Density Operator Approach to Turbulent Flows in Plasma and Atmospheric Fluids
Abstract
:1. Introduction
2. Hasegawa–Mima Model
2.1. Hasegawa–Mima Equation for Plasma
2.2. Fluctuations
2.3. Observables
3. Wave-Mechanical Analogy in Zonal Flows
4. Density Operator Formalism
4.1. Master Equation: Non-Sustainable Evolution
4.2. Master Equation: Sustainable Evolution
4.3. Time Evolution of Averages
5. Phase-Space Formulation: Non-Sustainable Evolution
5.1. Wigner–Weyl Transform
5.2. Eikonal Approximation
- Overall conservation occurs whenIn this case, both energy and enstrophy can flow from the drift-wave component to the zonal-flow one, and back, but do not leave the system:
- Overall exponential gain or loss occurs when
6. Phase-Space Formulation: Sustainable Evolution
6.1. Wigner–Weyl Transform
6.2. Eikonal Approximation
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DW | Drift wave, drifton |
HME | Hasegawa–Mima equation |
NH | Non-Hermitian Hamiltonian |
RW | Rossby wave |
WKB | Wentzel–Kramers–Brillouin |
WKE | Wave kinetic equation |
ZF | Zonal flow |
Appendix A. Derivation of Vorticity
Appendix B. Wigner–Weyl Formalism
References
- Petrosyan, A.; Klimachkov, D.; Fedotova, M.; Zinyakov, T. Shallow water magnetohydrodynamics in plasma astrophysics. Waves, turbulence, and zonal flows. Atmosphere 2020, 11, 314. [Google Scholar] [CrossRef] [Green Version]
- Diamond, P.H.; Itoh, S.-I.; Itoh, K.; Hahm, T.S. Zonal flows in plasma—A review. Plasma Phys. Control. Fusion 2005, 47, R35–R161. [Google Scholar] [CrossRef]
- Horton, W.; Hasegawa, A. Quasi-two-dimensional dynamics of plasmas and fluids. Chaos 1994, 4, 227–251. [Google Scholar] [CrossRef] [Green Version]
- Vasavada, A.R.; Showman, A.P. Jovian atmospheric dynamics: An update after Galileo and Cassini. Rep. Prog. Phys. 2005, 68, 1935–1996. [Google Scholar] [CrossRef] [Green Version]
- Wordsworth, R.D. A phase-space study of jet formation in planetary-scale fluids. Phys. Fluids 2009, 21, 056602. [Google Scholar] [CrossRef] [Green Version]
- Johansen, A.; Youdin, A.; Klahr, H. Zonal flows and long-lived axisymmetric pressure bumps in magnetorotational turbulence. Astrophys. J. 2009, 697, 1269–1289. [Google Scholar] [CrossRef] [Green Version]
- Kunz, M.W.; Lesur, G. Magnetic self-organization in Hall-dominated magnetorotational turbulence. Mon. Not. R. Astron. Soc. 2013, 434, 2295–2312. [Google Scholar] [CrossRef] [Green Version]
- Hammett, G.; Beer, M.A.; Dorland, W.; Cowley, S.C.; Smith, S.A. Developments in the gyrofluid approach to tokamak turbulence simulations. Plasma Phys. Control. Fusion 1993, 35, 973–985. [Google Scholar] [CrossRef]
- Horton, W. Drift waves and transport. Rev. Mod. Phys. 1999, 71, 735–778. [Google Scholar] [CrossRef] [Green Version]
- Fujisawa, A. A review of zonal flow experiments. Nucl. Fusion 2009, 49, 013001. [Google Scholar] [CrossRef]
- Charney, J.G.; Stern, M.E. On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci. 1962, 19, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Farell, B.; Ioannou, P.J. Structural stability of turbulent jets. J. Atmos. Sci. 2003, 60, 2101–2118. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, K.; Young, W.R. Zonostrophic instability. J. Atmos. Sci. 2012, 69, 1633–1656. [Google Scholar] [CrossRef] [Green Version]
- Parker, J.B.; Krommes, J.A. Zonal flow as pattern formation: Merging jets and the ultimate jet length scale. Phys. Plasmas 2013, 20, 100703. [Google Scholar] [CrossRef] [Green Version]
- Constantinou, N.; Farell, B.; Ioannou, P.J. Emergence and equilibration of jets in beta-plane turbulence: Applications of stochastic structural stability theory. J. Atmos. Sci. 2014, 71, 1818–1842. [Google Scholar] [CrossRef] [Green Version]
- Kadomtsev, B.B. Plasma Turbulence; Academic Press: New York, NY, USA, 1965. [Google Scholar]
