Cosmogenic Activation in Double Beta Decay Experiments
Abstract
:1. Introduction
2. Cosmogenic Activation
2.1. Production Cross Sections
2.2. Cosmic Ray Flux
3. Germanium
3.1. Germanium DBD Experiments
3.2. Activation Studies
- First, estimates of production rates for germanium were presented in Refs. [92,93] from excitation functions computed with the spallation codes LAHET/ISABEL and the neutron spectra from [25,47], including a calculation for tritium; values shown in Table 1 and Table 2 correspond to those using the Hess spectrum [47]. Experimental estimates of the production rates were also derived from IGEX data taken in Canfranc and Homestake laboratories with exposed germanium detectors [92]. Agreement between calculations and measurements was found to be within a factor of 2.
- The SHIELD code was used for the excitation functions considered in the production rates of Co and Ge estimated in Ref. [44], including both neutron and proton contributions; as mentioned before in Section 2.2, protons produce ∼10% of the total rate.
- TALYS was used for the excitation functions considered in the estimate of production rates in Ref. [94]. The Gordon et al. parameterization was assumed for the neutron spectrum.
- A semiempirical code referred to as was used in the calculations in Ref. [95].
- In Ref. [43], production rates were calculated after a careful collection and evaluation of excitation functions from experimental data and different calculations (using YIELDX or from MENDL [96] and other libraries [97]). The computed deviation factors allowed the best selection for the cross sections: from HMS-ALICE and from YIELDX below and above 150 MeV, respectively. Neutron cosmic spectra from both [50] and [51] were considered, finding that estimates using the Gordon et al. spectrum were usually closer to experimental results.
- Cosmogenic activation for both natural and enriched germanium was studied in detail in Ref. [45], calculating many different production rates from neutrons, protons, and muons, using GEANT4 and ACTIVIA (results from this work presented in Table 1 and Table 2 correspond to neutrons and the Gordon et al. spectrum). Moreover, the expected counting rates from activation were assessed assuming certain exposure and cooling conditions and the effectiveness of shieldings for activation was analyzed too.
- In Ref. [91], another study considering natural and Ge depleted germanium detectors (with 86.6% of Ge) was carried out using in this case GEANT4 and the CRY library to generate particle showers including nucleons, muons, and others. Production rates were evaluated and compared for different locations and altitudes and the results validated against CDEX-1B detector data.
- The same approach based on GEANT4 and CRY considering neutrons, protons, muons, and gammas has been followed to optimize the design of a shielding for the transport and storage of high-purity germanium [98]. Six materials (iron, copper, lead, liquid nitrogen, polyethylene, and concrete) have been considered. Relevant production rates have been calculated for natural germanium at sea level with and without shield. Iron is confirmed to be an optimal shielding material, thanks to the lower production of secondary neutrons, but an optimized shielding structure using different materials is shown to be more effective, reducing by approximately one order of magnitude the production rates of the cosmogenic radioisotopes.
- Calculations using GEANT4 and CONUS software packages and ACTIVIA (with the default input neutron spectrum) were used to quantify production rates and estimate the corresponding counting rates in the Obelix HPGe detector (with mass of 3.19 kg), operating in the Modane underground laboratory in France [99]. Interactions of the secondary cosmic nucleons for several components, including the Ge crystal, were considered to quantify the production of several isotopes. In general, the underproduction observed with ACTIVIA can be due to the fact that the energy threshold in CONUS is lower than in ACTIVIA. The simulated gamma ray spectra obtained from the calculated production rates of cosmogenic radionuclides were in good agreement with measurements from the Obelix detector. Overall, it was found that the contribution of cosmogenics to the detector background decreased from 39% (after 10 months of cooling down) to 14% (after three years).
- In Ref. [28], production rates specifically for tritium were deduced for common target materials in dark matter detectors, including germanium, following a selection of excitation functions including mainly those from TENDL and HEAD-2009 libraries at low and high energies, respectively. The result for natural germanium is in very good agreement with the measured production rates by EDELWEISS [100] and CDMSlite [101]. As it can be seen from Table 1 and Table 2, the measured production rate by MAJORANA for enriched germanium is higher than for natural germanium; the explanation could be that cross sections increase with the mass number of the germanium isotope, following TENDL-2013 and HEAD-2009 data [28].
- A target made of natural germanium was irradiated at Los Alamos Neutron Science Center (LANSCE) with an 800 MeV proton beam and production cross sections were derived after the screening of the sample up to five years later with germanium detectors at Berkeley [102]. The results agree reasonably with the estimates from the Silberberg&Tsao formulas.
- In Ref. [103], a sample of enriched germanium was irradiated also at LANSCE but with a neutron beam with energies up to ∼700 MeV resembling the cosmic neutron spectrum. Gamma counting with germanium detectors was carried out at the Waste Isolation Pilot Plant (WIPP) after cooling to quantify the production of radioisotopes. Cross sections were also calculated using the CEM03 code, finding in general overestimated values. Production rates were deduced from the measurements taking into consideration the Gordon et al. neutron spectrum.
- Neutron irradiation on enriched germanium allowed for measuring cross sections for the radiative capture of neutrons on Ge and Ge for thermal energies [104,105] and for energies of a few MeV [106]. These results are particularly relevant for DBD experiments. In addition to the de-excitation gamma emissions from the generated nucleus following the neutron capture, the nucleus can be radioactive and decay.
- A detailed analysis of background data taken by the EDELWEISS experiment for a long time and using different germanium detectors with a different, well-known exposure history to cosmic rays allowed for deriving production rates of several radioisotopes induced in natural germanium, including, for the first time, tritium [100]. Low energy data were fitted considering a continuum and peaks at the electron binding energies for K, L shells, produced by induced nuclei decaying by EC. The obtained production rates were compared with ACTIVIA calculations using the Gordon et al. parameterization for the neutron spectrum.
- Measurements of the production rates of tritium and other cosmogenic isotopes were carried out also with the CDMS low ionization threshold experiment (CDMSlite) [101], from the analysis of data from the second run. The measured spectrum was modeled and fit considering contributions from different isotopes including tritium. Thanks to the knowledge of the well documented exposure history of the detector, production rates at sea level could be derived. In addition, estimates of the rates using TALYS and INCL++-ABLA codes below and above 100 MeV, respectively, were presented in Ref. [101], using the Gordon et al. neutron spectrum and taking into account the contribution by protons too.
- When processing enriched germanium detectors for the MAJORANA DEMONSTRATOR, a lot of care was taken to minimize cosmogenic activation. As described in Ref. [79], whenever possible, the material was shielded or stored underground to suppress specially the production of Ge, as this isotope cannot be eliminated by zone refinement and crystal growth. It is estimated that the steel shield used during transportation from Russia to the U.S. reduced the Ge formation by a factor of ten. In the data of the MAJORANA DEMONSTRATOR, a factor 30 reduction for the Ga X-ray peak (following the EC decay of Ge) has been measured in enriched crystals over that in natural germanium detectors not shielded; a similar reduction could be expected at higher energies for the emissions of Ge and Co [79]. Tritium has been observed too in the detectors of the MAJORANA DEMONSTRATOR, having a well-known exposure history. Production rates of different radionuclides in enriched germanium have been reported [107], assuming as in other cases for the fitting model a flat background, different X-ray peaks, and the tritium beta spectrum.
- The effect of cosmogenic isotopes in germanium was computed in the background model developed for MAJORANA detectors [112]. It is shown that Ge gives always multiple-site events, which can be efficiently rejected through Pulse Shape Analysis (PSA). In addition, the low threshold of their detectors allows a further rejection applying time-correlation cuts with the Ge K,L-shell X-rays.
- Following detailed analysis of the background [113,114], the effect of Co and Ge was evaluated for GERDA concluding that they can be neglected when modeling Gerda Phase II data. The BEGe detectors were moved underground whenever possible during the fabrication and characterization and periods above ground were tracked. The expected impurities for Phase II data would produce 0.03 counts per day from Ge and 0.1 counts per day due to Co. The contribution for the detectors coming from the HM and IGEX experiments is estimated to be even smaller thanks to the long storage underground. According to simulations, the background contributions in the region of the transition energy are less than 10 counts keV kg y in both cases.
- Based on the validated codes against CDEX-1B detector data, a prediction was made on the background level from cosmogenics for the ton-scale CDEX experiment [91], being of the order of 10 counts keV kg d around 2 MeV assuming reasonable times for exposure on surface and cooling at the Jinping underground laboratory. For dark matter searches, it is considered that crystal growth and detector manufacture should inevitably be made underground due to tritium and X-ray emissions. In germanium detectors having efficient discrimination between nuclear and electronic recoils, like SuperCDMS, it helps to reduce the effect of cosmogenics [45].
4. Tellurium
4.1. Tellurium DBD Experiments
4.2. Activation Studies
5. Xenon
5.1. Xenon DBD Experiments
5.2. Activation Studies
6. Other DBD Target Materials
7. Other Non-DBD Target Materials
7.1. Copper
- The study in Ref. [43] (obtaining production rates from selected excitation functions according to deviation factors) applied to germanium (see Section 3) was also made for copper. For this material, rates were calculated below/above 100 MeV using, respectively, the MENDL2N library and YIELDX calculations combined with experimental data. Results shown in Table 6 were obtained considering the Gordon et al. spectrum.
- A first direct measurement of saturation activities was presented in Ref. [202]. The exposure to cosmic rays of the copper samples (total mass 125 kg) provided by Norddeutsche Affinerie (now Aurubis, in Germany) took place for 270 days at Gran Sasso (altitude 985 m). A long (103 days) gamma screening was made at LNGS using the GeMPI detector. Cobalt isotopes gave the highest yields, finding for Co an activity much higher than the initial one. The production rates from this work presented in Table 6 have been derived for sea level by taking into account an altitude correction factor of 2.1 (estimated as in Ref. [50]).
- Together with xenon (see Section 5), copper was analyzed in the same way too in the study of Ref. [184]. Several OFHC copper samples (provided by Norddeutsche Affinerie, from a batch used in the construction of some components of XENON100) with a total mass of 10.35 kg were exposed at the same place that the xenon sample also for 345 day. Germanium gamma analysis at LNGS, before and after activation, was made using the Gator detector to quantify saturation activities. Table 6 shows the results from the measurements as well as those from ACTIVIA and COSMO estimates. For the XENON1T detector, a complete material radioassay was made; activities of Mn and Co were quantified from HPGe spectrometers in different copper samples, finding variation from batch to batch, depending on the storage and shipment of the material [203].
- Activation in copper used for shielding was studied in Ref. [204]. A sample (with mass of 18 kg) was exposed to cosmic rays for one year at an altitude of 250 m and copper bricks for 41 days. Following the germanium measurements performed at LSC, the derived activities for Mn and different cobalt radioisotopes are in good agreement with predictions from production rates.
7.2. Lead
7.3. Stainless Steel
7.4. Titanium
7.5. Aluminum
7.6. Argon
7.7. Other Materials
- Cosmogenic isotopes have been identified in NaI(Tl) detectors used in DAMA/LIBRA [221], COSINE [220,222] and ANAIS [223,224] experiments. Specific studies have been made to quantify production rates of several nuclides like some iodine and tellurium isotopes from data taken in ANAIS [225,226] and COSINE [227] and H and Na could have a relevant impact in the very low energy region.
- Cosmogenic activation was very relevant in the scintillating bolometers made of CaWO used in the CRESST-II experiment [228], as distinct gamma lines were observed from activation of W isotopes. The rate of production of tritium in this compound was computed from TALYS [94] too. Cosmogenic activity, as thet from other origin, was measured in Ref. [229] for several inorganic scintillators, including CaWO.
