Nuclear Response to Second-Order Isospin Probes in Connection to Double Beta Decay
Abstract
:1. Introduction
2. First-Order Isospin Probes: Single Charge Exchange Reactions
2.1. Connection of Single Charge Exchange Reactions with β Decay
2.2. Heavy-Ion Single Charge Exchange Reactions
3. Second-Order Isospin Probes: Double Charge Exchange Reactions
DCE Reactions and 0νββ Decays
- The initial and final states (parent and daughter) of the 0νββ decay are the same as the initial and final states (target and residual nuclei) in the DCE reaction;
- Both operators present short-range Fermi, Gamow–Teller and rank-2 tensor components, even if with different relative weights, depending in principle on the incident energy in the reaction case. The DCE experiments at different beam energies could give information on the individual contribution of each component;
- In both processes, a large linear momentum (~100 MeV/c) is available in the virtual intermediate channel [106]. It is worth to underline that other processes such as single β decay, 2νββ decay, SCE reactions induced by light ions are characterized by small momentum transfer, so they cannot probe this feature [107]. The recently proposed μ-capture experiments [108,109] could represent interesting developments in this context;
- In both cases, the processes require non-local operators acting on the same pairs of nucleons;
- Both transitions take place in the same nuclear medium. Since effects due to the presence of the medium are expected in both cases, DCE experimental data could give a helpful constraint on the theoretical determination of quenching phenomena in 0νββ;
- Off-shell propagation through virtual intermediate nuclear states features both cases. Since the virtual states do not represent asymptotic channels, their energies are not well defined as those (measurable) at stationary conditions [110].
4. The Renormalization of the Spin-Isospin Coupling Constant
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dolinski, M.J.; Poon, A.W.P.; Rodejohann, W. Neutrinoless Double-Beta Decay: Status and Prospects. Ann. Rev. Nucl. Part. Sci. 2019, 69, 219–251. [Google Scholar] [CrossRef] [Green Version]
- Ejiri, H.; Suhonen, J.; Zuber, K. Neutrino–nuclear responses for astro-neutrinos, single beta decays and double beta decays. Phys. Rep. 2019, 1, 797. [Google Scholar] [CrossRef]
- Caurier, E.; Menendez, J.; Nowacki, F.; Poves, A. Influence of pairing on the nuclear matrix elements of the neutrinoless betabeta decays. Phys. Rev. Lett. 2008, 100, 052503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwata, Y.; Shimizu, N.; Otsuka, T.; Utsuno, Y.; Menéndez, J.; Honma, M.; Abe, T. Large-Scale Shell-Model Analysis of the Neutrinoless ββ Decay of 48Ca. Phys. Rev. Lett. 2016, 116, 112502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coraggio, L.; Gargano, A.; Itaco, N.; Mancino, R.; Nowalki, F. Calculation of the neutrinoless double-β decay matrix element within the realistic shell model. Phys. Rev. C 2020, 101, 044315. [Google Scholar] [CrossRef]
- Suhonen, J.; Kortelainen, M. Nuclear matrix elements for double beta decay. Int. J. Mod. Phys. E 2008, 1, 17. [Google Scholar] [CrossRef]
- Simkovic, F.; Rodin, V.; Faessler, A.; Vogel, P. 0νββ and 2νββ nuclear matrix elements, quasiparticle random-phase approximation, and isospin symmetry restoration. Phys. Rev. C 2013, 87, 045501. [Google Scholar]
- Vaquero, N.L.; Rodriguez, T.R.; Egido, J.L. Shape and Pairing Fluctuation Effects on Neutrinoless Double Beta Decay Nuclear Matrix Elements. Phys. Rev. Lett. 2013, 111, 142501. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, T.R.; Martinez-Pinedo, G. Energy Density Functional Study of Nuclear Matrix Elements for Neutrinoless ββ Decay. Phys. Rev. Lett. 2010, 105, 252503. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.M.; Song, L.S.; Hagino, K.; Ring, P.; Meng, J. Systematic study of nuclear matrix elements in neutrinoless double-β decay with a beyond-mean-field covariant density functional theory. Phys. Rev. C 2015, 91, 024316. [Google Scholar] [CrossRef] [Green Version]
- Barea, J.; Kotila, J.; Iachello, F. Nuclear matrix elements for double-β decay. Phys. Rev. C 2013, 87, 014315. [Google Scholar] [CrossRef] [Green Version]
- Barea, J.; Kotila, J.; Iachello, F. 0νββ and 2νββ nuclear matrix elements in the interacting boson model with isospin restoration. Phys. Rev. C 2015, 91, 034304. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, A.A.; Brunner, T.; Holt, J.D.; Chaudhuri, A.; Chowdhury, U.; Eibach, M.; Engel, J.; Gallant, A.T.; Grossheim, A.; Horoi, M.; et al. New determination of double-β-decay properties in 48Ca: High-precision Qββ-value measurement and improved nuclear matrix element calculations. Phys. Rev. C 2014, 89, 045502. [Google Scholar] [CrossRef] [Green Version]
- Engel, J.; Menendez, J. Status and future of nuclear matrix elements for neutrinoless double-beta decay: A review. Rep. Progr. Phys. 2017, 80, 046301. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.B.; Hayes, A.C.; Carlson, J.; Dong, G.X.; Mereghetti, E.; Pastore, S.; Wiringa, R.B. Comparison between variational Monte Carlo and shell model calculations of neutrinoless double beta decay matrix elements in light nuclei. Phys. Lett. B 2019, 798, 134974. [Google Scholar] [CrossRef]
- Belley, A.; Payne, C.G.; Stroberg, S.R.; Miyagi, T.; Holt, J.D. Ab initio neutrinoless double-beta decay matrix elements for 48Ca, 76Ge, and 82Se. arXiv 2020, arXiv:2008.06588. [Google Scholar]
- Report to the Nuclear Science Advisory Committee, Neutrinoless Double Beta Decay. 2014. Available online: https://science.osti.gov/ (accessed on 23 November 2015).