- Hasegawa, A.; Mima, K. Pseudo-three-dimentional turbulence in magnetized non-uniform plasma. Phys. Fluids 1978, 21, 87–92. [Google Scholar] [CrossRef]
- Smolyakov, A.I.; Diamond, P.H. Generalized action invariants for drift waves-zonal flow systems. Phys. Plasmas 1999, 6, 4410–4413. [Google Scholar] [CrossRef] [Green Version]
- Krommes, J.A.; Kim, C.B. Interactions of disparate scales in drift-wave turbulence. Phys. Rev. E 2000, 62, 8508–8539. [Google Scholar] [CrossRef]
- Connaughton, N.C.; Nazarenko, S.; Quinn, B. Rossby and drift wave turbulence and zonal flows: The Charney-Hasegawa–Mima model and its extensions. Phys. Rep. 2014, 604, 1–71. [Google Scholar] [CrossRef] [Green Version]
- Gurcan, O.D.; Diamond, P.H. Zonal flows and pattern formation. J. Phys. A Math. Theor. 2015, 48, 293001. [Google Scholar] [CrossRef]
- Parker, J.B. Dynamics of zonal flows: Failure of wave-kinetic theory, and new geometrical optics approximations. Plasma Phys. 2016, 82, 595820602. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, D.E.; Parker, J.B.; Shi, E.L.; Dodin, I.Y. Zonal-flow dynamics from a phase-space perspective. Phys. Plasmas 2016, 23, 122304. [Google Scholar] [CrossRef] [Green Version]
- Faisal, F.H.M. Theory of Multiphoton Processes; Plenum Press: New York, NY, USA, 1987. [Google Scholar]
- Sergi, A.; Zloshchastiev, K.G. Non-Hermitian quantum dynamics of a two-level system and models of dissipative environments. Int. J. Mod. Phys. B 2013, 27, 1350163. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G.; Sergi, A. Comparison and unification of non-Hermitian and Lindblad approaches with applications to open quantum optical systems. J. Mod. Opt. 2014, 61, 1298–1308. [Google Scholar] [CrossRef] [Green Version]
- Sergi, A.; Zloshchastiev, K.G. Time correlation functions for non-Hermitian quantum systems. Phys. Rev. A 2015, 91, 062108. [Google Scholar] [CrossRef] [Green Version]
- Sergi, A. Embedding quantum systems with a non-conserved probability in classical environments. Theor. Chem. Acc. 2015, 134, 79. [Google Scholar] [CrossRef] [Green Version]
- Zloshchastiev, K.G. Non-Hermitian Hamiltonians and stability of pure states in quantum mechanics. Eur. Phys. J. D 2015, 69, 253. [Google Scholar] [CrossRef] [Green Version]
- Sergi, A.; Zloshchastiev, K.G. Quantum entropy of systems described by non-Hermitian Hamiltonians. J. Stat. Mech. 2016, 2016, 033102. [Google Scholar] [CrossRef] [Green Version]
- Sergi, A.; Giaquinta, P.V. Linear quantum entropy and non-Hermitian Hamiltonians. Entropy 2016, 18, 451. [Google Scholar] [CrossRef] [Green Version]
- Zloshchastiev, K.G. Quantum-statistical approach to electromagnetic wave propagation and dissipation inside dielectric media and nanophotonic and plasmonic waveguides. Phys. Rev. B 2016, 94, 115136. [Google Scholar] [CrossRef] [Green Version]
- Zloshchastiev, K.G. Sustainability of environment-assisted energy transfer in quantum photobiological complexes. Ann. Phys. 2017, 529, 1600185. [Google Scholar] [CrossRef]
- Botet, R.; Kuratsuji, H. The duality between a non-Hermitian two-state quantum system and a massless charged particle. J. Phys. A Math. Theor. 2018, 52, 035303. [Google Scholar] [CrossRef] [Green Version]
- Echeverri-Arteaga, S.; Vinck-Posada, H.; Gómez, E.A. A study on the role of the initial conditions and the nonlinear dissipation in the non-Hermitian effective Hamiltonian approach. Optik 2018, 174, 114–120. [Google Scholar] [CrossRef]
- Hu, M.; Hou, Y. Discrimination between quantum common causes and quantum causality. Phys. Rev. A 2018, 97, 062125. [Google Scholar] [CrossRef] [Green Version]
- Joshi, S.; Galbraith, I. Exceptional points and dynamics of an asymmetric non-Hermitian two-level system. Phys. Rev. A 2018, 98, 042117. [Google Scholar] [CrossRef]