- Silicon is a widely used detector material because it is available with very high purity and the eV-scale energy thresholds provide sensitivity to low mass dark matter particles. In addition, SiPMs are being considered for several dark matter and also DBD experiments. Tritium production is very relevant in silicon detectors; it has been computed for CDMS [101] and it is considered, together with Si, a dominant contribution in CCDs for DAMIC [230] and in DEPFET detectors [231]. Calculations of tritium yields are also available in [46] and following the approach applied in Ref. [28] for other targets. Indeed, production rates of H together with Be and Na have been recently obtained through controlled irradiation of silicon CCDs (from the DAMIC experiment) and wafers with the neutron beam resembling the cosmic neutron spectrum at LANSCE, followed by measurements from the CCDs in Chicago and screening of wafers with a BEGe detector at PNNL [232]. Complementing the results from the neutron irradiation with the estimates of activation for cosmic-ray particles other than neutrons (protons, photons and muons), total sea-level production rates have been derived too. Results for all production rates in silicon are summarized in Table 12.
8. Summary and Conclusions
Funding
Conflicts of Interest
References
- Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.; Lugovsky, K.S.; Pianori, E.; Robinson, D.J.; et al. The Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Klapdor-Kleingrothaus, H.V. Seventy Years of Double Beta Decay. From Nuclear Physics to Beyond-Standard-Model Particle Physics; World Scientific: Singapore, 2010. [Google Scholar]
- Faessler, A.; Simkovic, F. Double Beta Decay. J. Phys. G 1998, 24, 2139. [Google Scholar] [CrossRef]
- Suhonen, J.; Civitarese, O. Weak-interaction and nuclear-structure aspects of nuclear double beta decay. Phys. Rep. 1998, 300, 123. [Google Scholar] [CrossRef]
- Elliot, S.R.; Vogel, P. Double beta decay. Ann. Rev. Nucl. Part. Sci. 2002, 52, 115. [Google Scholar] [CrossRef] [Green Version]
- Ejiri, H. Double Beta Decays and Neutrino Masses. J. Phys. Soc. Jpn. 2005, 74, 2101. [Google Scholar] [CrossRef] [Green Version]
- Avignone, F.T., III; Elliot, S.R.; Engel, J. Double beta decay, Majorana neutrinos, and neutrino mass. Rev. Mod. Phys. 2008, 80, 481. [Google Scholar] [CrossRef] [Green Version]
- Vergados, J.D.; Ejiri, H.; Simkovic, F. Theory of neutrinoless double beta decay. Rep. Prog. Phys. 2012, 75, 106301. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, A.; Poves, A. Neutrinoless double-beta decay. Adv. High Energy Phys. 2012, 2012, 857016. [Google Scholar] [CrossRef]
- Gómez-Cadenas, J.J.; Martín-Albo, J.; Mezzetto, M.; Monrabal, F.; Sorel, M. The search for neutrinoless double beta decay. Riv. Nuovo Cim. 2012, 35, 29. [Google Scholar]
- Cremonesi, O.; Pavan, M. Challenges in Double Beta Decay. Adv. High Energy Phys. 2014, 2014, 951432. [Google Scholar] [CrossRef]
- Dell’Oro, S.; Marcocci, S.; Viel, M.; Vissani, F. Neutrinoless double beta decay: 2015 review. Adv. High Energy Phys. 2016, 2016, 2162659. [Google Scholar] [CrossRef] [Green Version]
- Dolinski, M.J.; Poon, A.W.P.; Rodejohann, W. Neutrinoless Double-Beta Decay: Status and Prospects. Ann. Rev. Nucl. Part. Sci. 2019, 69, 219. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, A.; Gomez Cadenas, J.J.; Pascoli, S.; Previtali, E.; Saakyan, R.; Schaeffner, K.; Schoenert, S. Double Beta Decay APPEC Committee Report. arXiv 2019, arXiv:1910.04688 [hep-ex]. [Google Scholar]
- Saakyan, R. Two-Neutrino Double-Beta Decay. Ann. Rev. Nucl. Part. Sci. 2013, 63, 503. [Google Scholar] [CrossRef]
- Barabash, A.S. Average and recommended half-life values for two-neutrino double beta decay: Upgrade-2019. AIP Conf. Proc. 2019, 2165, 020002. [Google Scholar]
- Blaum, K.; Eliseev, S.; Danevich, F.A.; Tretyak, V.I.; Kovalenko, S.; Krivoruchenko, M.I.; Novikov, Y.N.; Suhonen, J. Neutrinoless Double-Electron Capture. Accepted for publication in Rev. Mod. Phys. arXiv 2007, arXiv:2007.14908 [hep-ph]. [Google Scholar]
- Barabash, A.S. Double beta decay to the excited states: Review. Aip Conf. Proc. 2017, 1894, 020002. [Google Scholar]
- Heusser, G. Low-Radioactivity Background Techniques. Annu. Rev. Nucl. Part. Sci. 1995, 45, 543. [Google Scholar] [CrossRef]
- Formaggio, J.A.; Martoff, C.J. Backgrounds to sensitive experiments underground. Annu. Rev. Nucl. Part. Sci. 2004, 54, 361. [Google Scholar] [CrossRef] [Green Version]
- Cebrián, S. Cosmogenic activation of materials. AIP Conf. Proc. 2013, 1549, 136. [Google Scholar] [CrossRef] [Green Version]
- Kudryavtsev, V. Cosmogenic activation: Recent results. AIP Conf. Proc. 2018, 1921, 090004. [Google Scholar]
- Cebrián, S. Cosmogenic activation of materials. Int. J. Mod. Phys. A 2017, 32, 1743006. [Google Scholar] [CrossRef] [Green Version]
- Gondolo, P. Wanted! Nuclear Data for Dark Matter Astrophysics. Nucl. Data Sheet 2014, 120, 175. [Google Scholar] [CrossRef] [Green Version]
- Lal, D.; Peters, B. Cosmic Ray Produced Radioactivity on the Earth; Springer: Berlin/Heidelberg, Germany, 1967. [Google Scholar]
- Beer, J.; McCracken, K.; von Steiger, R. Cosmogenic Radionuclides. Theory and Applications in the Terrestrial and Space Environments; Springer: Cham, Switzerland, 2012. [Google Scholar]
- Decay Data Evaluation Project. Available online: http://www.nucleide.org/DDEP.htm (accessed on 24 September 2020).
- Amaré, J.; Castel, J.; Cebrian, S.; Coarasa, I.; Cuesta, C.; Dafni, T.; Galan, J.; Garcia, E.; Garza, J.G.; Iguaz, F.J.; et al. Cosmogenic production of tritium in dark matter detectors. Astropart. Phys. 2018, 97, 96. [Google Scholar] [CrossRef] [Green Version]
- Experimental Nuclear Reaction Data (EXFOR). Available online: http://www-nds.iaea.org/exfor/exfor.htm (accessed on 24 September 2020).
- Silberberg, R.; Tsao, C.H. Partial Cross-Sections in High-Energy Nuclear Reactions, and Astrophysical Applications. I. Targets With z≤28. Astrophys. J. Suppl. Ser. 1973, 25, 315. [Google Scholar] [CrossRef]
- Silberberg, R.; Tsao, C.H. Cross sections for (p,xn) reactions, and astrophysical applications. Astrophys. J. Suppl. Ser. 1977, 35, 129. [Google Scholar] [CrossRef]
- Silberberg, R.; Tsao, C.H. Improved cross section calculations for astrophysical applications. Astrophys. J. Suppl. Ser. 1985, 58, 873. [Google Scholar] [CrossRef]
- Silberberg, R.; Tsao, C.H. Spallation processes and nuclear interaction products of cosmic rays. Phys. Rep. 1990, 191, 351. [Google Scholar] [CrossRef]
- Silberberg, R.; Tsao, C.H. Updated Partial Cross Sections of Proton-Nucleus Reactions. Astrophys. J. 1998, 501, 911. [Google Scholar] [CrossRef] [Green Version]
- Martoff, C.J.; Lewin, P.D. COSMO- a program to estimate spallation radioactivity produced in a pure substance by exposure to cosmic-radiation on the Earth. Comput. Phys. Commun. 1992, 72, 96. [Google Scholar] [CrossRef]
- Back, J.J.; Ramachers, Y.A. ACTIVIA: Calculation of isotope production cross-sections and yields. Nucl. Instrum. Meth. A 2008, 586, 286. [Google Scholar] [CrossRef] [Green Version]
- David, J.C. Spallation reactions: A successful interplay between modeling and applications. Eur. Phys. J. A 2015, 51, 68. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Arce, P.; Asai, M.; Aso, T.; Bagli, E.; Bagulya, A.; Banerjee, S.; Barrand, G.; et al. Recent developments in Geant4. Nucl. Instrum. Meth. A 2016, 835, 186. [Google Scholar] [CrossRef]
- Böhlen, T.T.; Cerutti, F.; Chin, M.P.W.; Fassò, A.; Ferrari, A.; Ortega, P.G.; Mairani, A.; Sala, P.R.; Smirnov, G.; Vlachoudis, V. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nuclear Data Sheets 2014, 120, 211. [Google Scholar] [CrossRef] [Green Version]
- Monte Carlo N-Particle Code. Available online: https://mcnp.lanl.gov/ (accessed on 24 September 2020).
- Koning, A.J.; Rochman, D. Modern Nuclear Data Evaluation With The TALYS Code System. Nuclear Data Sheets 2012, 113, 2841. [Google Scholar] [CrossRef]
- Korovin, Y.A.; Natalenko, A.A.; Stankovskiy, A.Yu.; Mashnik, S.G.; Konobeyev, A.Yu. High Energy Activation Data library (HEAD-2009). Nucl. Instrum. Meth. A 2010, 624, 20. [Google Scholar] [CrossRef]
- Cebrián, S.; Gómez, H.; Luzón, G.; Morales, J.; Tomás, A.; Villar, J.A. Cosmogenic activation in germanium and copper for rare event searches. Astropart. Phys. 2010, 33, 316. [Google Scholar] [CrossRef]
- Barabanov, I.; Belogurov, S.; Bezrukov, L.; Denisov, A.; Kornoukhov, V.; Sobolevsky, N. Cosmogenic activation of germanium and its reduction for low background experiments. Nucl. Instrum. Meth. B 2006, 251, 115. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.Z.; Mei, D.M.; Zhang, C. Cosmogenic Activation of Germanium Used for Tonne-Scale Rare Event Search Experiments. Astropart. Phys. 2017, 96, 24. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Mei, D.M.; Kudryavtsev, V.A.; Fiorucci, S. Cosmogenic activation of materials used in rare event search experiments. Astropart. Phys. 2016, 84, 62. [Google Scholar] [CrossRef] [Green Version]
- Hess, W.N.; Patterson, H.W.; Wallace, R. Cosmic-ray neutron energy spectrum. Phys. Rev. 1959, 116, 449. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, T.W.; Chandler, K.C.; Barish, J. Calculations of neutron flux spectra induced in the Earth’s atmosphere by galactic cosmic rays. J. Geophys. Res. 1973, 78, 2715. [Google Scholar] [CrossRef] [Green Version]
- Gehrels, N. Instrumental background in balloon-borne gamma-ray spectrometers and techniques for its reduction. Nucl. Instr. Meth. A 1985, 239, 324. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, J.F. Terrestrial cosmic ray intensities. IBM J. Res. Dev. 1998, 42, 117. [Google Scholar] [CrossRef]
- Gordon, M.S.; Goldhagen, P.; Rodbell, K.P.; Zabel, T.H.; Tang, H.H.K.; Clem, J.M.; Bailey, P. Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground. IEEE Trans. Nucl. Sci. 2004, 51, 3427. [Google Scholar] [CrossRef]
- Soft-error Testing Resources Website. Available online: http://seutest.com/cgi-bin/FluxCalculator.cgi (accessed on 24 September 2020).