- Suhonen, J.T. Value of the axial-vector coupling strength in β and ββ decays: A review. Front. Phys. 2017, 5, 55. [Google Scholar] [CrossRef]
- Fujita, J.; Ikeda, K. Existence of isobaric states and beta decay of heavier nuclei. Nucl. Phys. 1965, 67, 145. [Google Scholar] [CrossRef]
- Wilkinson, D.H. Renormalization of the axial-vector coupling constant in nuclear β-decay (III). Nucl. Phys. A 1974, 225, 365. [Google Scholar] [CrossRef]
- Iachello, F.; Barea, J.; Kotila, J. Quenching of gA and its impact in double beta decay. In Proceedings of the NEUTEL 2015: XVI International Workshop on Neutrino Telescopes, Venice, Italy, 2–6 March 2015. [Google Scholar]
- Suhonen, J.; Civitarese, O. Probing the quenching of gA by single and double beta decays. Phys. Lett. B 2013, 725, 153. [Google Scholar] [CrossRef] [Green Version]
- Faessler, A.; Fogli, G.L.; Lisi, E.; Rodin, V.; Rotunno, A.M.; Šimkovic, F. Overconstrained estimates of neutrinoless double beta decay within the QRPA. J. Phys. G Nucl. Part. Phys. 2008, 35, 075104. [Google Scholar] [CrossRef]
- Robertson, R.G.H. Empirical survey of neutrinoless double beta decay matrix elements. Mod. Phys. Lett. A 2013, 28, 1350021. [Google Scholar]
- Dell’Oro, S.; Marcocci, S.; Vissani, F. New expectations and uncertainties on neutrinoless double beta decay. Phys. Rev. D 2014, 90, 033005. [Google Scholar] [CrossRef] [Green Version]
- Menendez, J.; Gazit, D.; Schwenk, A. Chiral Two-Body Currents in Nuclei: Gamow-Teller Transitions and Neutrinoless Double-Beta Decay. Phys. Rev. Lett. 2011, 107, 062501. [Google Scholar] [CrossRef] [PubMed]
- Measday, D.F. The nuclear physics of muon capture. Phys. Rep. 2001, 354, 243. [Google Scholar] [CrossRef]
- Ejiri, H.J. Double Beta Decays and Neutrino Masses. Phys. Soc. Jpn. 2005, 74, 2101. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.A.; Horoi, M.; Sen’kov, R.A. Nuclear Structure Aspects of Neutrinoless Double-β Decay. Phys. Rev. Lett. 2014, 113, 262501. [Google Scholar] [CrossRef] [Green Version]
- Schiffer, J.P. Nuclear Structure Relevant to Neutrinoless Double β Decay: 76Ge and 76Se. Phys. Rev. Lett. 2008, 100, 112501. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.; Howard, A.M.; Kolata, J.J.; Villano, A.N.; Becchetti, F.D.; DeYoung, P.A.; Febbraro, M.; Freeman, S.J.; Kay, B.P.; McAllister, S.A.; et al. Proton pair correlations and the neutrinoless double-β decay of 76Ge. Phys. Rev. C 2013, 87, 051305. [Google Scholar] [CrossRef] [Green Version]
- Toh, Y.; Chiara, C.J.; McCutchan, E.A.; Walters, W.B.; Janssens, R.V.F.; Carpenter, M.P.; Zhu, S.; Broda, R.; Fornal, B.; Kay, B.P.; et al. Evidence for rigid triaxial deformation at low energy in 76Ge. Phys. Rev. C 2013, 87, 041304. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Crider, B.P.; Brown, B.A.; Ashley, S.F.; Chakraborty, A.; Kumar, A.; McEllistrem, M.T.; Peters, E.E.; Prados-Estévez, F.M.; Yates, S.W. Nuclear structure of 76Ge from inelastic neutron scattering measurements and shell model calculations. Phys. Rev. C 2017, 95, 014327. [Google Scholar] [CrossRef] [Green Version]
- Peters, E.E.; Van Isacker, P.; Chakraborty, A.; Crider, B.P.; Kumar, A.; Liu, S.H.; McEllistrem, M.T.; Mehl, C.V.; Prados-Estévez, F.M.; Ross, J.L.; et al. Seniority structure of 136Xe82. Phys. Rev. C 2018, 98, 034302. [Google Scholar] [CrossRef] [Green Version]
- Henderson, J.; Wu, C.Y.; Ash, J.; Brown, B.A.; Bender, P.C.; Elder, R.; Elman, B.; Gade, A.; Grinder, M.; Iwasaki, H.; et al. Triaxiality in selenium-76. Phys. Rev. C 2019, 99, 054313. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Crider, B.P.; Brown, B.A.; Chakraborty, A.; Kumar, A.; McEllistrem, M.T.; Peters, E.E.; Prados-Estévez, F.M.; Yates, S.W. Inelastic neutron scattering studies of 76Se. Phys. Rev. C 2019, 99, 014313. [Google Scholar] [CrossRef] [Green Version]