- Li, S.-S. Quantum entanglement in a non-Hermitian one-axis twisting Hamiltonian. Int. J. Theor. Phys. 2018, 57, 2359–2364. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Fang, M.-F. Generation of sustained optimal entropy squeezing of a two-level atom via non-Hermitian operation. Chin. Phys. B 2018, 27, 114207. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Fang, M.-F. Enhancing and protecting quantum correlations of a two-qubit entangled system via non-Hermitian operation. Quantum Inf. Process. 2018, 17, 208. [Google Scholar] [CrossRef]
- Sergi, A. The density matrix in the non-Hermitian approach to open quantum system dynamics. Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat. 2019, 97, A11. [Google Scholar] [CrossRef]
- Echeverri-Arteaga, S.; Vinck-Posada, H.; Gòmez, E.A. A comparative study on different non-Hermitian approaches for modeling open quantum systems. Optik 2019, 180, 505–510. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Sun, W.; Wang, D.; Ye, L. Restoration of coherence by local PT-symmetric operator. Int. J. Theor. Phys. 2019, 58, 4184–4193. [Google Scholar] [CrossRef]
- Grimaudo, R.; de Castro, A.S.M.; Nakazato, H.; Messina, A. Analytically solvable 2 × 2 PT-symmetry dynamics from su(1,1)-symmetry problems. Phys. Rev. A 2019, 99, 052103. [Google Scholar] [CrossRef] [Green Version]
- Herviou, L.; Regnault, N.; Bardarson, J.H. Entanglement spectrum and symmetries in non-Hermitian fermionic non-interacting models. SciPost Phys. 2019, 7, 069. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, K.; Rembieliǹski, J. Integrable nonlinear evolution of the qubit. Ann. Phys. 2019, 411, 167955. [Google Scholar] [CrossRef]
- Leng, Y.; Zhao, Y. Effect of PT-symmetric operator on coherence under the non-Markovian environments. Int. J. Theor. Phys. 2019, 58, 1874–1881. [Google Scholar] [CrossRef]
- Diffo, J.T.; Ateuafack, M.E.; Nyisomeh, I.F.; Fai, L.C. Nonadiabatic dynamics of a dissipative spin chain in a transverse magnetic field. Phys. E Low Dimens. Syst. Nanostruct. 2020, 118, 113940. [Google Scholar] [CrossRef]
- Jaramillo Ávila, B.; Ventura-Velázquez, C.; León-Montiel, R.d.J.; Joglekar, Y.N.; Rodríguez-Lara, B.M. PT-symmetry from Lindblad dynamics in a linearized optomechanical system. Sci. Rep. 2020, 10, 1761. [Google Scholar] [CrossRef] [Green Version]
- Bagarello, F.; Gargano, F. Eigenvalues of non-Hermitian matrices: A dynamical and an iterative approach—Application to a truncated Swanson model. Math. Meth. Appl. Sci. 2020, 43, 5758–5775. [Google Scholar] [CrossRef] [Green Version]
- Chernodub, M.N.; Cortijo, A. Non-Hermitian chiral magnetic effect in equilibrium. Symmetry 2020, 12, 761. [Google Scholar] [CrossRef]
- Adam, P.; Andreev, V.A.; Man’ko, M.A.; Man’ko, V.I.; Mechler, M. SU(2) symmetry of qubit states and Heisenberg-Weyl symmetry of systems with continuous variables in the probability representation of quantum mechanics. Symmetry 2020, 12, 1099. [Google Scholar] [CrossRef]
- Chernega, V.N.; Man’ko, M.A.; Man’ko, V.I. PT-symmetric qubit-system states in the probability representation of quantum mechanics. Symmetry 2020, 12, 1702. [Google Scholar] [CrossRef]
- Giscard, P.-L.; Bonhomme, C. Dynamics of quantum systems driven by time-varying Hamiltonians: Solution for the Bloch-Siegert Hamiltonian and applications to NMR. Phys. Rev. Res. 2020, 2, 023081. [Google Scholar] [CrossRef]
- Guo, H.; Hou, X.-Y.; He, Y.; Chien, C.-C. Dynamic process and Uhlmann process: Incompatibility and dynamic phase of mixed quantum states. Phys. Rev. B 2020, 101, 104310. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-Y.; Ren, X.-Z.; Wang, C.; Gao, X.-L.; Wang, K.-L. Numerical approach for the evolution of spin-boson systems and its application to the Buck-Sukumar model. Commun. Theor. Phys. 2020, 72, 065502. [Google Scholar] [CrossRef]