- Hagmann, C.; Lange, D.; Wright, D. Cosmic-ray shower generator (CRY) for Monte Carlo transport codes. In Proceedings of the 2007 IEEE Nuclear Science Symposium Conference Record, Honolulu, HI, USA, 26 October–3 November 2007; p. 1143. [Google Scholar]
- Sato, T. EXcel-Based Program for Calculating Atmospheric Cosmic-Ray Spectrum (EXPACS) v4.04. Available online: https://phits.jaea.go.jp/expacs/ (accessed on 24 September 2020).
- Masarik, J.; Beer, J. Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. J. Geophys. Res. 1999, 104, 12099. [Google Scholar] [CrossRef] [Green Version]
- Morales, A.; Morales, J. The neutrinoless double beta decay: The case for Ge detectors. Nucl. Phys. B (Proc. Suppl.) 2003, 114, 141. [Google Scholar] [CrossRef] [Green Version]
- Mount, B.J.; Redshaw, M.; Myers, E. Double-β-decay Q values of 74Se and 76Ge. Phys. Rev. C 2010, 81, 032501(R). [Google Scholar] [CrossRef]
- González, D.; Morales, J.; Cebrian, S.; Garcia, E.; Irastorza, I.G.; Morales, A.; Ortiz de Solorzano, A.; Puimedon, J.; Sarsa, M.L.; Villar, J.A.; et al. Pulse Shape Discrimination in the IGEX experiment. Nucl. Instrum. Meth. A 2003, 515, 634. [Google Scholar] [CrossRef] [Green Version]
- Majorovits, B.; Klapdor-Kleingrothaus, H.V. Digital pulse shape analysis by neural networks for the Heidelberg-Moscow-Double-Beta-Decay-Experiment. Eur. Phys. J. A 1999, 6, 463. [Google Scholar] [CrossRef] [Green Version]
- Klapdor-Kleingrothaus, H.V.; Krivosheina, I.V.; Titkova, I.V. Theoretical investigation of the dependence of double beta decay tracks in a Ge detector on particle and nuclear physics parameters and separation from gamma ray events. Phys. Rev. D 2006, 73, 013010. [Google Scholar] [CrossRef]
- Aalseth, C.E.; Avignone, F.T.; Brodzinski, R.L.; Cebrian, S.; Garcia, E.; Gonzalez, D.; Hensley, W.K.; Irastorza, I.G.; Kirpichnikov, I.V.; Klimenko, A.A.; et al. IGEX 76Ge neutrinoless double-beta decay experiment: Prospects for next generation experiments. Phys. Rev. D 2002, 65, 092007. [Google Scholar] [CrossRef] [Green Version]
- Cebrián, S. Double beta decay experiments at Canfranc Underground Laboratory. Prog. Part. Nucl. Phys. 2020, 114, 103807. [Google Scholar] [CrossRef]
- Gunther, M.; Hellmig, J.; Heusser, G.; Hirsch, M.; Klapdor-Kleingrothaus, H.V.; Maier, B.; Päs, H.; Petry, F.; Ramachers, Y.; Strecker, H.; et al. Heidelberg-Moscow ββ experiment with 76Ge: Full setup with five detectors. Phys. Rev. D 1997, 55, 54. [Google Scholar] [CrossRef]
- Baudis, L.; Dietz, A.; Heusser, G.; Klapdor-Kleingrothaus, H.V.; Krivosheina, I.V.; Kolb, St.; Majorovits, B.; Melnikov, V.F.; Päs, H.; Schwamm, F.; et al. Limits on the Majorana neutrino mass in the 0.1 eV range. Phys. Rev. Lett. 1999, 83, 41. [Google Scholar] [CrossRef] [Green Version]
- Klapdor-Kleingrothaus, H.V.; Baudis, L.; Dietz, A.; Heusser, G.; Krivosheina, I.V.; Majorovits, B.; Paes, H.; Strecker, H.; Alexeev, V.; Balysh, A.; et al. Latest results from the Heidelberg-Moscow Double-Beta Decay Experiment. Eur. Phys. J. A 2001, 12, 147. [Google Scholar] [CrossRef] [Green Version]
- Klapdor-Kleingrothaus, H.V.; Krivosheina, I.V. The evidence for the observation of 0νββ decay: The identification of 0νββ events from the full spectra. Mod. Phys. Lett. A 2006, 21, 1547. [Google Scholar] [CrossRef]
- Barbeau, P.S.; Collar, J.I.; Tench, O. Large-mass ultralow noise germanium detectors: Performance and applications in neutrino and astroparticle physics. J. Cosmol. Astropart. Phys. 2007, 09, 009. [Google Scholar] [CrossRef]
- Holl, P.; Hauertmann, L.; Majorovits, B.; Schulz, O.; Schuster, M.; Zsigmond, A.J. Deep learning based pulse shape discrimination for germanium detectors. Eur. Phys. J. C 2019, 79, 450. [Google Scholar] [CrossRef]
- Alvis, S.I.; Arnquist, I.J.; Avignone, F.T.; Barabash, A.S.; Barton, C.J.; Basu, V.; Bertrand, F.E.; Bos, B.; Buuck, M.; Caldwell, T.S.; et al. Multi-site event discrimination for the MAJORANA DEMONSTRATOR. Phys. Rev. C 2019, 99, 065501. [Google Scholar] [CrossRef] [Green Version]
- Agostini, M.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; Bezrukov, L.; et al. Probing Majorana neutrinos with double-β decay. Science 2019, 365, 1445–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agostini, M.; on Behalf of the GERDA Collaboration. Results on neutrinoless double beta decay of 76Ge from GERDA Phase I. Phys. Rev. Lett. 2013, 111, 122503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agostini, M.; Allardt, M.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N. Results on ββ decay with emission of two neutrinos or Majorons in 76Ge from GERDA Phase I. Eur. Phys. J. C 2015, 75, 41612. [Google Scholar] [CrossRef] [Green Version]
- GERDA, C.; Agostini, M.; Allardt, M.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; et al. 2νββ decay of 76Ge into excited states with GERDA Phase I. J. Phys. G: Nucl. Part. Phys. 2015, 42, 115201. [Google Scholar] [CrossRef] [Green Version]
- Agostini, M.; Allardt, M.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; et al. Limit on the Radiative Neutrinoless Double Electron Capture of 36Ar from GERDA Phase I. Eur. Phys. J. C 2016, 76, 652. [Google Scholar] [CrossRef] [Green Version]
- Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A.-M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; et al. Production, characterization and operation of 76Ge enriched BEGe detectors in GERDA. Eur. Phys. J. C 2015, 75, 39. [Google Scholar] [CrossRef] [Green Version]
- Agostini, M.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S.T. Upgrade for Phase II of the GERDA Experiment. Eur. Phys. J. C 2018, 78, 388. [Google Scholar] [CrossRef] [Green Version]
- Agostini, M.; Allardt, M.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S.T.; et al. Background free search for neutrinoless double beta decay with GERDA Phase II. Nature 2017, 544, 47. [Google Scholar]
- Agostini, M; Araujo, G.R.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; et al. Final Results of GERDA on the Search for Neutrinoless Double-β Decay. arXiv 2020, arXiv:2009.06079 [nucl-ex]. [Google Scholar]
- Abgrall, N.; Arnquist, I.J.; Avignone, F.T., III; Barabash, A.S.; Bertrand, F.E.; Bradley, A.W.; Brudanin, V.; Busch, M.; Buuck, M.; Caja, J.; et al. The Processing of Enriched Germanium for the MAJORANA DEMONSTRATOR and R&D for a Possible Future Ton-Scale Ge-76 Double-Beta Decay Experiment. Nucl. Instrum. Meth. A 2018, 77, 314. [Google Scholar]
- Alvis, S.I. Search for Neutrinoless Double-Beta Decay in 76Ge with 26 kg-yr of Exposure from the MAJORANA DEMONSTRATOR. Phys. Rev. C 2019, 100, 025501. [Google Scholar] [CrossRef] [Green Version]
- Arnquist, I.J.; Avignone, F.T., III; Barabash, A.S.; Barton, C.J.; Bertrand, F.E.; Blalock, E.; Bos, B.; Busch, M.; Buuck, M.; Caldwell, T.S.; et al. The Majorana Demonstrator’s Search for Double-Beta Decay of 76Ge to Excited States of 76Se. arXiv 2008, arXiv:2008.06014 [nucl-ex]. [Google Scholar]
- Abgrall, N.; Arnquist, I.J.; Avignone, F.T.; Barabash, A.S.; Bertrand, F.E.; Bradley, A.W.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, T.S.; et al. New limits on bosonic dark matter, solar axions, Pauli Exclusion Principle violation, and electron decay from the low-energy spectrum of the MAJORANA DEMONSTRATOR. Phys. Rev. Lett. 2017, 118, 161801. [Google Scholar] [CrossRef] [Green Version]
- Alvis, S.I.; Arnquist, I.J.; Avignone, F.T.; Barabash, A.S.; Barton, C.J.; Bertrand, F.E.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, T.S.; et al. First, Limit on the direct detection of Lightly Ionizing Particles for Electric Charge as Low as e/1000 with the Majorana Demonstrator. Phys. Rev. Lett. 2018, 120, 211804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvis, S.I.; Arnquist, I.J.; Avignone, F.T.; Barabash, A.S.; Barton, C.J.; Basu, V.; Bertrand, F.E.; Bos, B.; Brudanin, V.; Busch, M.; et al. Search for Tri-Nucleon Decay in the Majorana Demonstrator. Phys. Rev. D 2019, 99, 072004. [Google Scholar] [CrossRef] [Green Version]
- D’Andrea, V. for the LEGEND Collaboration. Neutrinoless Double Beta Decay Search with 76Ge: Status and Prospect with LEGEND. arXiv 2019, arXiv:1905.06572 [hep-ex]. [Google Scholar]
- Aalseth, C.E.; Barbeau, P.S.; Bowden, N.S.; Cabrera-Palmer, B.; Colaresi, J.; Collar, J.I.; Dazeley, S.; de Lurgio, P.; Fast, J.E.; Fields, N.; et al. Results from a Search for Light-Mass Dark Matter with a p-Type Point Contact Germanium Detector. Phys. Rev. Lett. 2011, 106, 131301. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.T.; Li, H.B.; Yue, Q.; Ma, H.; Kang, K.J.; Li, Y.J.; Wong, H.T.; Agartioglu, M.; An, H.P.; Chang, J.P.; et al. Light WIMPs Search by Annual Modulation Analysis with a Point-Contact Germanium Detector at the China Jinping Underground Laboratory. Phys. Rev. Lett. 2019, 123, 221301. [Google Scholar] [CrossRef] [Green Version]
- Agnese, R.; Aralis, T.; Aramaki, T.; Arnquist, I.J.; Azadbakht, E.; Baker, W.; Banik, S.; Barker, D.; Bauer, D.A.; Binder, T.; et al. Search for Low-Mass Dark Matter with CDMSlite Using a Profile Likelihood Fit. Phys. Rev. D 2019, 99, 062001. [Google Scholar] [CrossRef] [Green Version]
- Maisonobe, R. (EDELWEISS Collaboration). Status and Prospects of the EDELWEISS-III Direct WIMP Search Experiment. J. Low Temp. Phys. 2018, 193, 1129. [Google Scholar] [CrossRef]
- Cebrián, S.; Amare, J.; Beltran, B.; Carmona, J.M.; Garcia, E.; Irastorza, I.G.; Luzon, G.; Martinez, M.; Morales, A.; Morales, J.; et al. Status of the non-cryogenic dark matter searches at the Canfranc Underground Laboratory, Nucl. Phys. B (Proc. Suppl.) 2005, 138, 147. [Google Scholar] [CrossRef]
- Ma, J.L.; Yue, Q.; Lin, S.T.; Wong, H.T.; Hu, J.W.; Jia, L.P.; Jiang, H.; Li, J.; Liu, S.K.; Liu, Z.Z.; et al. Study on cosmogenic activation in germanium detectors for future ton-scale CDEX experiment. Sci.-China-Phys. Mech. Astron. 2019, 62, 011011. [Google Scholar] [CrossRef] [Green Version]
- Avignone, F.T.; Brodzinski, R.L.; Collar, J.I.; Miley, H.S.; Garcia, E.; Morales, A.; Morales, J.; Nuñez-Lagos, R.; Reeves, J.H.; Saenz, C.; et al. A. Theoretical and experimental investigation of cosmogenic radioisotope production in germanium. Nucl. Phys. B (Proc. Suppl.) 1992, 28A, 280. [Google Scholar] [CrossRef]
- Miley, H.; Avignone, F.T.; Brodzinski, R.L.; Hensley, W.K.; Reeves, J.H. New techniques and results in 76Ge double-beta decay. Nucl. Phys. B (Proc. Suppl.) 1992, 28A, 212. [Google Scholar] [CrossRef]
- Mei, D.M.; Yin, Z.B.; Elliott, S.R. Cosmogenic production as a background in searching for rare physics processes. Astropart. Phys. 2009, 31, 417. [Google Scholar] [CrossRef] [Green Version]
- Klapdor-Kleingrothaus, H.V.; Baudis, L.; Dietz, A.; Heusser, G.; Krivosheina, I.; Majorovits, B.; Strecker, H. GENIUS-TF: A test facility for the GENIUS project. Nucl. Instrum. Meth. A 2002, 481, 149. [Google Scholar] [CrossRef] [Green Version]
- MENDL-2. Available online: http://www-nds.iaea.org/publications/iaea-nds/iaea-nds-0136.htm (accessed on 24 September 2020).
