativity with a limiting curvature and its relation to loop quantum gravity. Phys. Rev. D 2018, 97, 084057. [Google Scholar] [CrossRef]
- Langlois, D.; Liu, H.; Noui, K.; Wilson-Ewing, E. Effective loop quantum cosmology as a higher-derivative scalar-tensor theory. Class. Quant. Grav. 2017, 34, 225004. [Google Scholar] [CrossRef]
- Bodendorfer, N.; Mele, F.M.; Münch, J. Is limiting curvature mimetic gravity an effective polymer quantum gravity? Class. Quantum Grav. 2018, 35, 225001. [Google Scholar] [CrossRef]
- Haro, J.; Aresté Saló, L.; Elizalde, E. Cosmological perturbations in a class of fully covariant modified theories: Application to models with the same background as standard LQC. Eur. Phys. J. C 2018, 78, 712. [Google Scholar] [CrossRef]
- Haro, J.; Aresté Saló, L.; Pan, S. Mimetic Loop Quantum Cosmology. Gen. Rel. Grav. 2019, 51, 49. [Google Scholar] [CrossRef]
- Ben Achour, J.; Lamy, F.; Liu, H.; Noui, K. Non-singular black holes and the limiting curvature mechanism: A Hamiltonian perspective. J. Cosmol. Astropart. Phys. 2018, 2018, 072. [Google Scholar] [CrossRef]
- Shankaranarayanan, S.; Lubo, M. Gauge-invariant perturbation theory for trans-Planckian inflation. Phys. Rev. D 2005, 72, 123513. [Google Scholar] [CrossRef]
- Bojowald, M.; Paily, G.M. Deformed General Relativity and Effective Actions from Loop Quantum Gravity. Phys. Rev. D 2012, 86, 104018. [Google Scholar] [CrossRef]
- Mielczarek, J. Signature change in loop quantum cosmology. Springer Proc. Phys. 2014, 157, 555. [Google Scholar]
- Cailleteau, T.; Linsefors, L.; Barrau, A. Anomaly-free perturbations with inverse-volume and holonomy corrections in Loop Quantum Cosmology. Class. Quantum Grav. 2014, 31, 125011. [Google Scholar] [CrossRef]
- Bojowald, M.; Mielczarek, J. Some implications of signature-change in cosmological models of loop quantum gravity. J. Cosmol. Astropart. Phys. 2015, 2015, 052. [Google Scholar] [CrossRef]
- Bojowald, M. Information loss, made worse by quantum gravity. Front. Phys. 2015, 3, 33. [Google Scholar] [CrossRef]
1 | All quotations from [1] given in this paper refer to the second preprint version. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojowald, M. Critical Evaluation of Common Claims in Loop Quantum Cosmology. Universe 2020, 6, 36. https://doi.org/10.3390/universe6030036
Bojowald M. Critical Evaluation of Common Claims in Loop Quantum Cosmology. Universe. 2020; 6(3):36. https://doi.org/10.3390/universe6030036
Chicago/Turabian StyleBojowald, Martin. 2020. "Critical Evaluation of Common Claims in Loop Quantum Cosmology" Universe 6, no. 3: 36. https://doi.org/10.3390/universe6030036
APA StyleBojowald, M. (2020). Critical Evaluation of Common Claims in Loop Quantum Cosmology. Universe, 6(3), 36. https://doi.org/10.3390/universe6030036