- Liu, Z. Entanglement and spin squeezing in the evolution of a resonant field in a Kell-like medium. Int. J. Theor. Phys. 2020, 59, 2249–2254. [Google Scholar] [CrossRef]
- Panda, A.; Banerjee, S. Entanglement in nonequilibrium steady states and many-body localization breakdown in a current-driven system. Phys. Rev. B 2020, 101, 184201. [Google Scholar] [CrossRef]
- Finkelstein-Shapiro, D.; Viennot, D.; Saideh, I.; Hansen, T.; Pullerits, T.; Keller, A. Adiabatic elimination and subspace evolution of open quantum systems. Phys. Rev. A 2020, 101, 042102. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-Y.; Fang, M.-F. Quantum speed limit time of a non-Hermitian two-level system. Chin. Phys. B 2020, 29, 030304. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Fang, M.-F. Quantum Fisher information of a two-level system controlled by non-Hermitian operation under depolarization. Quantum Inf. Process. 2020, 19, 173. [Google Scholar] [CrossRef]
- Wrona, I.A.; Jarosik, M.W.; Szczȩśniak, R.; Szewczyk, K.A.; Stala, M.K.; Leoński, W. Interaction of the hydrogen molecule with the environment: Stability of the system and the PT symmetry breaking. Sci. Rep. 2020, 10, 215. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.-Y.; Gao, Q.-C.; Guo, H.; He, Y.; Liu, T.; Chien, C.-C. Ubiquity of zeros of Loschmidt amplitude for mixed states in different physical processes and their implications. Phys. Rev. B 2020, 102, 104305. [Google Scholar] [CrossRef]
- Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Bittencourt, J.A. Fundamentals of Plasma Physics; Springer: New York, NY, USA, 2004. [Google Scholar]
- Chen, F.F. Introduction to Plasma Physics and Controlled Fusion; Springer: New York, NY, USA, 2016. [Google Scholar]
- Weyl, H. The Theory of Groups and Quantum Mechanics; Dover: New York, NY, USA, 1931. [Google Scholar]
- Wigner, E. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Groenewold, H. On the principles of elementary quantum mechanics. Physica 1946, 12, 405–460. [Google Scholar] [CrossRef]
- Hillery, M.; O’Connell, R.F.; Scully, M.O.; Wigner, E.P. Distribution functions in physics: Fundamentals. Phys. Rep. 1984, 106, 121–167. [Google Scholar] [CrossRef]
- Curtright, T.; Veitia, A. Quasi-Hermitian quantum mechanics in phase space. J. Math. Phys. 2007, 48, 102112. [Google Scholar] [CrossRef] [Green Version]
- Graefe, E.-M.; Schubert, R. Wave packet evolution in non-Hermitian quantum systems. Phys. Rev. A 2011, 83, 060101. [Google Scholar] [CrossRef] [Green Version]
- Ben-Benjamin, J.S.; Cohen, L. Propagation in channels. Proc. SPIE 2013, 8744, 874413. [Google Scholar]
- Ben-Benjamin, J.S.; Cohen, L.; Loughlin, P.J. A phase space approach to wave propagation with dispersion. J. Acoust. Soc. Am. 2015, 138, 1122–1131. [Google Scholar] [CrossRef]
- Praxmeyer, L.; Zloshchastiev, K.G. Phase space formulation of density operator for non-Hermitian Hamiltonians and its application in quantum theory of decay. Int. J. Mod. Phys. B 2018, 32, 1850276. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zloshchastiev, K.G. Density Operator Approach to Turbulent Flows in Plasma and Atmospheric Fluids. Universe 2020, 6, 216. https://doi.org/10.3390/universe6110216
Zloshchastiev KG. Density Operator Approach to Turbulent Flows in Plasma and Atmospheric Fluids. Universe. 2020; 6(11):216. https://doi.org/10.3390/universe6110216
Chicago/Turabian StyleZloshchastiev, Konstantin G. 2020. "Density Operator Approach to Turbulent Flows in Plasma and Atmospheric Fluids" Universe 6, no. 11: 216. https://doi.org/10.3390/universe6110216
APA StyleZloshchastiev, K. G. (2020). Density Operator Approach to Turbulent Flows in Plasma and Atmospheric Fluids. Universe, 6(11), 216. https://doi.org/10.3390/universe6110216