The Solution of the Cosmological Constant Problem: The Cosmological Constant Exponential Decrease in the Super-Early Universe
Abstract
:1. Introduction
2. Lagrangian Density
3. The Derivation of the Field Equations and Its Consequences
4. Cosmological Solution for the Primordial Universe
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kibble, T.W.B. Lorentz invariance and the gravitational field. J. Math. Phys. 1961, 2, 212–221. [Google Scholar] [CrossRef] [Green Version]
- Trautman, A. Recent advances in the Einstein–Cartan theory of gravity. Ann. N. Y. Acad. Sci. 1975, 262, 241–245. [Google Scholar] [CrossRef]
- Frolov, B.N. Principle of local invariance and Noether theorem. Vestn. Mosk. Univ. Ser. Fiz. Astron. 1963, 6, 48–58. (In Russian) [Google Scholar]
- Frolov, B.N. Principle of local invariance and Noether theorem. In Modern Problems of Gravitation/Proceedings of the 2nd Soviet Gravitation Conference; Publishing House of Tbilisi University: Tbilisi, Georgia, 1967; pp. 270–278. (In Russian) [Google Scholar]
- Frolov, B.N.; Sardanashvily, G.A. Gravitation and gauge fields. Sov. J. Phys. 1974, 17, 1228–1231. [Google Scholar] [CrossRef]
- Hayashi, K. Extended translational invariance and associated gauge fields. Progr. Theor. Phys. 1967, 38, 491–507. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K. Gauge theories of massive and massless tensor fields. Progr. Theor. Phys. 1968, 39, 495–515. [Google Scholar] [CrossRef] [Green Version]
- Hehl, F.W.; von der Heyde, P.; Kerlick, G.D.; Nester, J.M. General relativity with spin and torsion: Foundtion and prospects. Revs. Mod. Phys. 1976, 48, 393–416. [Google Scholar] [CrossRef] [Green Version]
- Blagojevic, M. Gravitation and Gauge Symmetries; Institute Physics Publishing IOP Publishing Ltd.: Bristol, UK; Philadelphia, PA, USA, 2002. [Google Scholar]
- Frolov, B.N. Poincar’e–Gauge Theory of Gravity; Prometej Publishing House: Moscow, Russia, 2003. (In Russian) [Google Scholar]
- Frolov, B.N. On foundations of Poincar’e–gauge theory of gravity. Grav. Cosmol. 2004, 10, 116–120. [Google Scholar]
- Ponomarev, V.N.; Barvinsky, A.O.; Obukhov, Y.N. Gauge Approach and Quantization Methods in Gravity Theory; Nauka: Мoscow, Russia, 2017; p. 360. [Google Scholar]
- Charap, J.M.; Tait, W. A gauge theory of the Weyl group. Proc. R. Soc. 1974, A340, 249–262. [Google Scholar]
- Kasuya, M. Gauge theory in the Einstein–Cartan–Weyl space-time. Nuovo Cim. 1975, 28B, 127–137. [Google Scholar] [CrossRef]
- Babourova, O.V.; Frolov, B.N.; Zhukovsky, V.C. Gauge Field Theory for Poincare–Weyl Group. Phys. Rev. 2006, 74, 064012. [Google Scholar] [CrossRef] [Green Version]
- Babourova, O.V.; Zhukovskii, V.C.; Frolov, B.N. A Weyl-Cartan space-time model based on the gauge principle. Theor. Math. Phys. 2008, 157, 1420–1432. [Google Scholar] [CrossRef]
- Babourova, O.V.; Frolov, B.N.; Zhukovsky, V.C. Theory of Gravitation on the Basis of the Poincare–Weyl Gauge Group. Gravit. Cosmol. 2009, 15, 13–15. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Long range forces and broken symmetries. Proc. R. Soc. 1973, A333, 403–418. [Google Scholar]
- Babourova, O.V.; Frolov, B.N. Dark energy, Dirac’s scalar field and the cosmological constant problem. arXiv 2011, arXiv:1112.4449. [Google Scholar]
- Babourova, O.V.; Frolov, B.N. Mathematical Problems of the Modern Theory of Gravity; MPSU Press: Мoscow, Russia, 2012. (In Russian) [Google Scholar]
- Babourova, O.V.; Frolov, B.N.; Lipkin, K.N. Theory of gravitation with scalar Dirac field in exterior form formalism and the cosmological constant problem. Gravit. Cosmol. 2012, 18, 225–231. [Google Scholar] [CrossRef]
