# The Solution of the Cosmological Constant Problem: The Cosmological Constant Exponential Decrease in the Super-Early Universe

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Lagrangian Density

## 3. The Derivation of the Field Equations and Its Consequences

**Lemma**

**1.**

## 4. Cosmological Solution for the Primordial Universe

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Kibble, T.W.B. Lorentz invariance and the gravitational field. J. Math. Phys.
**1961**, 2, 212–221. [Google Scholar] [CrossRef] [Green Version] - Trautman, A. Recent advances in the Einstein–Cartan theory of gravity. Ann. N. Y. Acad. Sci.
**1975**, 262, 241–245. [Google Scholar] [CrossRef] - Frolov, B.N. Principle of local invariance and Noether theorem. Vestn. Mosk. Univ. Ser. Fiz. Astron.
**1963**, 6, 48–58. (In Russian) [Google Scholar] - Frolov, B.N. Principle of local invariance and Noether theorem. In Modern Problems of Gravitation/Proceedings of the 2nd Soviet Gravitation Conference; Publishing House of Tbilisi University: Tbilisi, Georgia, 1967; pp. 270–278. (In Russian) [Google Scholar]
- Frolov, B.N.; Sardanashvily, G.A. Gravitation and gauge fields. Sov. J. Phys.
**1974**, 17, 1228–1231. [Google Scholar] [CrossRef] - Hayashi, K. Extended translational invariance and associated gauge fields. Progr. Theor. Phys.
**1967**, 38, 491–507. [Google Scholar] [CrossRef] [Green Version] - Hayashi, K. Gauge theories of massive and massless tensor fields. Progr. Theor. Phys.
**1968**, 39, 495–515. [Google Scholar] [CrossRef] [Green Version] - Hehl, F.W.; von der Heyde, P.; Kerlick, G.D.; Nester, J.M. General relativity with spin and torsion: Foundtion and prospects. Revs. Mod. Phys.
**1976**, 48, 393–416. [Google Scholar] [CrossRef] [Green Version] - Blagojevic, M. Gravitation and Gauge Symmetries; Institute Physics Publishing IOP Publishing Ltd.: Bristol, UK; Philadelphia, PA, USA, 2002. [Google Scholar]
- Frolov, B.N. Poincar’e–Gauge Theory of Gravity; Prometej Publishing House: Moscow, Russia, 2003. (In Russian) [Google Scholar]
- Frolov, B.N. On foundations of Poincar’e–gauge theory of gravity. Grav. Cosmol.
**2004**, 10, 116–120. [Google Scholar] - Ponomarev, V.N.; Barvinsky, A.O.; Obukhov, Y.N. Gauge Approach and Quantization Methods in Gravity Theory; Nauka: Мoscow, Russia, 2017; p. 360. [Google Scholar]
- Charap, J.M.; Tait, W. A gauge theory of the Weyl group. Proc. R. Soc.
**1974**, A340, 249–262. [Google Scholar] - Kasuya, M. Gauge theory in the Einstein–Cartan–Weyl space-time. Nuovo Cim.
**1975**, 28B, 127–137. [Google Scholar] [CrossRef] - Babourova, O.V.; Frolov, B.N.; Zhukovsky, V.C. Gauge Field Theory for Poincare–Weyl Group. Phys. Rev.
**2006**, 74, 064012. [Google Scholar] [CrossRef] [Green Version] - Babourova, O.V.; Zhukovskii, V.C.; Frolov, B.N. A Weyl-Cartan space-time model based on the gauge principle. Theor. Math. Phys.
**2008**, 157, 1420–1432. [Google Scholar] [CrossRef] - Babourova, O.V.; Frolov, B.N.; Zhukovsky, V.C. Theory of Gravitation on the Basis of the Poincare–Weyl Gauge Group. Gravit. Cosmol.
**2009**, 15, 13–15. [Google Scholar] [CrossRef] - Dirac, P.A.M. Long range forces and broken symmetries. Proc. R. Soc.
**1973**, A333, 403–418. [Google Scholar] - Babourova, O.V.; Frolov, B.N. Dark energy, Dirac’s scalar field and the cosmological constant problem. arXiv
**2011**, arXiv:1112.4449. [Google Scholar] - Babourova, O.V.; Frolov, B.N. Mathematical Problems of the Modern Theory of Gravity; MPSU Press: Мoscow, Russia, 2012. (In Russian) [Google Scholar]
- Babourova, O.V.; Frolov, B.N.; Lipkin, K.N. Theory of gravitation with scalar Dirac field in exterior form formalism and the cosmological constant problem. Gravit. Cosmol.