- Van Riper, K.A.; Mashnik, S.G.; Wilson, W.B. A computer study of radionuclide production in high power accelerators for medical and industrial applications. Nucl. Instrum. Meth. A 2001, 463, 576. [Google Scholar] [CrossRef]
- Yan, Y.L.; Zhong, W.X.; Lin, S.T.; Zhu, J.J.; Qiao, C.K.; Zhang, L.; Liu, Y.; Yue, Q.; Xing, H.Y.; Liu, S.K. Study on cosmogenic radioactive production in germanium as a background for future rare event search experiments. Nucl. Sci. Tech. 2020, 31, 55. [Google Scholar] [CrossRef]
- Breier, R.; Masarik, J.; Palušová, V.; Povinec, P.P. Monte-Carlo calculation of production rates of cosmogenic radionuclides in a HPGe detector operating in the Modane underground laboratory. Nucl. Instrum. Meth. A 2020, 978, 164355. [Google Scholar] [CrossRef]
- Armengaud, E.; Arnaud, Q.; Augier, C.; Benoît, A.; Bergé, L.; Billard, J.; Blümer, J.; de Boissière, T.; Broniatowski, A.; Camus, P.; et al. Measurement of the cosmogenic activation of germanium detectors in EDELWEISS-III. Astropart. Phys. 2017, 91, 51. [Google Scholar] [CrossRef]
- Agnese, R.; Aralis, T.; Aramaki, T.; Arnquist, I.; Azadbakht, E.; Baker, W.; Banik, S.; Barker, D.; Bauer, D.; Binder, T.; et al. Production Rate Measurement of Tritium and Other Cosmogenic Isotopes in Germanium with CDMSlite. Astropart. Phys. 2019, 104, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Norman, E.B.; Smith, A.R.; Barghouty, A.F.; Haight, R.C.; Wender, S.A. Cosmic-Ray Production of Co-60 in Double Beta-Decay Source Materials. Nucl. Phys. B (Proc. Suppl.) 2005, 143, 508. [Google Scholar] [CrossRef] [Green Version]
- Elliott, S.R.; Guiseppe, V.E.; LaRoque, B.H.; Johnson, R.A.; Mashnik, S.G. Fast-neutron activation of long-lived isotopes in enriched Ge. Phys. Rev. C 2010, 82, 054610. [Google Scholar] [CrossRef] [Green Version]
- Meierhofer, G.; Kudejova, P.; Canella, L.; Grabmayr, P.; Jochum, J.; Jolie, J. Thermal neutron capture cross-section of 76Ge. Eur. Phys. J. A 2009, 40, 61. [Google Scholar] [CrossRef]
- Meierhofer, G.; Grabmayr, P.; Jochum, J.; Kudejova, P.; Canella, L.; Jolie, J. Thermal neutron capture cross-section of 74Ge. Phys. Rev. C 2010, 81, 027603. [Google Scholar] [CrossRef]
- Bhike, M.; Fallin, B.; Krishichayan; Tornow, W. Measurement of the neutron-capture cross section of 76Ge and 74Ge below 15 MeV and its relevance to 0νββ decay searches of 76Ge. Phys. Lett. B 2015, 741, 150. [Google Scholar] [CrossRef] [Green Version]
- White, B.; Majorana Collaboration. Cosmogenic Induced Backgrounds for the MAJORANA DEMONSTRATOR Experiment. Presentation at Low Radioactivity Techniques 2017 Workshop, Seoul, Korea. Available online: http://indico.ibs.re.kr/event/46/session/7/contribution/13 (accessed on 24 September 2020).
- The Lundl/LBNL Nuclear Data Search. Available online: http://nucleardata.nuclear.lu.se/toi (accessed on 24 September 2020).
- Pandola, L.; Bauer, M.; Kröninger, K.; Liu, X.; Tomei, C.; Belogurov, S.; de Franco, D.; Klimenko, A.; Knapp, M. Monte Carlo Evaluation of the muon-induced background in the GERDA double beta decay experiment. Nucl. Instrum. Meth. A 2007, 570, 149. [Google Scholar] [CrossRef]
- Wiesinger, C.; Pandola, L.; Schönert, S. Virtual depth by active background suppression: Revisiting the cosmic muon induced background of GERDA Phase II. Eur. Phys. J. C 2018, 78, 597. [Google Scholar] [CrossRef]
- Su, J.; Zeng, Z.; Ma, H.; Yue, Q.; Cheng, J.; Li, J. A background simulation method for cosmogenic nuclides inside HPGe detectors for rare event experiments. Nucl. Instrum. Meth. A 2014, 763, 364. [Google Scholar] [CrossRef] [Green Version]
- Cuesta, C.; Abgrall, N.; Aguayo, E.; Avignone, F.; Barabash, A.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; et al. Background Model for the Majorana Demonstrator. Phys. Procedia 2015, 61, 821–827. [Google Scholar] [CrossRef] [Green Version]
- Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Barnabe Heider, M.; Barros, N.; Baudis, L.; Bauer, C.; et al. The background in the neutrinoless double beta decay experiment GERDA. Eur. Phys. J. C 2014, 74, 2764. [Google Scholar] [CrossRef] [Green Version]
- Agostini, M.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; Bezrukov, D.; et al. Modeling of Gerda Phase II data. J. High Energy Phys. 2020, 3, 139. [Google Scholar] [CrossRef] [Green Version]
- Cremonesi, O. Experimental search of neutrinoless double beta decay in 130Te. J. Phys. Conf. Ser. 2018, 1056, 012013. [Google Scholar] [CrossRef] [Green Version]
- Brofferio, C.; Dell’Oro, S. The saga of neutrinoless double beta decay search with TeO2 thermal detectors. Rev. Sci. Instrum. 2018, 89, 121502. [Google Scholar] [CrossRef] [Green Version]
- Brofferio, C.; Cremonesi, O.; Dell’Oro, S. Neutrinoless Double Beta Decay Experiments With TeO2 Low-Temperature Detectors. Front. Phys. 2019, 7, 86. [Google Scholar] [CrossRef] [Green Version]
- Redshaw, M.; Mount, B.J.; Myers, E.G.; Avignone, F.T. Masses of 130Te and 130Xe and Double-β-Decay Q Value of 130Te. Phys. Rev. Lett. 2009, 102, 212502. [Google Scholar] [CrossRef] [Green Version]
- Scielzo, N.; Scielzo, N.D.; Caldwell, S.; Savard, G.; Clark, J.A.; Deibel, C.M.; Fallis, J.; Gulick, S.; Lascar, D.; Levand, A.F.; et al. Double-β-Decay Q values of 130Te, 128Te and 120Te. Phys. Rev. C 2009, 80, 025501. [Google Scholar] [CrossRef] [Green Version]
- Rahaman, S.; Elomaa, V.V.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Rissanen, J.; Suhonen, J.; Weber, C.; Äystö, J. Double-β-Decay Q values of 116Cd and 130Te. Phys. Lett. B 2011, 703, 412. [Google Scholar] [CrossRef] [Green Version]
- Berge, L.; Chapellier, M.; Combarieu, M.D.; Dumoulin, L.; Giuliani, A.; Gros, M.; Marcillac, P.D.; Marnieros, S.; Nones, C.; Novati, V.; et al. Complete event-by-event α/γ(β) separation in a full-size TeO2 CUORE bolometer by simultaneous heat and light detection. Phys. Rev. C 2018, 97, 032501. [Google Scholar] [CrossRef] [Green Version]
- Tabarelli de Fatis, T. Cerenkov emission as a positive tag of double beta decays in bolometric experiments. Eur. Phys. J. C 2010, 65, 359. [Google Scholar] [CrossRef] [Green Version]
- Alessandrello, A.; Brofferio, C.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E.; et al. New experimental results on double beta decay of 130Te. Phys. Lett. B 2000, 486, 13. [Google Scholar] [CrossRef]
- Alduino, C.; Alessandria, F.; Alfonso, K.; Andreotti, E.; Arnaboldi, C.; Avignone, F.T.; Azzolini, O.; Balata, M.; Bandac, I.; Banks, T.I.; et al. First Results from CUORE: A Search for Lepton Number Violation via 0νββ Decay of 130Te. Phys. Rev. Lett. 2018, 120, 132501. [Google Scholar] [CrossRef] [Green Version]
- Arnaboldi, C.; Artusa, D.R.; Avignone, F.T., III; Balata, M.; Bandac, I.; Barucci, M.; Beeman, J.W.; Bellini, F.; Brofferio, C.; Bucci, C.; et al. Results from a search for the neutrinoless double beta decay of 130Te. Phys. Rev. C 2008, 778, 035502. [Google Scholar] [CrossRef] [Green Version]
- Alfonso, K.; Artusa, D.R.; Avignone, F.T.; Azzolini, O.; Balata, M.; Banks, T.I.; Bari, G.; Beeman, J.W.; Bellini, F.; Bersani, A.; et al. Search for Neutrinoless Double-Beta Decay of 130Te with CUORE-0. Phys. Rev. Lett. 2015, 115, 102502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, D.; Alduino, C.; Alfonso, K.; Avignone, F.; Azzolini, O.; Bari, G.; Bellini, F.; Benato, G.; Biassoni, M.; Branca, A.; et al. Improved Limit on Neutrinoless Double-Beta Decay in 130Te with CUORE. Phys. Rev. Lett. 2020, 124, 122501. [Google Scholar] [CrossRef] [Green Version]
- Alduino, C.; Alfonso, K.; Artusa, D.R.; Avignone, F.T., III; Azzolini, O.; Banks, T.I.; Bari, G.; Beeman, J.W.; Bellini, F.; Bersani, A.; et al. Double-beta decay of 130Te to the first 0+ excited state of 130Xe with CUORE-0. Eur. Phys. J. C 2019, 79, 795. [Google Scholar] [CrossRef] [Green Version]
- Alduino, C.; Alfonso, K.; Artusa, D.R.; Avignone, F.T.; Azzolini, O.; Bari, G.; Bellini, F.; Benato, G.; Bersani, A.; Biassoni, M.; et al. Search for Neutrinoless β+EC Decay of 120Te with CUORE-0. Phys. Rev. C 2018, 97, 055502. [Google Scholar] [CrossRef] [Green Version]