- Babourova, O.V.; Frolov, B.N. Dark Energy as a Cosmological Consequence of Existence of the Dirac Scalar Field in Nature. Phys. Res. Intern. 2015, 2015, 952181. [Google Scholar] [CrossRef]
- Rubakov, V.A. Harrison–Zel’dovich spectrum from conformal invariance. arXiv 2009, arXiv:0906.3693. [Google Scholar]
- Sazhin, M.V. Anisotropy and polarization of cosmic microwave background: State of the art. Phys. Uspekhi. 2004, 47, 187–194. [Google Scholar] [CrossRef]
- Gliner, E.B. Algebraic properties of the energy–momentum tensor and vacuum–like states of matter. Sov. Phys. J. Exp. Theor. Phys. 1966, 22, 378–382. [Google Scholar]
- Gliner, E.B. Inflationary universe and the vacuumlike state of physical medium. Phys. Uspekhi. 2002, 45, 213–220. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Babourova, O.V.; Frolov, B.N.; Klimova, E.A. Plane torsion waves in quadratic gravitational theories in Riemann–Cartan space. Class. Quantum Grav. 1999, 16, 1149–1162. [Google Scholar] [CrossRef] [Green Version]
- Babourova, O.V.; Frolov, B.N.; Febres, E.V. Spherically symmetric solution of gravitation theory with a Dirac scalar field in the Cartan–Weyl space. Russ. Phys. J. 2015, 57, 1297–1299. [Google Scholar] [CrossRef]
- Babourova, O.V.; Frolov, B.N.; Kudlaev, P.E.; Romanova, E.V. Spherically symmetric solution of the Weyl–Dirac theory of gravitation and possible influence of dark matter on the interplanetary spacecraft motion. arXiv 2016, arXiv:1610.09525. [Google Scholar]
- Babourova, O.V.; Frolov, B.N.; Kudlaev, P.E. Axially Symmetric Solution of the Weyl–Dirac Theory of Gravitation and the Problem of Rotation Curves of Galaxies. Gravit. Cosmol. 2018, 24, 118–121. [Google Scholar] [CrossRef]
- Babourova, O.V.; Frolov, B.N. Harrison-Zel’dovich scale invariance and the exponential decrease of the “cosmological constant” in the super-early Universe. arXiv 2020, arXiv:2001.05968. [Google Scholar]
- Weinberg, S. The Cosmological Constant Problems. arXiv 2000, arXiv:0005265v1. [Google Scholar]
- Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Li, X.-D.; Wang, S.; Wang, Y. Dark Energy. Commun. Theor. Phys. 2011, 56, 525–604. [Google Scholar] [CrossRef] [Green Version]
- Gorbunov, D.S.; Rubakov, V.A. Introduction to the Theory of the Early Universe: Hot Big Bang Theory; World Scientific: Singapore, 2011. [Google Scholar]
- Martin, J. Everything you always wanted to know about the cosmological constant problem (but were afraid to ask). C. R. Phys. 2012, 13, 566–665. [Google Scholar] [CrossRef] [Green Version]
- Luongo, O.; Muccino, M. Speeding up the universe using dust with pressure. Phys. Rev. 2018, 98, 103520. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babourova, O.; Frolov, B. The Solution of the Cosmological Constant Problem: The Cosmological Constant Exponential Decrease in the Super-Early Universe. Universe 2020, 6, 230. https://doi.org/10.3390/universe6120230
Babourova O, Frolov B. The Solution of the Cosmological Constant Problem: The Cosmological Constant Exponential Decrease in the Super-Early Universe. Universe. 2020; 6(12):230. https://doi.org/10.3390/universe6120230
Chicago/Turabian StyleBabourova, Ol’ga, and Boris Frolov. 2020. "The Solution of the Cosmological Constant Problem: The Cosmological Constant Exponential Decrease in the Super-Early Universe" Universe 6, no. 12: 230. https://doi.org/10.3390/universe6120230
APA StyleBabourova, O., & Frolov, B. (2020). The Solution of the Cosmological Constant Problem: The Cosmological Constant Exponential Decrease in the Super-Early Universe. Universe, 6(12), 230. https://doi.org/10.3390/universe6120230