- Pietralla, N.; Scheit, H. Experiments on the Competitive Double-Gamma (γγ/γ) Decay. J. Phys. Conf. Ser. 2018, 1056, 012045. [Google Scholar] [CrossRef]
- Frekers, D. Nuclear reactions and the double beta decay. Prog. Part. Nucl. Phys. 2010, 64, 281. [Google Scholar] [CrossRef]
- Guess, C.J.; Adachi, T.; Akimune, H.; Algora, A.; Austin, S.M.; Bazin, D.; Brown, B.A.; Caesar, C.; Deaven, J.M.; Ejiri, H.; et al. The 150Nd(3He,t) and 150Sm(t,3He) reactions with applications to ββ decay of 150Nd. Phys. Rev. C 2011, 83, 064318. [Google Scholar] [CrossRef] [Green Version]
- Cappuzzello, F.; Cavallaro, M.; Agodi, C.; Bondì, M.; Carbone, D.; Cunsolo, A.; Foti, A. Heavy-ion double charge exchange reactions: A tool toward 0νββ nuclear matrix elements. Eur. Phys. J. A 2015, 51, 145. [Google Scholar] [CrossRef] [Green Version]
- Cappuzzello, F.; Agodi, C.; Cavallaro, M.; Carbone, D.; Tudisco, S.; Lo Presti, D.; Oliveira, J.R.B.; Finocchiaro, P.; Colonna, M.; Rifuggiato, D.; et al. The NUMEN project: NUclear Matrix Elements for Neutrinoless double beta decay. Eur. Phys. J. A 2018, 54, 72. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, N.; Menéndez, J.; Yako, K. Double Gamow-Teller Transitions and its Relation to Neutrinoless ββ Decay. Phys. Rev. Lett. 2018, 120, 142502. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, V.d.S.; Samana, A.R.; Krmpotić, F.; Chiapparini, M. Nuclear structure model for double-charge-exchange processes. Phys. Rev. C 2020, 101, 044314. [Google Scholar] [CrossRef]
- Cavallaro, M.; Agodia, C.; Brischettoab, G.A.; Calabreseab, S.; Cappuzzelloab, F.; Carbonea, D.; Ciraldoab, I.; Pakouc, A.; Sgourosa, O.; Soukerasa, V.; et al. The MAGNEX magnetic spectrometer for double charge exchange reactions. Nucl. Instr. Meth. B 2020, 463, 334. [Google Scholar] [CrossRef]
- Cavallaro, M.; Santagatia, G.; Cappuzzelloab, F.; Carbonea, D.; Linaresc, R.; Torresia, D.; Acostad, L.; Agodia, C.; Bonannoe, D.; Bongiovannia, D.; et al. Charge-state distributions of 20Ne ions emerging from thin foils. Results Phys. 2019, 13, 102191. [Google Scholar] [CrossRef]
- Calabrese, S.; Cappuzzello, F.; Carbone, D.; Cavallaro, M.; Agodi, C.; Acosta, L.; Bonanno, D.; Bongiovanni, D.; Borello-Lewin, T.; Boztosun, I.; et al. First measurement of the 116cd(20ne,20o)116sn Reaction at 15 AMeV. Acta Phys. Pol. 2018, 49, 275. [Google Scholar] [CrossRef]
- Calabrese, S.; Cappuzzello, F.; Carbone, D.; Cavallaro, M.; Agodi, C.; Torresi, D.; Acosta, L.; Bonanno, D.; Bongiovanni, D.; Borello-Lewin, T.; et al. [the NUMEN collaboration] Analysis of the background on cross section measurements with the MAGNEX spectrometer: The (20Ne,20O) Double Charge Exchange case. Nucl. Instrum. Methods Phys. Res. A 2020, 980, 164500. [Google Scholar] [CrossRef]
- Cavallaro, M.; Aciksoz, E.; Acosta, L.; Agodi, C.; Auerbach, N.; Bellone, J.; Bijker, R.; Bianco, S.; Bonanno, D.; Bongiovanni, D.; et al. NURE: An ERC project to study nuclear reactions for neutrinoless double beta decay. In Proceedings of the 55th International Winter Meeting on Nuclear Physics, Bormio, Italy, 23–27 January 2017. [Google Scholar]
- Matsubara, H.; Takaki, M.; Uesaka, T.; Shimoura, S.; Aoi, N.; Dozono, M.; Fujii, T.; Hatanaka, K.; Hashimoto, T.; Kawabata, T.; et al. Spectroscopic Measurement in 9He and 12Be. Few-Body Syst. 2013, 54, 1433. [Google Scholar] [CrossRef]
- Alford, W.P.; Spicer, B.M. Nucleon charge-exchange reactions at intermediate energy. Adv. Nucl. Phys. 1998, 1, 24. [Google Scholar]
- Osterfeld, F. Nuclear spin and isospin excitations. Rev. Mod. Phys. 1992, 64, 491. [Google Scholar] [CrossRef]