- Bandac, I.C.; Barabash, A.S.; Bergé, L.; Brière, M.; Bourgeois, C.; Carniti, P.; Chapellier, M.; de Combarieu, M.; Dafinei, I.; Danevich, F.A.; et al. The 0ν2β-decay CROSS experiment: Preliminary results and prospects. JHEP 2020, 1, 18. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, I.; Chen, M. Double Beta Decay Experiments With Loaded Liquid Scintillator. Front. Phys. 2019, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Fischer, V. (SNO+ Collaboration). Search for neutrinoless double-beta decay with SNO+. arXiv 2018, arXiv:1809.05986 [physics.ins-det]. [Google Scholar]
- Alduino, C.; Alfonso, K.; Artusa, D.R.; Avignone, F.T.; Azzolini, O.; Banks, T.I.; Bari, G.; Beeman, J.W.; Bellini, F.; Benato, G.; et al. The projected background for the CUORE experiment. Eur. Phys. J. C 2017, 77, 543. [Google Scholar] [CrossRef]
- Barghouty, A.F.; Brofferio, C.; Capelli, S.; Clemenza, M.; Cremonesi, O.; Cebrian, S.; Fiorini, E.; Haight, R.C.; Norman, E.B.; Pavan, M.; et al. Measurements of p-induced radionuclide production cross sections to evaluate cosmic-ray activation of Te. Nucl. Instrum. Meth. B 2013, 295, 16. [Google Scholar] [CrossRef] [Green Version]
- Bardayan, D.W.; da Cruz, M.T.F.; Hindi, M.M.; Barghouty, A.F.; Chan, Y.D.; Garcia, A.; Larimer, R.M.; Lesko, K.T.; Norman, E.B.; Rossi, D.F.; et al. Radioisotope yields from 1.85-GeV protons on Mo and 1.85-and 5.0-GeV protons on Te. Phys. Rev. C 1997, 55, 820. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.S.; Norman, E.B.; Scielzo, N.D.; Smith, A.R.; Thomas, K.J.; Wender, S.A. Cosmogenic-neutron activation of TeO2 and implications for neutrinoless double-beta decay experiments. Phys. Rev. C 2015, 92, 024620. [Google Scholar] [CrossRef]
- Poda, D.; Giuliani, A. Low background techniques in bolometers for double-beta decay search. Int. J. Mod. Phys. A 2017, 32, 1743012. [Google Scholar] [CrossRef]
- Lozza, V.; Petzoldt, J. Cosmogenic activation of a natural tellurium target. Astropart. Phys. 2015, 61, 62. [Google Scholar] [CrossRef] [Green Version]
- Alduino, C.; Alfonso, K.; Artusa, D.R.; Avignone, F.T.; Azzolini, O.; Banks, T.I.; Bari, G.; Beeman, J.W.; Bellini, F.; Bersani, A.; et al. Measurement of the two-neutrino double-beta decay half-life of 130Te with the CUORE-0 experiment. Eur. Phys. J. C 2017, 77, 13. [Google Scholar] [CrossRef] [Green Version]
- Arnold, R.; Augier, C.; Baker, J.; Barabash, A.S.; Basharina-Freshville, A.; Bongrand, M.; Brudanin, V.; Caffrey, A.J.; Cebrián, S.; Chapon, A.; et al. Probing New Physics Models of Neutrinoless Double Beta Decay with SuperNEMO. Eur. Phys. J. C 2010, 70, 927. [Google Scholar] [CrossRef] [Green Version]
- Arnold, R.; Augier, C.; Bakalyarov, A.; Baker, J.; Barabash, A.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Brudanin, V.; et al. Measurement of the Double-Beta Decay Half-Life and Search for the Neutrinoless Double-Beta Decay of 48Ca with the NEMO-3 Detector. Phys. Rev. D 2016, 93, 112008. [Google Scholar] [CrossRef] [Green Version]
- Arnold, R.; Augier, C.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Boursette, D.; Brudanin, V.; Busto, J.; et al. Final results on 82Se double beta decay to the ground state of 82Kr from the NEMO-3 experiment. Eur. Phys. J. C 2018, 78, 821. [Google Scholar] [CrossRef] [Green Version]
- Arnold, R.; Augier, C.; Baker, J.; Barabash, A.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Brudanin, V.; Busto, J.; et al. Result of the search for neutrinoless double-β decay in 100Mo with the NEMO-3 experiment. Phys. Rev. D 2015, 92, 072011. [Google Scholar] [CrossRef] [Green Version]
- Arnold, R.; Augier, C.; Baker, J.; Barabash, A.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Boursette, D.; Brudanin, V.; et al. Measurement of the 2νββ decay half-life of 150Nd and a search for 0νββ decay processes with the full exposure from the NEMO-3 detector. Phys. Rev. D 2016, 94, 072003. [Google Scholar] [CrossRef] [Green Version]
- Sorel, M. Xenon TPCs for Double Beta Decay Searches. arXiv 2019, arXiv:1904.06349 [physics.ins-det]. [Google Scholar]
- Gómez-Cadenas, J.J.; Monrabal, F.; Ferrario, P. High Pressure Gas Xenon TPCs for Double Beta Decay Searches. Front. Phys. 2019, 7, 51. [Google Scholar] [CrossRef]
- Redshaw, M.; Wingfield, E.; McDaniel, J.; Myers, E.G. Mass and double-beta-decay Q value of Xe-136. Phys. Rev. Lett. 2007, 98, 053003. [Google Scholar] [CrossRef] [PubMed]
- Leonard, D.S.; Auty, D.; Didberidze, T.; Gornea, R.; Grinberg, P.; MacLellan, R.; Methven, B.; Piepke, A.; Vuilleumier, J.L.; Albert, J.B.; et al. Trace radioactive impurities in final construction materials for EXO-200. Nucl. Instrum. Meth. A 2017, 871, 169. [Google Scholar] [CrossRef] [Green Version]
- Albert, J.B.; Auty, D.J.; Barbeau, P.S.; Beauchamp, E.; Beck, D.; Belov, V.; Benitez-Medina, C.; Bonatt, J.; Breidenbach, M.; Brunner, T.; et al. Search for Majorana neutrinos with the first two years of EXO-200 data. Nature 2014, 510, 229. [Google Scholar]
- Albert, J.B.; Auger, M.; Auty, D.J.; Barbeau, P.S.; Beauchamp, E.; Beck, D.; Belov, V.; Benitez-Medina, C.; Bonatt, J.; Breidenbach, M.; et al. An improved measurement of the 2νββ half-life of Xe-136 with EXO-200. Phys. Rev. C 2014, 89, 015502. [Google Scholar] [CrossRef] [Green Version]
- Anton, G.; Badhrees, I.; Barbeau, P.S.; Beck, D.; Belov, V.; Bhatta, T.; Breidenbach, M.; Brunner, T.; Cao, G.F.; Cen, W.R.; et al. Search for Neutrinoless Double-Beta Decay with the Complete EXO-200 Dataset. Phys. Rev. Lett. 2019, 123, 161802. [Google Scholar] [CrossRef] [Green Version]
- Albert, J.B.; Auty, D.J.; Barbeau, P.S.; Beauchamp, E.; Beck, D.; Belov, V.; Benitez-Medina, C.; Breidenbach, M.; Brunner, T.; Burenkov, A.; et al. Search for Majoron-emitting modes of double-beta decay of 136Xe with EXO-200. Phys. Rev. D 2014, 90, 092004. [Google Scholar] [CrossRef] [Green Version]
- Albert, J.B.; Auty, D.J.; Barbeau, P.S.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G.F.; Chambers, C. Search for 2νββ decay of Xe-136 to the excited state of Ba-136 with the EXO-200 liquid xenon detector. Phys. Rev. C 2016, 93, 035501. [Google Scholar] [CrossRef] [Green Version]
- Albert, J.B.; Anton, G.; Badhrees, I.; Barbeau, P.S.; Bayerlein, R.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Cao, G.F.; et al. Searches for Double Beta Decay of 134Xe with EXO-200. Phys. Rev. D 2017, 96, 092001. [Google Scholar] [CrossRef] [Green Version]
- Albert, J.B.; Anton, G.; Badhrees, I.; Barbeau, P.S.; Bayerlein, R.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Cao, G.F.; et al. Search for nucleon decays with EXO-200. Phys. Rev. D 2018, 97, 072007. [Google Scholar] [CrossRef] [Green Version]
- Albert, J.B.; Anton, G.; Arnquist, I.J.; Badhrees, I.; Barbeau, P.; Beck, D.; Belov, V.; Bourque, F.; Brodsky, J.P.; Brown, E.; et al. Sensitivity and Discovery Potential of nEXO to Neutrinoless Double Beta Decay. Phys. Rev. C 2018, 97, 065503. [Google Scholar] [CrossRef] [Green Version]
- Chambers, C.; Walton, T.; Fairbank, D.; Craycraft, A.; Yahne, D.R.; Todd, J.; Iverson, A.; Fairbank, W.; Alamare, A.; Albert, J.B.; et al. Imaging individual barium atoms in solid xenon for barium tagging in nEXO. Nature 2019, 569, 203–207. [Google Scholar]
- Álvarez, V.; Borges, F.; Cárcel, S.; Castel, J.; Cebrián, S.; Cervera, A.; Conde, C.; Dafni, T.; Dias, T.; Díaz, J.; et al. Near-Intrinsic Energy Resolution for 30 to 662 keV Gamma Rays in a High Pressure Xenon Electroluminescent TPC. Nucl. Instrum. Meth. A 2013, 708, 101. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, V.; Borges, F.I.G.; Cárcel, S.; Castel, J.; Cebrián, S.; Cervera, A.; Conde, C.A.N.; Dafni, T.; Dias, T.H.V.T.; Díaz, J.; et al. Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment. JINST 2013, 8, P04002. [Google Scholar] [CrossRef]
- Monrabal, F.; Gómez-Cadenas, J.; Toledo, J.; Laing, A.; Álvarez, V.; Benlloch-Rodríguez, J.; Cárcel, S.; Carrión, J.; Esteve, R.; Felkai, R.; et al. The NEXT White (NEW) detector. J. Inst. 2018, 13, P12010. [Google Scholar] [CrossRef] [Green Version]
- Ferrario, P.; Benlloch-Rodríguez, J.M.; Díaz, L.G.; Hernando, M.J.A.; Kekic, M.; Renner, J.; Usón, A.; Gómez-Cadenas, J.J.; Adams, C. Demonstration of the event identification capabilities of the NEXT-White detector. JHEP 2019, 10, 052. [Google Scholar] [CrossRef] [Green Version]
