How Extra Symmetries Affect Solutions in General Relativity
Abstract
1. Introduction
2. Conharmonic Curvature Tensor
3. Application to Cosmology
4. Additional Symmetry Requirement
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Schwarzschild, K. Uber das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 1916, 7, 189–196. [Google Scholar]
- Kerr, R.P. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 1963, 11, 237–238. [Google Scholar] [CrossRef]
- Weyl, H. Zur Gravitationstheorie. Ann. Phys. 1917, 54, 117–145. [Google Scholar] [CrossRef]
- Weyl, H. Zur allgemeinen Relativitatstheorie. Physikalische Zeitschrift 1923, 24, 230–232. [Google Scholar]
- Friedmann, A. On the Curvature of Space. Zeischrift fur Physik 1922, 10, 377–386. [Google Scholar] [CrossRef]
- Lemaitre, G. Un Univers homogene de masse constante et de rayon croissant rendant compte de la vitesse radiale des nebuleuses extra-galactiques. Annales de la Societe Scientifique de Bruxelles 1927, A47, 49–59. [Google Scholar]
- Robertson, H.P. On Relativistic Cosmology. Phil. Mag. 1928, 5, 835–848. [Google Scholar] [CrossRef]
- Walker, A.G. Relative coordinates. Proc. R. Soc. Edinb. 1932, 52, 345–353. [Google Scholar] [CrossRef]
- Einstein, A. Uber Gravitationswellen. In Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin); Deutsche Akademie der Wissenschaften zu Berlin: Berlin, Germany, 1918; pp. 154–167. [Google Scholar]
- Krasinski, A. Inhomogeneous Cosmological Models; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Stephani, H. Uber Losungen der Einsteinschen Feldgleichungen, die sich in einen funfdimensionalen flachen Raum einbetten lassen. Commun. Math. Phys. 1967, 4, 137–142. [Google Scholar] [CrossRef]
- Stephani, H. Some perfect fluid solutions of Einstein’s field equations without symmetries. Class. Quantum Grav. 1987, 4, 125–136. [Google Scholar] [CrossRef]
- Szekeres, P. A Class of Inhomogeneous Cosmological Models. Commun. Math. Phys. 1975, 41, 55–64. [Google Scholar] [CrossRef]
- Szekeres, P. Quasispherical gravitational collapse. Phys. Rev. D 1975, 12, 2941. [Google Scholar] [CrossRef]
- Barnes, A. On shear free normal flows of a perfect fluid. Gen. Relativ. Grav. 1973, 2, 105–129. [Google Scholar] [CrossRef]
- Ma, R.; Pei, D. Some curvature properties on Lorentzian generalized Sasakian-space-forms. Adv. Math. Phys. 2019, 2019, 5136758. [Google Scholar] [CrossRef]
- Shaikh, A.A.; Kundu, H.; Sen, J. Curvature properties of the Vaidya metric. Ind. J. Math. 2019, 61, 41–59. [Google Scholar]
- Tekin, P.; Atkan, N. eta-Einstein nearly Kenmotsu manifolds. Asian Eur. J. Math. 2019, 12, 2040010. [Google Scholar] [CrossRef]
- Tripathi, G.N.; Rastogi, R. On the conharmonic curvature tensor of a N(k)-contact metric manifold. RAOPS 2019, 18, 45–55. [Google Scholar]
- Baishya, K.K.; Eyasmin, S. Generalized weakly Ricci-symmetric (CS)(4)-spacetimes. J. Geom. Phys. 2018, 132, 415–422. [Google Scholar] [CrossRef]
- Bilen, L.; Gezer, A. On metric connections with torsion on the cotangent bundle with modified Riemannian extension. J. Geom. 2018, 109, 6. [Google Scholar] [CrossRef]
- Singh, A.; Kishor, S. Some types of eta-Ricci solitons on Lorentzian para-sasakian manifolds. Facta Univ. Ser. Math. Inform. 2018, 33, 217–230. [Google Scholar]