- Taddeucci, T.N.; Goulding, C.A.; Carey, T.A. The (p, n) reaction as a probe of beta decay strength. Nucl. Phys. A 1987, 469, 125. [Google Scholar] [CrossRef]
- Lenske, H.; Cappuzzello, F.; Cavallaro, M.; Colonna, M. Heavy ion charge exchange reactions as probes for nuclear β-decay. Prog. Part. Nucl. Phys. 2019, 109, 103716. [Google Scholar] [CrossRef]
- Ikeda, K.; Fujii, S.; Fujita, J.I. The (p,n) reactions and beta decays. Phys. Lett. 1963, 3, 271. [Google Scholar] [CrossRef]
- Bainum, D.E.; Rapaport, J.; Goodman, C.D.; Horen, D.J.; Foster, C.C.; Greenfield, M.B.; Goulding, M.B. Observation of Giant Particle-Hole Resonances in 90Zr(p, n)90Nb. Phys. Rev. Lett. 1980, 44, 1751. [Google Scholar] [CrossRef]
- Fujita, Y.; Hatanaka, K.; Berg, G.P.A.; Hosono, K.; Matsuoka, N.; Morinobu, S.; Noro, T.; Sato, M.; Tamura, K.; Uenoa, H. Matching of a beam line and a spectrometer New beam line project at RCNP. Nucl. Instrum. Methods Phys. Res. B 1997, 126, 274. [Google Scholar] [CrossRef]
- Diel, F.; Fujita, Y.; Fujita, H.; Cappuzzello, F.; Ganioğlu, E.; Grewe, E.-W.; Hashimoto, T.; Hatanaka, K.; Honma, M.; Itoh, T.; et al. High-resolution study of the Gamow-Teller (GT−) strength in the 64Zn(3He,t)64Ga reaction. Phys. Rev. C 2019, 99, 054322. [Google Scholar] [CrossRef]
- Fujita, Y.; Rubio, B.; Gelletly, W. Spin-isospin excitations probed by strong, weak and electro-magnetic interactions. Prog. Part. Nucl. Phys. 2011, 66, 549. [Google Scholar] [CrossRef]
- Okamura, H.; Fujitaa, S.; Harab, Y.; Hatanakad, K.; Ichiharac, T.; Ishidaa, S.; Katohb, K.; Niizekib, T.; Ohnumab, H.; Otsua, H.; et al. Tensor analyzing power of the (d, 2He) reaction at 270 MeV. Phys. Lett. B 1995, 345, 1. [Google Scholar] [CrossRef]
- Rakers, S.; Ellinghaus, F.; Bassini, R.; Bäumer, C.; M van den Berg, A.; Frekers, D.; De Frenne, D.; Hagemann, M.; M Hannen, V.; N Harakeh, M.; et al. Measuring the (d,2He) reaction with the focal-plane detection system of the BBS magnetic spectrometer at AGOR. Nucl. Instrum. Methods A 2002, 481, 253. [Google Scholar] [CrossRef]
- Ohnuma, H.; Hatanaka, K.; Hayakawa, S.I.; Hosaka, M.; Ichihara, T.; Ishida, S.; Kato, S.; Niizeki, T.; Ohura, M.; Okamura, H.; et al. (d,2He) reactions at Ed=260 MeV as a possible probe to nuclear spin-isospin excitation. Phys. Rev. C 1992, 47, 648. [Google Scholar] [CrossRef]
- Dohmann, H.; Bäumer, C.; Frekers, D.; Grewe, E.-W.; Harakeh, M.N.; Hollstein, S.; Johansson, H.; Popescu, L.; Rakers, S.; Savran, D.; et al. The (d,2He) reaction on 96Mo and the double-β decay matrix elements for 96Zr. Phys. Rev. C 2008, 78, 041602(R). [Google Scholar] [CrossRef]
- Grewe, E.-W.; Bäumer, C.; Dohmann, H. The (d,2He) reaction on 76Se and the double-β-decay matrix elements for A=76. Phys. Rev. C 2008, 78, 044301. [Google Scholar] [CrossRef]
- Frekers, D. Facets of charge-exchange reactions: From astrophysics to double beta decay. Prog. Part. Nucl. Phys. 2006, 57, 217. [Google Scholar] [CrossRef]
- Ejiri, H.J. Nuclear Matrix Element for Two Neutrino Double Beta Decay from 136Xe. Phys. Soc. Jpn. 2012, 81, 033201. [Google Scholar] [CrossRef] [Green Version]
- Jokiniemi, L.; Ejiri, H.; Frekers, D.; Suhonen, J. Neutrinoless ββ nuclear matrix elements using isovector spin-dipole Jπ=2− data. Phy. Rev. C 2018, 98, 024608. [Google Scholar] [CrossRef] [Green Version]
- Lenske, H.; Bellone, J.I.; Colonna, M.; Lay, J.-A. Theory of single-charge exchange heavy-ion reactions. Phys. Rev. C 2018, 98, 044620. [Google Scholar] [CrossRef] [Green Version]
- Cavallaro, M.; Cappuzzello, F.; Bondì, M.; Carbone, D.; Garcia, V.N.; Gargano, A.; Lenzi, S.M.; Lubian, J.; Agodi, C.; Azaiez, F.; et al. Quantitative analysis of two-neutron correlations in the 12C(18O,16O)14C reaction. Phys. Rev. C 2013, 88, 054601. [Google Scholar] [CrossRef]