- Renner, J.; Díaz, L.G.; Ferrario, P.; Hernando, M.J.A.; Kekic, M.; Martínez-Lema, G.; Monrabal, F.; Gómez-Cadenas, J.J.; Adams, C. Energy calibration of the NEXT-White detector with 1% resolution near Qββ of 136Xe. JHEP 2019, 10, 230. [Google Scholar] [CrossRef] [Green Version]
- Martín-Albo, J.; Muñoz, V.J.; Ferrario, P.; Nebot-Guinot, M.; Gómez-Cadenas, J.J.; Álvarez, V.; Azevedo, C.D.R.; Borges, F.I.G.; Cárcel, S. Sensitivity of NEXT-100 to neutrinoless double beta decay. JHEP 2016, 05, 159. [Google Scholar] [CrossRef] [Green Version]
- Novella, P.; Palmeiro, B.; Sorel, M.; Usón, A.; Ferrario, P.; Gómez-Cadenas, J.-J.; Adams, C.; Álvarez, V.; Arazi, L. Radiogenic backgrounds in the NEXT double beta decay experiment. JHEP 2019, 10, 051. [Google Scholar] [CrossRef] [Green Version]
- McDonald, A.; Jones, B.; Nygren, D.; Adams, C.; Álvarez, V.; Azevedo, C.; Benlloch-Rodríguez, J.; Borges, F.; Botas, A.; Cárcel, S.; et al. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging. Phys. Rev. Lett. 2018, 120, 132504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivilla, I.; Aparicio, B.; Bueno, J.M.; Casanova, D.; Tonnelé, C.; Freixa, Z.; Herrero, P.; Rogero, P.; Miranda, J.-I.; Martínez-Ojeda, R.M.; et al. Fluorescent bicolour sensor for low-background neutrinoless double β decay experiments. Nature 2020, 583, 48. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Fu, C.; Galan, J.; Giboni, K.; Giuliani, F.; Gu, L.; Han, K.; Ji, X.; Lin, H.; Liu, J.; et al. PandaX-III: Searching for neutrinoless double beta decay with high pressure 136Xe gas time projection chambers. Sci. China Phys. Mech. Astron. 2017, 60, 061011. [Google Scholar] [CrossRef] [Green Version]
- Galán, J.; Chen, X.; Du, H.; Fu, C.; Giboni, K.; Giuliani, F.; Han, K.; Jiang, B.; Ji, X.; Lin, H.; et al. Topological background discrimination in the PandaX-III neutrinoless double beta decay experiment. J. Phys. G Nucl. Part. Phys. 2020, 47, 045108. [Google Scholar] [CrossRef] [Green Version]
- Obara, S.; Ban, S.; Hirose, M.; Ichikawa, A.K.; Kikawa, T.; Nakamura, K.Z.; Nakaya, T.; Tanaka, S.; Yoshida, M.; Iwashita, Y.; et al. AXEL: High-pressure Xe gas TPC for BG-free 0ν2β decay search. Nucl. Instrum. Meth. A 2020, 958, 162803. [Google Scholar] [CrossRef] [Green Version]
- KamLAND-Zen Collaboration. Search for Majorana Neutrinos near the Inverted Mass Hierarchy region with KamLAND-Zen. Phys. Rev. Lett. 2016, 117, 082503. [Google Scholar] [CrossRef] [Green Version]
- Gando, A.; Gando, Y.; Hachiya, T.; Ha, M.M.; Hayashida, S.; Honda, Y.; Hosokawa, K.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; et al. Precision Analysis of the Xe-136 Two-Neutrino ββ Spectrum in KamLAND-Zen and Its Impact on the Quenching of Nuclear Matrix Elements. Phys. Rev. Lett. 2019, 122, 192501. [Google Scholar] [CrossRef] [Green Version]
- Asakura, K.; Gando, A.; Gando, Y.; Hachiya, T.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, T.; Ishio, S.; et al. Search for double-beta decay of 136Xe to excited states of 136Ba with the KamLAND-Zen experiment. Nucl. Phys. A 2016, 946, 171. [Google Scholar] [CrossRef] [Green Version]
- Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Kato, R.; Koga, M.; Matsuda, S.; Mitsui, T.; Nakada, T.; et al. Limits on Majoron-emitting double-β decays of 136Xe in the KamLAND-Zen experiment. Phys. Rev. C 2012, 86, 021601. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.; Anthony, M.; Arneodo, F.; Baudis, L.; Bauermeister, B.; et al. Dark Matter Search Results from a One Tonne×Year Exposure of XENON1T. Phys. Rev. Lett. 2018, 121, 111302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The LUX-ZEPLIN (LZ) Collaboration. The LUX-ZEPLIN (LZ) Technical Design Report. arXiv 2015, arXiv:1703.09144 [physics.ins-det].
- Akerib, D.; Akerlof, C.; Akimov, D.; Alquahtani, A.; Alsum, S.; Anderson, T.; Angelides, N.; Araújo, H.; Arbuckle, A.; Armstrong, J.; et al. The LUX-ZEPLIN (LZ) Experiment. Nucl. Instrum. Meth. A 2020, 953, 163047. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Abdukerim, A.; Chen, W.; Chen, X.; Chen, Y.; Dong, B.; Fang, D.; Fu, C.; Giboni, K.; Giuliani, F.; et al. Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 2017, 119, 181302. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Hiraide, K.; Ichimura, K.; Kishimoto, Y.; Kobayashi, K.; Kobayashi, M.; Moriyama, S.; Nakahata, M.; Norita, T.; Ogawa, H.; et al. Direct dark matter search by annual modulation in XMASS-I. Phys. Lett. B 2016, 759, 272. [Google Scholar] [CrossRef] [Green Version]
- Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F.D.; Amsler, C.; Aprile, E.; Arazi, L.; Arneodo, F.; Barrow, P.; Baudis, L.; et al. DARWIN: Towards the ultimate dark matter detector. J. Cosmol. Astropart. Phys. 2016, 11, 17. [Google Scholar] [CrossRef]
- Agostini, F.; Maouloud, S.E.M.A.; Althueser, L.; Amaro, F.; Antunovic, B.; Aprile, E.; Baudis, L.; Baur, D.; Biondi, Y.; Bismark, A.; et al. Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of 136Xe. Eur. Phys. J. C 2020, 80, 808. [Google Scholar] [CrossRef]
- Akerib, D.S.; Akerlof, C.W.; Alqahtani, A.; Alsum, S.K.; Anderson, T.J.; Angelides, N.; Araújo, H.M.; Armstrong, J.E.; Arthurs, M.; Bai, X.; et al. Projected sensitivity of the LUX-ZEPLIN experiment to the 0νββ decay of 136Xe. Phys. Rev. C 2020, 102, 014602. [Google Scholar]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Antochi, V.C.; Angelino, E.; Angevaare, J.R.; Arneodo, F.; et al. Observation of Excess Electronic Recoil Events in XENON1T. arXiv 2020, arXiv:2006.09721 [hep-ex]. [Google Scholar]
- Robinson, A.E. XENON1T observes tritium. arXiv 2020, arXiv:2006.13278 [hep-ex]. [Google Scholar]
- Baudis, L.; Kish, A.; Piastra, F.; Schumann, M. Cosmogenic activation of xenon and copper. Eur. Phys. J. C 2015, 75, 485. [Google Scholar] [CrossRef] [Green Version]
- Akerib, D.S.; Araujo, H.M.; Bai, X.; Bailey, A.J.; Balajthy, J.; Bernard, E.; Bernstein, A.; Bradley, A.; Byram, D.; Cahn, S.B.; et al. Radiogenic and muon-induced backgrounds in the LUX dark matter detector. Astropart. Phys. 2015, 62, 33. [Google Scholar] [CrossRef] [Green Version]
- Albert, J.; Auty, D.; Barbeau, P.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G.; Chambers, C.; et al. Cosmogenic backgrounds to 0νββ in EXO-200. J. Cosmol. Astropart. Phys. 2016, 2016, 29. [Google Scholar] [CrossRef]
- Rogers, L.; Jones, B.J.P.; Laing, A.; Pingulkar, S.; Smithers, B.; Woodruff, K.; Adams, C.; Álvarez, V.; Arazi, L.; Arnquist, I.J.; et al. Mitigation of Backgrounds from Cosmogenic 137Xe in Xenon Gas Experiments using 3He Neutron Capture. J. Phys. G Nucl. Part. Phys. 2020, 47, 075001. [Google Scholar] [CrossRef]
- Giot, L.; Alcantara-Nuñez, J.A.; Benlliure, J.; Perez-Loureiro, D.; Audouin, L.; Boudard, A.; Casarejos, E.; Enqvist, T.; Ducret, J.E.; Fernandez-Dominguez, B.; et al. Isotopic production cross sections of the residual nuclei in spallation reactions induced by 136Xe projectiles on proton at 500 AMeV. Nucl. Phys. A 2013, 899, 116. [Google Scholar] [CrossRef]
- Beeman, J.W.; Bellini, F.; Benetti, P.; Cardani, L.; Casali, N.; Chiesa, D.; Clemenza, M.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; et al. Double-beta decay investigation with highly pure enriched 82Se for the LUCIFER experiment. Eur. Phys. J. C 2015, 75, 591. [Google Scholar] [CrossRef] [Green Version]
- Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Carniti, P.; et al. Final result of CUPID-0 phase-I in the search for the 82Se Neutrinoless Double Beta Decay. Phys. Rev. Lett. 2019, 123, 032501. [Google Scholar] [CrossRef] [Green Version]
- Armengaud, E.; Augier, C.; Barabash, A.S.; Beeman, J.W.; Bekker, T.B.; Bellini, F.; Benoît, A.; Bergé, L.; Bergmann, T.; Billard, J.; et al. Development of 100Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search. Eur. Phys. J. C 2017, 77, 785. [Google Scholar] [CrossRef]
- Armengaud, E.; Augier, C.; Barabash, A.S.; Bellini, F.; Benato, G.; Benoît, A.; Beretta, M.; Bergé, L.; Billard, J.; Borovlev, Y.A.; et al. The CUPID-Mo experiment for neutrinoless double-beta decay: Performance and prospects. Eur. Phys. J. C 2020, 80, 44. [Google Scholar] [CrossRef]
- Buse, G.; Giuliani, A.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; Olivieri, E.; Poda, D.V.; Redon, T.; Sand, J.B.; et al. First scintillating bolometer tests of a CLYMENE R&D on Li2MoO4 scintillators towards a large-scale double-beta decay experiment. Nucl. Instrum. Meth. A 2018, 891, 87. [Google Scholar]