- Prakasha, D.G.; Hadimani, B.S. On the conharmonic curvature tensor of Kenmotsu manifolds with generalized Tanaka-webster connection. Miskolc Math. Notes 2018, 19, 491–503. [Google Scholar] [CrossRef]
- Caliskan, N. On conharmonic curvature tensor of Sasakian structures on tangent bundles. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018, 67, 282–290. [Google Scholar]
- Yildiz, A. f-Kenmotsu manifolds with the Schouten-Van Kampen connection. Publ. Inst. Math. 2017, 102, 93–105. [Google Scholar] [CrossRef]
- De, U.C.; Velimirovic, L.; Mallick, S. On a type of spacetime. Int. J. Geom. Methods Mod. Phys. 2017, 14, 1750003. [Google Scholar] [CrossRef]
- Vanli, A.T.; Unal, I. Conformal, concircular, quasi-conformal and conharmonic flatness on normal complex contact metric manifolds. Int. J. Geom. Methods Mod. Phys. 2017, 14, 1750067. [Google Scholar] [CrossRef]
- Yildirim, H. On the geometry of complex (kappa, mu)-spaces. Math. Nach. 2016, 289, 2312–2322. [Google Scholar] [CrossRef]
- Canuto, V.; Adams, P.J.; Hsieh, T.S.-H.; Tsiang, E. Scale-covariant theory of gravitation and astrophysical applications. Phys. Rev. D 1977, 16, 1643–1663. [Google Scholar] [CrossRef]
- Brans, C.H.; Dicke, R.H. Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Ishii, Y. On conharmonic transfromations. Tensor 1957, 7, 73–80. [Google Scholar]
- Siddiqui, S.A. A Study of Curvature Tensors and Geometric Structures in General Relativity. Ph.D. Thesis, Aligarh Muslim University, Aligarh, India, 2009. [Google Scholar]
- Tiwari, R.K.; Singh, R. Role of conharmonic flatness in Friedmann cosmology. Astrophys. Space Sci. 2015, 357, 130. [Google Scholar] [CrossRef]
- Tiwari, R.K. Solution of conharmonic curvature tensor in General Relativity. J. Phys. Conf. Ser. 2016, 718, 032009. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Shrivastava, E. Conharmonically Flat Space with Variable Deceleration Parameter. Prespacetime J. 2017, 8, 808–817. [Google Scholar]
- Goyal, M.; Tiwari, R.K.; Pradhan, A. Decelerating to Accelerating FRW Universe with variable G and Λ in conharmonically flat space. New Astron. 2018, 66, 79. [Google Scholar] [CrossRef]
- Pradhan, A.; Dubey, V.C.; Sharma, U.K. A new class of holographic dark energy models in conharmonically flat space-time. New Astron. 2020, 77, 101360. [Google Scholar] [CrossRef]
- Kumar, R.; Srivastava, S.K. FRW-Cosmological Model for Conharmonically Flat Space Time. Int. J. Theor. Phys. 2013, 52, 589–596. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beesham, A.; Makhanya, F. How Extra Symmetries Affect Solutions in General Relativity. Universe 2020, 6, 170. https://doi.org/10.3390/universe6100170
Beesham A, Makhanya F. How Extra Symmetries Affect Solutions in General Relativity. Universe. 2020; 6(10):170. https://doi.org/10.3390/universe6100170
Chicago/Turabian StyleBeesham, Aroonkumar, and Fisokuhle Makhanya. 2020. "How Extra Symmetries Affect Solutions in General Relativity" Universe 6, no. 10: 170. https://doi.org/10.3390/universe6100170
APA StyleBeesham, A., & Makhanya, F. (2020). How Extra Symmetries Affect Solutions in General Relativity. Universe, 6(10), 170. https://doi.org/10.3390/universe6100170