- Cavallaro, M.; De Napoli, M.; Cappuzzello, F.; Orrigo, S.E.A.; Agodi, C.; Bondí, M.; Carbone, D.; Cunsolo, A.; Davids, B.; Davinson, T.; et al. Investigation of the 10Li shell inversion by neutron continuum transfer reaction. Phys. Rev. Lett. 2017, 118, 012701. [Google Scholar] [CrossRef]
- Carbone, D.; Ferreira, J.L.; Cappuzzello, F.; Lubian, J.; Agodi, C.; Cavallaro, M.; Foti, A.; Gargano, A.; Lenzi, S.M.; Linares, R.; et al. Microscopic cluster model for the description of new experimental results on the 13C(18O,16O)15C two-neutron transfer at 84 MeV incident energy. Phys. Rev. C 2017, 95, 034603. [Google Scholar] [CrossRef] [Green Version]
- Ermamatov, M.J.; Cappuzzello, F.; Lubian, J.; Cubero, M.; Agodi, C.; Carbone, D.; Cavallaro, M.; Ferreira, J.L.; Foti, A.; Garcia, V.N.; et al. Two-neutron transfer analysis of the 16O(18O,16O)18O reaction. Phys. Rev. C 2016, 94, 024610. [Google Scholar] [CrossRef]
- Ermamatov, M.J.; Linares, R.; Lubian, J.; Ferreira, J.L.; Cappuzzello, F.; Carbone, D.; Cavallaro, M.; Cubero, M.; De Faria, P.N.; Foti, A.; et al. Comprehensive analysis of high-lying states in 18O populated with (t, p) and (18O,16O) reactions. Phys. Rev. C 2017, 96, 044603. [Google Scholar] [CrossRef]
- Spatafora, A.; Cappuzzello, F.; Carbone, D.; Cavallaro, M.; Lay, J.A.; Acosta, L.; Agodi, C.; Bonanno, D.; Bongiovanni, D.; Boztosun, I.; et al. [the NUMEN Collaboration]: 20Ne + 76Ge elastic and inelastic scattering at 306 MeV. Phys. Rev. C 2019, 100, 034620. [Google Scholar] [CrossRef] [Green Version]
- Carbone, D.; Ferreira, J.L.; Calabrese, S.; Cappuzzello, F.; Cavallaro, M.; Hacisalihoglu, A.; Lenske, H.; Lubian, J.; Vsevolodovna, R.M.; Santopinto, E.; et al. [the NUMEN Collaboration]: Analysis of two-nucleon transfer reactions in the 20Ne+116Cd system at 306 MeV. Phys. Rev. C 2020, 102, 044606. [Google Scholar] [CrossRef]
- Bohlen, H.G.; Gebauer, B.; Kolbert, D.; Kubono, S.; von Oertzen, W.; Pellegrin, P.O.; Stiliaris, E.; Wllpert, M.; Wilpert, T. The mechanism of the (12C,12N) charge exchange reaction on 12C between 30 and 100 MEV/U. Nucl. Phys. A 1988, 488, 89–94. [Google Scholar] [CrossRef]
- von Oertzen, W. Excitation of isovector modes in heavy ion induced charge exchange reactions. Nucl. Phys. A 1988, 482, 357–372. [Google Scholar] [CrossRef]
- Nakayama, S.; Akimune, H.; Daito, I.; Fujimura, H.; Fujita, Y.; Fujiwara, M.; Fushimi, K.; Inomata, T.; Ishibashi, K.; Kohri, H.; et al. Gamow-Teller transitions in the (7Li, 7Be) reaction at 65AMeV. Phys. Rev. C 1999, 60, 047303. [Google Scholar] [CrossRef]
- Nakayama, S.; Yamagata, T.; Yuasa, K.; Tanaka, M.; Inoue, M.; Itahashi, T.; Ogata, H. Dominance of the direct reaction process in the 12C(7Li, 7Be)12B reaction at θL = 0° and EL ≥ 21MeVA. Phys. Lett. B 1990, 246, 342. [Google Scholar] [CrossRef]
- Cappuzzello, F.; Lenske, H.; Cunsolo, A.; Beaumel, D.; Fortier, S.; Foti, A.; Lazzaro, A.; Nociforo, C.; Orrigo, S.E.A.; Winfield, J.S. Analysis of the 11B(7Li, 7Be)11Be reaction at 57 MeV in a microscopic approach. Nucl. Phys. A 2004, 739, 30. [Google Scholar] [CrossRef]
- Cappuzzello, F.; Orrigo, S.E.A.; Cunsolo, A.; Lenske, H.; Allia, M.C.; Beaumel, D.; Fortier, S.; Foti, A.; Lazzaro, A.; Nociforo, C.; et al. Excited states of 15C. Europhys. Lett. 2004, 65, 766. [Google Scholar] [CrossRef]
- Cavallaro, M. Preliminary study of the 19F(7Li, 7Be)19O reaction at 52MeV with MAGNEX. Nuovo Cimento C 2011, 34. [Google Scholar]
- Etchegoyen, A.; Etchegoyen, M.C.; Izquierdo, E.D.; Abriola, D.; Di Gregorio, D.E.; Fernandez Niello, J.O.; Ferrero, A.M.J.; Gil, S.; Pacheco, A.J. B-10 (Li-7, Be-7) Be-10 charge-exchange reaction. Phys. Rev. C 1988, 38, 2124. [Google Scholar] [CrossRef]