- Alenkov, V.; Bae, H.W.; Beyer, J.; Boiko, R.S.; Boonin, K.; Buzanov, O.; Chanthima, N.; Cheoun, M.K.; Chernyak, D.M.; Choe, J.S.; et al. First Results from the AMoRE-Pilot neutrinoless double beta decay experiment. Eur. Phys. J. C 2019, 79, 791. [Google Scholar] [CrossRef] [Green Version]
- Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Cerulli, R.; Danevich, F.A.; d’Angelo, S.; Incicchitti, A.; Kobychev, V.V.; Kropivyansky, B.N.; et al. New observation of 2ν2β decay of 100Mo to the level of 100Ru in the ARMONIA experiment. Nucl. Phys. A 2020, 846, 143. [Google Scholar] [CrossRef]
- Kidd, M.F.; Esterline, V.; Finch, S.W.; Tornow, W. Two-neutrino double-β decay of 150Nd to excited final states in 150Sm. Phys. Rev. C 2014, 90, 055501. [Google Scholar] [CrossRef]
- Barabash, A.S.; Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Di Marco, A.; Incicchitti, A.; Kasperovych, D.V.; et al. Low background scintillators to investigate rare processes. JINST 2020, 15, C07037. [Google Scholar] [CrossRef]
- Lebeda, O.; Lozza, V.; Schrock, P.; Štursa, J.; Zuber, K. Excitation functions of proton-induced reactions on natural Nd in the 10-30 MeV energy range, and production of radionuclides relevant for double-beta decay. Phys. Rev. C 2012, 85, 014602. [Google Scholar] [CrossRef]
- Lebeda, O.; Lozza, V.; Petzoldt, J.; Štursa, J.; Zdychová, V.; Zuber, K. Excitation functions of proton-induced reactions on natural Nd and production of radionuclides relevant for double beta decay: Completing measurement in 5-35 MeV energy range. Nucl. Phys. A 2014, 929, 129. [Google Scholar] [CrossRef] [Green Version]
- CUPID Interest Group. CUPID pre-CDR. arXiv 2019, arXiv:1907.09376 [physics.ins-det]. [Google Scholar]
- Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Carniti, P.; et al. Background model of the CUPID-0 experiment. Eur. Phys. J. C 2019, 79, 583. [Google Scholar] [CrossRef]
- Labustenstein, M.; Heusser, G. Cosmogenic radionuclides in metals as indicator for sea level exposure history. App. Rad. Isot. 2009, 67, 750. [Google Scholar] [CrossRef]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F.D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; et al. Material radioassay and selection for the XENON1T dark matter experiment. Eur. Phys. J. 2017, 77, 890. [Google Scholar] [CrossRef]
- Coarasa, I.; Amare, J.; Cebrian, S.; Cuesta, C.; Garcia, E.; Martinez, M.; Olivan, M.A.; Ortigoza, Y.; Ortiz de Solorzano, A.; Puimedon, J.; et al. Cosmogenic and primordial radioisotopes in copper bricks shortly exposed to cosmic rays. J. Phys. Conf. Ser. 2016, 718, 042049. [Google Scholar] [CrossRef]
- Guiseppe, V.E.; Elliott, S.R.; Fields, N.E.; Hixon, D. Fast-neutron activation of long-lived nuclides in natural Pb. Astropart. Phys. 2015, 64, 34. [Google Scholar] [CrossRef] [Green Version]
- Maneschg, W.; Laubenstein, M.; Budjáš, D.; Hampel, W.; Heusser, G.; Knöpfle, K.T.; Schwingenheuer, B.; Simgen, H. Measurements of extremely low radioactivity levels in stainless steel for GERDA. Nucl. Instrum. Meth. A 2008, 593, 448. [Google Scholar] [CrossRef]
- Akerib, D.S.; Bai, X.; Bedikian, S.; Bernard, E.; Bernstein, A.; Bradley, A.; Cahn, S.B.; Carmona-Benitez, M.C.; Carr, D.; Chapman, J.J.; et al. Radio-assay of titanium samples for the LUX experiment. arXiv 2011, arXiv:1112.1376 [physics.ins-det]. [Google Scholar]
- Akerib, D.; Akerlof, C.; Akimov, D.; Alsum, S.; Araújo, H.; Arnquist, I.; Arthurs, M.; Bai, X.; Bailey, A.; Balajthy, J.; et al. Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches. Astropart. Phys. 2017, 96, 1. [Google Scholar] [CrossRef] [Green Version]
- Majorovits, B.; Abt, I.; Laubenstein, M.; Volynets, O. Aluminum as a source of background in low background experiments. Nucl. Instrum. Meth. A 2011, 647, 39. [Google Scholar] [CrossRef] [Green Version]
- Alexander, T.; Back, H.O.; Bonivento, W.; Boulay, M.; Collon, P.; Feng, Z.; Foxe, M.; Garcia Abia, P.; Giampa, P.; Jackson, C.; et al. The Low-Radioactivity Underground Argon Workshop: A workshop synopsis. arXiv 2019, arXiv:1901.10108 [physics.ins-det]. [Google Scholar]
- Lubashevskiy, A.; Agostini, M.; Budjáš, D.; Gangapshev, A.; Gusev, K.; Heisel, M.; Klimenko, A.; Lazzaro, A.; Lehnert, B.; Pelczar, K.; et al. Mitigation of 42Ar/42K background for the GERDA Phase II experiment. Eur. Phys. J. C 2018, 78, 15. [Google Scholar] [CrossRef] [Green Version]
- Cennini, P.; Cittolin, S.; Dzialo Giudice, D.; Revol, J.P.; Rubbia, C.; Tian, W.H.; Li, X.; Picchi, P.; Cavanna, F.; Piano Mortari, G.; et al. On atmospheric 39Ar and 42Ar abundance. Nucl. Inst. Meth. A 1995, 356, 526. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.S.; Saakyan, R.R.; Umatov, V.I. On concentration of 42Ar in liquid argon. J. Phys. Conf. Ser. 2016, 718, 062004. [Google Scholar] [CrossRef] [Green Version]
- Ajaj, R.; Araujo, G.R.; Batygov, M.; Beltran, B.; Bina, C.E.; Boulay, M.G.; Broerman, B.; Bueno, J.F.; Burghardt, P.M.; Butcher, A.; et al. Electromagnetic Backgrounds and Potassium-42 Activity in the DEAP-3600 Dark Matter Detector. Phys. Rev. D 2019, 100, 072009. [Google Scholar]
- Benetti, P.; Calaprice, F.; Calligarich, E.; Cambiaghi, M.; Carbonara, F.; Cavanna, F.; Cocco, A.G.; Di Pompeo, F.; Ferrari, N.; Fiorillo, G.; et al. Measurement of the specific activity of 39Ar in natural argon. Nucl. Instrum. Meth. A 2007, 574, 83. [Google Scholar] [CrossRef] [Green Version]
- Agnes, P.; Agostino, L.; Albuquerque, I.F.; Alexander, T.; Alton, A.K.; Arisaka, K.; Back, H.O.; Baldin, B.; Biery, K.; Bonfini, G. (DarkSide Collaboration) Results from the first use of low radioactivity argon in a dark matter search. Phys. Rev. D 2016, 93, 081101(R). [Google Scholar] [CrossRef] [Green Version]
- Saldanha, R.; Back, H.O.; Tsang, R.H.M.; Alexander, T.; Elliott, S.R.; Ferrara, S.; Mace, E.; Overman, C.; Zalavadia, M. Cosmogenic production of 39Ar and 37Ar in argon. Phys. Rev. C 2019, 100, 024608. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, J.S.; Schima, F.J. Muon-induced radioactivity in underground detectors. Phys. Rev. D 1988, 38, 2277. [Google Scholar] [CrossRef]
- Barker, D.; Mei, D.M.; Zhang, C. Muon-induced background study for an argon-based long baseline neutrino experiment. Phys. Rev. D 2012, 86, 054001. [Google Scholar] [CrossRef] [Green Version]
- Pettus, W.C. Cosmogenic Activation in NaI Detectors for Dark Matter Searches. Ph.D. Thesis, University of Wisconsin-Madison, Madison, WI, USA, 2015. [Google Scholar]
- Bernabei, R.; Belli, P.; Bussolotti, A.; Cappella, F.; Cerulli, R.; Dai, C.J.; d’Angelo, A.; He, H.L.; Incicchitti, A.; Kuang, H.H.; et al. The DAMA/LIBRA apparatus. Nucl. Instrum. Meth. A 2008, 592, 297. [Google Scholar] [CrossRef]
- Adhikari, P.; Adhikari, G.; Barbosa de Souza, E.; Carlin, N.; Choi, S.; Choi, W.Q.; Djamal, M.; Ezeribe, A.C.; Ha, C.; Hahn, I.S.; et al. Background model for the NaI(Tl) crystals in COSINE-100. Eur. Phys. J. C 2018, 78, 490. [Google Scholar] [CrossRef] [Green Version]
- Amaré, J.; Cebrian, S.; Cuesta, C.; Garcia, E.; Martinez, M.; Olivan, M.A.; Ortigoza, Y.; Ortiz de Solorzano, A.; Puimedon, J.; Sarsa, M.L.; et al. Assessment of backgrounds of the ANAIS experiment for dark matter direct detection. Eur. Phys. J. C 2016, 76, 429. [Google Scholar] [CrossRef] [Green Version]
- Amaré, J.; Cebrian, S.; Coarasa, I.; Cuesta, C.; Garcia, E.; Martinez, M.; Olivan, M.A.; Ortigoza, Y.; Ortiz de Solorzano, A.; Puimedon, J.; et al. Analysis of backgrounds for the ANAIS-112 dark matter experiment. Eur. Phys. J. C 2019, 79, 412. [Google Scholar] [CrossRef]
- Amaré, J.; Cebrian, S.; Cuesta, C.; Garcia, E.; Ginestra, C.; Martinez, M.; Olivan, M.A.; Ortigoza, Y.; Ortiz de Solorzano, A.; Pobes, C.; et al. Cosmogenic radionuclide production in NaI(Tl) crystals. J. Cosmol. Astropart. Phys. 2015, 02, 046. [Google Scholar] [CrossRef]
- Villar, P.; Amare, J.; Cebrian, S.; Coarasa, I.; Garcia, E.; Martinez, M.; Olivan, M.A.; Ortigoza, Y.; Ortiz de Solorzano, A.; Puimedon, J.; et al. Study of the cosmogenic activation in NaI(Tl) crystals within the ANAIS experiment. Int. J. Mod. Phys. A 2018, 33, 1843006. [Google Scholar] [CrossRef] [Green Version]