**2012**, 18, 225–231. [Google Scholar] [CrossRef] - Babourova, O.V.; Frolov, B.N. Dark Energy as a Cosmological Consequence of Existence of the Dirac Scalar Field in Nature. Phys. Res. Intern.
**2015**, 2015, 952181. [Google Scholar] [CrossRef] - Rubakov, V.A. Harrison–Zel’dovich spectrum from conformal invariance. arXiv
**2009**, arXiv:0906.3693. [Google Scholar] - Sazhin, M.V. Anisotropy and polarization of cosmic microwave background: State of the art. Phys. Uspekhi.
**2004**, 47, 187–194. [Google Scholar] [CrossRef] - Gliner, E.B. Algebraic properties of the energy–momentum tensor and vacuum–like states of matter. Sov. Phys. J. Exp. Theor. Phys.
**1966**, 22, 378–382. [Google Scholar] - Gliner, E.B. Inflationary universe and the vacuumlike state of physical medium. Phys. Uspekhi.
**2002**, 45, 213–220. [Google Scholar] [CrossRef] - Weinberg, S. The cosmological constant problem. Rev. Mod. Phys.
**1989**, 61, 1–23. [Google Scholar] [CrossRef] - Babourova, O.V.; Frolov, B.N.; Klimova, E.A. Plane torsion waves in quadratic gravitational theories in Riemann–Cartan space. Class. Quantum Grav.
**1999**, 16, 1149–1162. [Google Scholar] [CrossRef] [Green Version] - Babourova, O.V.; Frolov, B.N.; Febres, E.V. Spherically symmetric solution of gravitation theory with a Dirac scalar field in the Cartan–Weyl space. Russ. Phys. J.
**2015**, 57, 1297–1299. [Google Scholar] [CrossRef] - Babourova, O.V.; Frolov, B.N.; Kudlaev, P.E.; Romanova, E.V. Spherically symmetric solution of the Weyl–Dirac theory of gravitation and possible influence of dark matter on the interplanetary spacecraft motion. arXiv
**2016**, arXiv:1610.09525. [Google Scholar] - Babourova, O.V.; Frolov, B.N.; Kudlaev, P.E. Axially Symmetric Solution of the Weyl–Dirac Theory of Gravitation and the Problem of Rotation Curves of Galaxies. Gravit. Cosmol.
**2018**, 24, 118–121. [Google Scholar] [CrossRef] - Babourova, O.V.; Frolov, B.N. Harrison-Zel’dovich scale invariance and the exponential decrease of the “cosmological constant” in the super-early Universe. arXiv
**2020**, arXiv:2001.05968. [Google Scholar] - Weinberg, S. The Cosmological Constant Problems. arXiv
**2000**, arXiv:0005265v1. [Google Scholar] - Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys.
**2003**, 75, 559–606. [Google Scholar] [CrossRef] [Green Version] - Li, M.; Li, X.-D.; Wang, S.; Wang, Y. Dark Energy. Commun. Theor. Phys.
**2011**, 56, 525–604. [Google Scholar] [CrossRef] [Green Version] - Gorbunov, D.S.; Rubakov, V.A. Introduction to the Theory of the Early Universe: Hot Big Bang Theory; World Scientific: Singapore, 2011. [Google Scholar]
- Martin, J. Everything you always wanted to know about the cosmological constant problem (but were afraid to ask). C. R. Phys.
**2012**, 13, 566–665. [Google Scholar] [CrossRef] [Green Version] - Luongo, O.; Muccino, M. Speeding up the universe using dust with pressure. Phys. Rev.
**2018**, 98, 103520. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**Model of behavior of the functions $a(t)$ and $\u0421\beta (t)$ at small values of time $t$.

**Figure 2.**Model of behavior of the functions $a(t)$ and $\u0421\beta (t)$ at large values of time $t$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Babourova, O.; Frolov, B.
The Solution of the Cosmological Constant Problem: The Cosmological Constant Exponential Decrease in the Super-Early Universe. *Universe* **2020**, *6*, 230.
https://doi.org/10.3390/universe6120230

**AMA Style**

Babourova O, Frolov B.
The Solution of the Cosmological Constant Problem: The Cosmological Constant Exponential Decrease in the Super-Early Universe. *Universe*. 2020; 6(12):230.
https://doi.org/10.3390/universe6120230

**Chicago/Turabian Style**

Babourova, Ol’ga, and Boris Frolov.
2020. "The Solution of the Cosmological Constant Problem: The Cosmological Constant Exponential Decrease in the Super-Early Universe" *Universe* 6, no. 12: 230.
https://doi.org/10.3390/universe6120230