- Ejiri, H.; Soukouti, N.; Suhonen, J. Spin-dipole nuclear matrix elements for double beta decays and astro-neutrinos. Phys. Lett. B 2014, 729, 27. [Google Scholar] [CrossRef] [Green Version]
- Jokiniemi, L.; Suhonen, J.; Ejiri, H. Magnetic Hexadecapole γ\gammaγ Transitions and Neutrino-Nuclear Responses in Medium-Heavy Nuclei. Adv. High Energy Phys. 2016, 2016, 8417598. [Google Scholar] [CrossRef] [Green Version]
- Suhonen, J.; Civitarese, O. Weak-interaction and nuclear-structure aspects of nuclear double beta decay. Phys. Rep. 1998, 300, 123. [Google Scholar] [CrossRef]
- Johnson, M.B.; Siciliano, E.R.; Toki, H.; Wirzba, A. Delta(33) Dynamics In Pion Double Charge Exchange. Phys. Rev. Lett. 1984, 52, 593–596. [Google Scholar] [CrossRef]
- Auerbach, N.; Zamick, L.; Zheng, D.C. Double Gamow-Teller strenght in nuclei. Ann. Phys. 1989, 192, 77. [Google Scholar] [CrossRef]
- Auerbach, N.; Gibbs, W.R.; Ginocchio, J.N.; Kaufmann, W.B. Pion-nucleus double charge exchange and the nuclear shell model. Phys. Rev. C 1988, 38, 1277–1296. [Google Scholar] [CrossRef]
- Auerback, N.; Gibbs, W.R.; Piasetzky, E. Pion double charge exchange and the nuclear shell model. Phys. Rev. Lett. 1987, 59, 1076. [Google Scholar] [CrossRef]
- Cerny, J. Studies of exotic light nuclei. In Proceedings of the 3rd International Conference on Nuclei Far from Stability, Cargese, France, 26 May 1976. [Google Scholar]
- Blomgren, J.; Lindh, K.; Anantaraman, N.; Austin, S.M.; Berg, G.P.A.; Brown, B.A.; Casandjian, J.-M.; Chartier, M.; Cortina-Gil, M.D.; Fortier, S.; et al. Search for double Gamow-Teller strength by heavy-ion double charge exchange. Phys. Lett. B 1995, 362, 34. [Google Scholar] [CrossRef]
- Fifield, L.K.; Durell, J.L.; Hotchkis, M.A.C.; Leigh, J.R.; Ophel, T.R.; Weisser, D.C. The mass of 18C from a heavy ion double-charge-exchange reaction. Nucl. Phys. A 1982, 385, 505. [Google Scholar] [CrossRef]
- Naulin, F.; Détraz, C.; Roy-Stéphan, M.; Bernas, M.; de Boer, J.; Guillemaud, D.; Langevin, M.; Pougheon, F.; Roussel, P. Mass of 18C from the double-charge-exchange reaction 48Ca(18O, 18C) 48Ti. Phys. Rev. C 1982, 25, 1074. [Google Scholar] [CrossRef]
- Drake, D.M.; Moses, J.D.; Peng, J.C.; Stein, N.; Sunier, J.W. Exotic Heavy-Ion Reactions on 40Ca(14C,14O) Double Charge Exchange and (14C,15O) Rearrangement Transfer. Phys. Rev. Lett. 1980, 45, 1765. [Google Scholar] [CrossRef]
- Bes, D.R.; Dragun, O.; Maqueda, E.E. The (14C, 14O) reaction considered as simultaneous pair-exchange or double-charge-exchange processes. Nucl. Phys. A 1983, 405, 313. [Google Scholar] [CrossRef]
- Dasso, C.H.; Vitturi, A. Mechanism for double-charge exchange in heavy ion reactions. Phys. Rev. C 1986, 34, 743. [Google Scholar] [CrossRef] [PubMed]
- Kisamori, K.; Shimoura, S. Candidate Resonant Tetraneutron State Populated by the 4He(8He,8Be) Reaction. Phys. Rev. Lett. 2016, 116, 052501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahisa, K.; Takahisa, K.; Ejiri, H.; Akimune, H.; Fujita, H.; Matumiya, R.; Ohta, T.; Shima, T.; Tanaka, M.; Yosoi, M. Double charge exchange (11B,11Li) reaction for double beta decay response. arXiv 2017, arXiv:1703.08264. [Google Scholar]
- Takaki, M.; Uesaka, T.; Shimoura, S.; Aoi, N.; Dozono, M.; Gotanda, S.; Hashimoto, T.; Kanaya, Y.; Kawabata, T.; Kisamori, K.; et al. New type of spectroscopy via heavy-ion double charge exchange (12C, 12Be(0+2)) reaction. RIKEN Accel. Prog. Rep. 2014, 47. Available online: https://indico.cns.s.u-tokyo.ac.jp/event/189/contributions/750/attachments/407/496/33_takaki.pdf (accessed on 26 October 2020).