- De Barbosa, S.E.; Park, B.; Adhikari, G.; Adhikari, P.; Carlin, N.; Choi, J.; Choi, S.; Djamal, M.; Ezeribe, A.; Ha, C.; et al. Study of cosmogenic radionuclides in the COSINE-100 NaI(Tl) detectors. Astropar. Phys. 2020, 115, 102390. [Google Scholar] [CrossRef] [Green Version]
- Strauss, R.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Erb, A.; Feilitzsch, F.V.; Ferreiro Iachellini, N.; Gorla, P.; Gütlein, A.; et al. Beta/gamma and alpha backgrounds in CRESST-II Phase 2. J. Cosmol. Astropart. Phys. 2015, 2015, 30. [Google Scholar] [CrossRef]
- Bernabei, R.; Belli, P.; Incicchitti, A.; Dai, C.J. Adopted low background techniques and analysis of radioactive trace impurities. Int. J. Mod. Phys. A 2016, 31, 1642003. [Google Scholar] [CrossRef]
- Baxter, D.; The DAMIC and DAMIC-M Collaborations. Constructing a background model for DAMIC CCDs. J. Phys. Conf. Ser. 2020, 1468, 012028. [Google Scholar]
- Bähr, A.; Kluck, H.; Ninkovic, J.; Schieck, J.; Treis, J. DEPFET detectors for direct detection of MeV Dark Matter particles. Eur. Phys. J. C 2017, 77, 905. [Google Scholar] [CrossRef] [Green Version]
- Saldanha, R.; Thomas, R.; Tsang, R.H.M.; Chavarria, A.E.; Bunker, R.; Burnett, J.; Elliott, S.R.; Matalon, A.; Mitra, P.; Piers, A.; et al. Cosmogenic activation of silicon. arXiv 2020, arXiv:2007.10584 [physics.ins-det]. [Google Scholar]
- Hagner, T.; von Hentig, R.; Heisinger, B.; Oberauer, L.; Schönert, S.; von Feilitzsch, F.; Nolte, E. Muon-induced production of radioactive isotopes in scintillation detectors. Astropart. Phys. 2000, 14, 33. [Google Scholar] [CrossRef]
- Galbiati, C.; Pocar, A.; Franco, D.; Ianni, A.; Cadonati, L.; Schönert, S. Cosmogenic 11C production and sensitivity of organic scintillator detectors to pep and CNO neutrinos. Phys. Rev. C 2005, 71, 055805. [Google Scholar] [CrossRef] [Green Version]
- Abe, S.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; et al. Production of radioactive isotopes through cosmic muon spallation in KamLAND. Phys. Rev. C 2010, 81, 025807. [Google Scholar] [CrossRef]
- Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Buizza Avanzini, M.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Cavalcante, P.; et al. Cosmogenic Backgrounds in Borexino at 3800 m water-equivalent depth. J. Cosmol. Astropart. Phys. 2013, 08, 049. [Google Scholar] [CrossRef] [Green Version]
H | Mn | Fe | Co | Co | Co | Zn | Ge | |
---|---|---|---|---|---|---|---|---|
Half-life [27] | 12.312(25) | 312.19(3) | 2.747(8) | 271.81(4) | 70.85(3) | 5.2711(8) | 244.01(9) | 270.95(26) |
units | y | d | y | d | d | y | d | d |
Measurement [19] | 2.3 | 1.6 | 1.2 | 11 | ||||
Measurement [103] | 2.0 ± 1.0 | 0.7 ± 0.4 | 2.5 ± 1.2 | 8.9 ± 2.5 | 2.1 ± 0.4 | |||
Meas. (MAJORANA) [107] | 140±10 | 4.4 ± 4.1 | 2.1 ± 0.7 | 4.3 ± 3.6 | 3.3 ± 1.6 | |||
Monte Carlo [92] | 140 | 1.4 | 1 | 1.8 | 6.4 | 0.94 | ||
Monte Carlo [93] | 0.08 | 1.6 | 3.5 | 6.0 | 1.2 | |||
SHIELD [44] | 3.3 | 5.8 | ||||||
TALYS [94] | 24.0 | 0.87 | 3.4 | 6.7 | 1.6 | 20 | 7.2 | |
MENDL+YIELDX [43] | 3.7 | 1.6 | 1.7 | 4.6 | 5.1 | 20 | 12 | |
TENDL+HEAD [28] | 94 ± 34 | |||||||
ACTIVIA [36] | 2.2 | 1.6 | 2.9 | 5.5 | 2.4 | 10.4 | 7.6 | |
ACTIVIA [45] | 51.3 | 2.2 | 1.2 | 2.3 | 5.5 | 4.4 | 9.7 | 15.4 |
GEANT4 [45] | 47.4 | 1.4 | 4.5 | 3.3 | 2.9 | 2.4 | 24.9 | 21.8 |
GEANT4+CRY [91] | 22.8 | 0.96 | 2.9 | 2.8 | 1.9 | 18.0 | 20.0 |
H | V | Mn | Fe | Co | Co | Co | Zn | Ge | |
---|---|---|---|---|---|---|---|---|---|
Half-life [27,108] | 12.312(25) | 330 d | 312.19(3) | 2.747(8) | 271.81(4) | 70.85(3) | 5.2711(8) | 244.01(9) | 270.95(26) |
units | y | d | y | d | d | y | d | d | |
Measurement [92] | 3.3 ± 0.8 | 2.9 ± 0.4 | 3.5 ± 0.9 | 38 ± 6 | 30 ± 7 | ||||
Meas. (EDELWEISS) [100] | 82 ± 21 | 2.8 ± 0.6 | 4.6 ± 0.7 | 106 ± 13 | >71 | ||||
Meas. (CDMSlite) [101] | 74 ± 9 | 1.5 ± 0.7 | 17 ± 5 | 30 ± 18 | |||||
Monte Carlo [92] | 210 | 2.7 | 4.4 | 5.3 | 34.4 | 29.6 | |||
Monte Carlo [93] | 0.5 | 4.4 | 4.8 | 30.0 | 26.5 | ||||
Sigma [95] | 9.1 | 8.4 | 10.2 | 16.1 | 6.6 | 79.0 | 58.4 | ||
SHIELD [44] | 2.9 | 81.6 | |||||||
TALYS [94] | 27.7 | 2.7 | 8.6 | 13.5 | 2.0 | 37.1 | 41.3 | ||
TALYS+INCL++-ABLA [101] | 95 | 5.6 | 51 | 49 | |||||
MENDL+YIELDX [43] | 5.2 | 6.0 | 7.6 | 10.9 | 3.9 | 63 | 60 | ||
TENDL+HEAD[28] | 75±26 | ||||||||
ACTIVIA [36] | 2.7 | 3.4 | 6.7 | 8.5 | 2.8 | 29.0 | 45.8 | ||
ACTIVIA [100] | 46 | 1.9 | 3.5 | 38.7 | 23.1 | ||||
ACTIVIA (MENDL-2P) [100] | 43.5 | 1.9 | 4.0 | 65.8 | 45.0 | ||||
ACTIVIA [45] | 52.4 | 2.8 | 4.1 | 8.9 | 11.4 | 4.1 | 44.2 | 24.7 | |
ACTIVIA [99] | 30 | 3 | 6 | 3 | 20 | 10 | |||
GEANT4 [45] | 47.4 | 2.0 | 7.9 | 7.4 | 5.7 | 2.9 | 75.9 | 182.8 | |
GEANT4+CRY [91] | 23.7 | 1.4 | 0.94 | 4.2 | 4.7 | 1.5 | 40.5 | 83.1 | |
GEANT4+CRY [98] | 21.6 | 2.9 | 0.9 | 27.7 | 63.6 | ||||
CONUS [99] | 50 | 5 | 7 | 4 | 60 | 66 |
Co | Ag | Sb | |
---|---|---|---|
Half-life [27] | 5.2711(8) y | 249.78(2) d | 60.208(11) d |
Measurement [136] | <0.0053 | 0.42 | |
ACTIVIA+TENDL [138] | 0.070 | 0.206 | 15.7 |
H | Be | Sb | Te | Te | Xe | |
---|---|---|---|---|---|---|
Half-life [27,108] | 12.312(25) y | 53.22(6) d | 2.75855(25) y | 154 d | 119.3(1) d | 36.358(31) d |
Measurement [184] | 32 | 51 | <104 | <53 | 162 | |
Measurement [185] | 132±26 | |||||
COSMO [184] | 0.55 | 1.17 | 23.8 | 1.24 | 48.0 | |
ACTIVIA [184] | 0.55 | 0.017 | 25.8 | 1.27 | 35.9 | |
ACTIVIA [46] | 35.6 | 0.009 | 54.5 | 2.67 | 89.9 | |
GEANT4 [46] | 31.6 | 1.48 | 21.2 | 18.5 | 233.3 | |
TALYS [94] | 16.0 | 0.04 | 11.7 | 12.1 |
Pm | Pm | Pm | |
---|---|---|---|
Half-life [108] | 265 d | 363 d | 5.53 y |
Measurement [198] | 0.1260 | 0.0830 | 0.0196 |
TENDL [198] | 0.1665 | 0.0967 | 0.0255 |
Measurement [199] | 0.1753 | 0.1092 | 0.0276 |
TENDL [198] | 0.2187 | 0.1196 | 0.356 |
Sc | V | Mn | Co | Co | Co | Fe | Co | |
---|---|---|---|---|---|---|---|---|
Half-life[27,108] | 83.787(16) | 15.9735 | 312.19(3) | 77.236 | 271.81(4) | 70.85(3) | 44.494 | 5.2711(8) |
units | d | d | d | d | d | d | d | y |
Measurement [202] | 2.18 ± 0.74 | 4.5 ± 1.6 | 8.85 ± 0.86 | 9.5 ± 1.2 | 74 ± 17 | 67.9 ± 3.7 | 18.7 ± 4.9 | 86.4 ± 7.8 |
Measurement [184] | 2.33 | 3.4 | 13.3 | 9.3 | 44.8 | 68.9 | 4.1 | 29.4 |
ACTIVIA (MENDL-2P) [36] | 3.1 | 12.4 | 14.1 | 36.4 | 38.1 | 1.8 | 9.7 | |
ACTIVIA [36,184] | 3.1 | 14.3 | 8.7 | 32.5 | 56.6 | 4.2 | 26.3 | |
COSMO [184] | 1.5 | 3.1 | 13.5 | 7.0 | 30.2 | 54.6 | 4.3 | 25.7 |
ACTIVIA [46] | 4.1 | 30.0 | 20.1 | 77.5 | 138.1 | 10.5 | 66.1 | |
ACTIVIA [99] | 3 | 16 | 9 | 34 | 60 | 2 | 29 | |
GEANT4 [46] | 1.2 | 12.3 | 10.3 | 67.2 | 57.3 | 8.8 | 64.6 | |
TALYS [94] | 16.2 | 56.2 | 46.4 | |||||
MENDL+YIELDX [43] | 2.7 | 27.7 | 20.0 | 74.1 | 123.0 | 4.9 | 55.4 | |
CONUS [99] | 3 | 14 | 10 | 50 | 76 | 5 | 92 |
Isotope | Be | Sc | V | Mn | Co | Co |
---|---|---|---|---|---|---|
Half-life (d) [27,108] | 53.22(6) | 83.787(16) | 15.9735 | 312.19(3) | 77.236 | 70.85(3) |
Measurement [202] | 389 ± 60 | 19.0 ± 3.5 | 34.6 ± 3.5 | 233 ± 26 | 20.7 ± 3.5 | 51.8 ± 7.8 |
GEANT4 [46] | 0.05 | 8.8 | 230 | 16 | 90 | |
ACTIVIA [46] | 2.05 | 18 | 191 | 131 | 13 |
Na | Al | |
---|---|---|
Half-life (y) [27] | 2.6029(8) | 7.17(24) |
Calculation for neutrons [209] | 153 | 389 |
Calculation for protons [209] | 24 | 47 |
ACTIVIA [99] | 160 | |
CONUS [99] | 530 |
H | Ar | Ar | |
---|---|---|---|
Half-life [27,108] | 12.312(25) y | 35.01(2) d | 269 y |
Measurement (neutrons) [217] | 51.0 ± 7.4 | 759 ± 128 | |
Measurement+Calculations (total) [217] | 92 ± 13 | 1048 ± 133 | |
TENDL+HEAD [28] | 146 ± 31 | ||
TALYS [94] | 44.4 | ||
GEANT4 [46] | 84.9 | ||
ACTIVIA [46] | 82.9 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cebrián, S. Cosmogenic Activation in Double Beta Decay Experiments. Universe 2020, 6, 162. https://doi.org/10.3390/universe6100162
Cebrián S. Cosmogenic Activation in Double Beta Decay Experiments. Universe. 2020; 6(10):162. https://doi.org/10.3390/universe6100162
Chicago/Turabian StyleCebrián, Susana. 2020. "Cosmogenic Activation in Double Beta Decay Experiments" Universe 6, no. 10: 162. https://doi.org/10.3390/universe6100162
APA StyleCebrián, S. (2020). Cosmogenic Activation in Double Beta Decay Experiments. Universe, 6(10), 162. https://doi.org/10.3390/universe6100162