- Sagawa, H.; Uesaka, T. Sum rule study for double Gamow-Teller states. Phys. Rev. C 2016, 94, 064325. [Google Scholar] [CrossRef] [Green Version]
- Cappuzzello, F.; Agodi, A.; Carbone, D.; Cavallaro, M. The MAGNEX spectrometer: Results and perspectives. Eur. Phys. J. A 2016, 52, 167. [Google Scholar] [CrossRef]
- Torresi, D. An upgraded focal plane detector for the MAGNEX spectrometer. Nucl. Instrum. Methods A 2020. submitted. [Google Scholar]
- Finocchiaro, P.; Acosta, L.; Agodi, C.; Altana, C.; Amador-Valenzuela, P.; Boztosun, I.; Brasolin, S.; Brischetto, G.A.; Brunasso, O.; Calabrese, S.; et al. The NUMEN Heavy Ion Multidetector for a Complementary Approach to the Neutrinoless Double Beta Decay. Universe 2020, 6, 129. [Google Scholar] [CrossRef]
- Bellone, J.I.; Burrello, S.; Colonna, M.; Lay, J.-A.; Lenske, H. Two-step description of heavy ion double charge exchange reactions. Phys. Lett. B 2020, 807, 135528. [Google Scholar] [CrossRef]
- Santopinto, E.; García-Tecocoatzi, H.; Magaña Vsevolodovna, R.I.; Ferretti, J. Heavy-ion double-charge-exchange and its relation to neutrinoless double-β decay. Phys. Rev. C 2018, 98, 061601. [Google Scholar] [CrossRef] [Green Version]
- Barea, J.; Kotila, J.; Iachello, F. Limits on Neutrino Masses from Neutrinoless Double-β Decay. Phys. Rev. Lett. 2012, 109, 042501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puppe, P.; Frekers, D.; Adachi, T.; Akimune, H.; Aoi, N.; Bilgier, B.; Ejiri, H.; Fujita, H.; Fujita, Y.; Fujita, M.; et al. High-resolution (He,t) reaction on the double-β decaying nucleus 136Xe. Phys. Rev. C 2011, 84, 051305. [Google Scholar] [CrossRef]
- Jokiniemi, L.; Suhonen, J.; Ejiri, H.; Hashim I., H. Pinning down the strength function for ordinary muon capture on 100Mo. Phys. Lett. B 2019, 794, 143. [Google Scholar] [CrossRef]
- Ejiri, H.; Hashim, I.H.; Hino, Y.; Kuno, Y.; Matsumoto, Y.; Ninomiya, K.; Sakamoto, H.; Sato, A.; Shima, T.; Shinohara, A.; et al. Nuclear γ Rays from Stopped Muon Capture Reactions for Nuclear Isotope Detection. J. Phys. Soc. Jpn. 2013, 82, 044202. [Google Scholar] [CrossRef]
- Mandelstam, L.; Tamm, I. The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. USSR 1945, 9, 249. [Google Scholar]
- Menéndez, J.; Shimizu, N.; Yako, K. Is it possible to study neutrinoless decay by measuring double Gamow-Teller transitions? IOP Conf. Ser. J. Phys. Conf. Ser. 2018, 1056, 012037. [Google Scholar] [CrossRef] [Green Version]
- Markish, B.; Mest, H.; Saul, H.; Wang, X.; Abele, H.; Dubbers, D.; Klopf, M.; Petoukhov, A.; Roick, C.; Soldner, T.; et al. Measurement of the Weak Axial-Vector Coupling Constant in the Decay of Free Neutrons Using a Pulsed Cold Neutron Beam. Phys. Rev. Lett. 2019, 122, 242501. [Google Scholar] [CrossRef] [Green Version]
- Towner, I.S. Quenching of spin matrix elements in nuclei. Phys. Rep. 1997, 155, 263. [Google Scholar] [CrossRef]
- Bertsch, G.F.; Hamamoto, I. Gamow-Teller strength at high excitations. Phys. Rev. C 1982, 26, 1323. [Google Scholar] [CrossRef]
- Arima, A.; Shimizu, K.; Bentz, W.; Hyuga, H. Nuclear Magnetic Properties and Gamow-teller Transitions. Adv. Nucl. Phys. 1987, 18, 1. [Google Scholar] [CrossRef]
- Park, T.-S.; Jung, H.; Min, D.-P. In-medium effective axial-vector coupling constant. Phys. Lett. B 1997, 409, 26. [Google Scholar] [CrossRef] [Green Version]
- Vetterli, M.C.; Hausser, O.; Abegg, R. Gamow-Teller strength deduced from charge exchange reactions on 54Fe at 300 MeV. Phys. Rev. C 1989, 40, 559. [Google Scholar] [CrossRef] [PubMed]
- Bloom, S.D.; Goodman, C.D.; Grimes, S.M.; Hausman, R.F., Jr. Gamow-Teller strength function for 26Mg -> 26Al. Phys. Lett. B 1981, 107, 336. [Google Scholar] [CrossRef]
- Yako, K.; Sakai, H.; Greenfield, M.B.; Hatanaka, K.; Hatano, M.; Kamiya, J.; Kato, H.; Kitamura, Y.; Maeda, Y.; Morris, C.L.; et al. Determination of the Gamow–Teller quenching factor from charge exchange reactions on 90Zr. Phys. Lett. B 2005, 615, 193. [Google Scholar] [CrossRef] [Green Version]
- Douma, C.A.; Agodi, C.; Akimune, H.; Alanssari, M.; Cappuzzello, F.; Carbone, D.; Cavallaro, M.; Colò, G.; Diel, F.; Ejiri, H.; et al. Gamow–Teller strength distributions of 116Sb and 122Sb usingthe (3He, t) charge-exchange reaction. Eur. Phys. J. A 2020, 56, 51. [Google Scholar] [CrossRef] [Green Version]
- Caurier, E.; Zuker, A.P.; Poves, A.; Martinez-Pinedo, G. Full pf shell model study of A=48 nuclei. Phys. Rev. C 1994, 50, 225. [Google Scholar] [CrossRef] [Green Version]
- Iwata, Y.; Shimizu, N.; Utsuno, Y.; Honma, M.; Abe, T.; Otsuka, T. Ingredients of Nuclear Matrix Element for Two-Neutrino Double-Beta Decay of 48Ca. JPS Conf. Proc. 2015, 6, 030057. [Google Scholar]
- Horoi, M.; Stoica, S.; Brown, B.A. Shell-model calculations of two-neutrino double-β decay rates of 48Ca with the GXPF1A interaction. Phys. Rev. C 2007, 75, 034303. [Google Scholar] [CrossRef] [Green Version]
- Wildenthal, B.H.; Curtin, M.S.; Brown, B.A. Predicted features of the beta decay of neutron-rich sd-shell nuclei. Phys. Rev. C 1983, 28, 1343. [Google Scholar] [CrossRef]
- Martinez-Pinedo, G.; Poves, A.; Caurier, E.; Zuker, A.P. Effective gA in the pf shell. Phys. Rev. C 1996, 53, R2602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- 126. Bodenstein-Dresler, L.; Chu, Y.; Gehre, D.; Gößling, C.; Heimbold, A.; Herrmann, C.; Hodak, R.; Kostensalo, J.; Kröninger, K.; Küttler, J.; et al. [COBRA collaboration]: Quenching of gA deduced from the β-spectrum shape of 113Cd measured with the COBRA experiment. Phys. Lett. B 2020, 800, 135092. [Google Scholar] [CrossRef]
- Gysbers, P.; Hagen, G.; Holt, J.D.; Jansen, G.R.; Morris, T.D.; Navrátil, P.; Papenbrock, V.; Quaglioni, S.; Schwenk, A.; Stroberg, S.R.; et al. Discrepancy between experimental and theoretical β-decay rates resolved from first principles. Nat. Phys. 2019, 15, 428. [Google Scholar] [CrossRef]
- Mustonen, M.T.; Engel, J. Large-scale calculations of the double-β decay of 76Ge,130Te,136Xe, and 150Nd in the deformed self-consistent Skyrme quasiparticle random-phase approximation. Phys. Rev. C 2013, 87, 064302. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.-J.; Engel, J.; Yao, J.M. Quenching of nuclear matrix elements for 0νββ decay by chiral two-body currents. Phys. Rev. C 2018, 98, 031301. [Google Scholar] [CrossRef] [Green Version]
- Pastore, S.; Wiringa, R.B.; Pieper, S.C.; Schiavilla, R. Quantum Monte Carlo calculations of electromagnetic transitions in 8Be with meson-exchange currents derived from chiral effective field theory. Phys. Rev. C 2014, 90, 024321. [Google Scholar] [CrossRef]
- King, G.B.; Andreoli, L.; Pastore, S.; Piarulli, M.; Schiavilla, R.; Wiringa, R.B.; Carlson, J.; Gandolfi, S. Chiral effective field theory calculations of weak transitions in light nuclei. Phys. Rev. C 2020, 102, 025501. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cappuzzello, F.; Cavallaro, M. Nuclear Response to Second-Order Isospin Probes in Connection to Double Beta Decay. Universe 2020, 6, 217. https://doi.org/10.3390/universe6110217
Cappuzzello F, Cavallaro M. Nuclear Response to Second-Order Isospin Probes in Connection to Double Beta Decay. Universe. 2020; 6(11):217. https://doi.org/10.3390/universe6110217
Chicago/Turabian StyleCappuzzello, Francesco, and Manuela Cavallaro. 2020. "Nuclear Response to Second-Order Isospin Probes in Connection to Double Beta Decay" Universe 6, no. 11: 217. https://doi.org/10.3390/universe6110217
APA StyleCappuzzello, F., & Cavallaro, M. (2020). Nuclear Response to Second-Order Isospin Probes in Connection to Double Beta Decay. Universe, 6(11), 217. https://doi.org/10.3390/universe6110217