# Spin Foam Vertex Amplitudes on Quantum Computer—Preliminary Results

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. Intertwiner Qubit

## 3. Vertex Amplitude

## 4. A Quantum Algorithm

#### 4.1. Example 1—Single Tetrahedron

#### 4.2. Example 2—Two Tetrahedra

## 5. Evaluation of Vertex Amplitude

## 6. Summary

- Introduction of a quantum circuit for the general intertwiner qubit $|\mathcal{I}\rangle $ (Equation (11)).
- Determination of the phase of vertex amplitude with the use of quantum algorithms (e.g., Quantum Phase Estimation Algorithm [56]).
- Investigation of different types of the state $|W\rangle $.
- Analysis of spin networks with up to 10 nodes on quantum computers simulators.
- A possibility of solving quantum constraints with the use of quantum circuits.
- Investigation of the architectures of forthcoming quantum processors (with the $N>100$ number of qubits) in terms of application to spin foam transition amplitudes.

## Funding

## Conflicts of Interest

## Appendix A. Quantum Computing Technologies

## Appendix B. Basics of Quantum Computing

## References

- Ambjorn, J.; Goerlich, A.; Jurkiewicz, J.; Loll, R. Nonperturbative Quantum Gravity. Phys. Rept.
**2012**, 519, 127–210. [Google Scholar] [CrossRef] - Ambjorn, J.; Jordan, S.; Jurkiewicz, J.; Loll, R. A Second-order phase transition in CDT. Phys. Rev. Lett.
**2011**, 107, 211303. [Google Scholar] [CrossRef] [PubMed] - Bilke, S.; Burda, Z.; Jurkiewicz, J. Simplicial quantum gravity on a computer. Comput. Phys. Commun.
**1995**, 85, 278–292. [Google Scholar] [CrossRef][Green Version] - Di Francesco, P.; Ginsparg, P.H.; Zinn-Justin, J. 2-D Gravity and random matrices. Phys. Rept.
**1995**, 254, 1–133. [Google Scholar] [CrossRef] - ’t Hooft, G. A Planar Diagram Theory for Strong Interactions. Nucl. Phys. B
**1974**, 72, 461–473. [Google Scholar] [CrossRef] - Ashtekar, A.; Lewandowski, J. Background independent quantum gravity: A Status report. Class. Quantum Gravity
**2004**, 21, R53. [Google Scholar] [CrossRef] - Rovelli, C.; Vidotto, F. Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Rovelli, C.; Smolin, L. Spin networks and quantum gravity. Phys. Rev. D
**1995**, 52, 5743–5759. [Google Scholar] [CrossRef] [PubMed][Green Version] - Baez, J.C. Spin foam models. Class. Quantum Gravity
**1998**, 15, 1827–1858. [Google Scholar] [CrossRef][Green Version] - Perez, A. The Spin Foam Approach to Quantum Gravity. Living Rev. Relat.
**2013**, 16, 3. [Google Scholar] [CrossRef] [PubMed] - Engle, J.; Pereira, R.; Rovelli, C. The Loop-quantum-gravity vertex-amplitude. Phys. Rev. Lett.
**2007**, 99, 161301. [Google Scholar] [CrossRef] [PubMed] - Bianchi, E.; Hellmann, F. The Construction of Spin Foam Vertex Amplitudes. SIGMA
**2013**, 9, 008. [Google Scholar] [CrossRef] - Oriti, D. The Group field theory approach to quantum gravity. In Approaches to Quantum Gravity; Oriti, D., Ed.; Cambridge University Press: Cambridge, UK, 2009; pp. 310–331. [Google Scholar]
- Freidel, L. Group field theory: An Overview. Int. J. Theor. Phys.
**2005**, 44, 1769–1783. [Google Scholar] [CrossRef] - Krajewski, T. Group field theories. Presented at the 3rd Quantum Gravity and Quantum Geometry School (QGQGS 2011), Zakopane, Poland, 28 February–13 March 2011. [Google Scholar]
- Ooguri, H. Topological lattice models in four-dimensions. Mod. Phys. Lett. A
**1992**, 7, 2799–2810. [Google Scholar] [CrossRef] - Gielen, S.; Oriti, D.; Sindoni, L. Cosmology from Group Field Theory Formalism for Quantum Gravity. Phys. Rev. Lett.
**2013**, 111, 031301. [Google Scholar] [CrossRef] [PubMed] - Benedetti, D.; Geloun, J.B.; Oriti, D. Functional Renormalisation Group Approach for Tensorial Group Field Theory: A Rank-3 Model. J. High Energy Phys.
**2015**, 2015, 084. [Google Scholar] [CrossRef] - Li, K.; Li, Y.; Han, M.; Lu, S.; Zhou, J.; Ruan, D.; Long, G.; Wan, Y.; Lu, D.; Zeng, B.; et al. Quantum Spacetime on a Quantum Simulator. arXiv
**2017**, arXiv:1712.08711. [Google Scholar] - Feller, A.; Livine, E.R. Ising Spin Network States for Loop Quantum Gravity: A Toy Model for Phase Transitions. Class. Quantum Gravity
**2016**, 33, 065005. [Google Scholar] [CrossRef] - Mielczarek, J. Spin networks on adiabatic quantum computer. arXiv
**2018**, arXiv:1801.06017. [Google Scholar] - Available online: https://www.research.ibm.com/ibm-q/ (accessed on 25 July 2019).
- You, J.Q.; Nori, F. Superconducting Circuits and Quantum Information. Phys. Today
**2005**, 58, 42–47. [Google Scholar] [CrossRef][Green Version] - Available online: http://quantum-studio.net/ (accessed on 25 July 2019).
- Available online: https://www.quantum-inspire.com/ (accessed on 25 July 2019).
- Feynman, R.P. Simulating physics with computers. Int. J. Theor. Phys.
**1982**, 21, 467–488. [Google Scholar] [CrossRef] - Mielczarek, J. Quantum Gravity on a Quantum Chip. arXiv
**2018**, arXiv:1803.10592. [Google Scholar] - Albash, T.; Lidar, D.A. Adiabatic Quantum Computing. Rev. Mod. Phys.
**2018**, 90, 015002. [Google Scholar] [CrossRef] - Deutsch, D.; Barenco, A.; Ekert, A. Universality in quantum computation. Proc. R. Soc. Lond. A
**1995**, 449, 669–677. [Google Scholar] [CrossRef][Green Version] - Ekert, A.; Hayden, P.; Inamori, H. Basic concepts in quantum computation. arXiv
**2011**, arXiv:quant-ph/0011013. [Google Scholar] - Chen, Z.Y.; Zhou, Q.; Xue, C.; Yang, X.; Guo, G.C.; Guo, G.P. 64-Qubit Quantum Circuit Simulation. Sci. Bull.
**2018**, 63, 964–971. [Google Scholar] [CrossRef] - Biamonte, J.D.; Morales, M.E.S.; Koh, D.E. Quantum Supremacy Lower Bounds by Entanglement Scaling. arXiv
**2018**, arXiv:1808.00460. [Google Scholar] - Long, G.L.; Sun, Y. Efficient Scheme for Initializing a Quantum Register with an Arbitrary Superposed State. Phys. Rev. A
**2001**, 64, 014303. [Google Scholar] [CrossRef] - Mielczarek, J. Quantum circuits for a qubit of space. 2019; In preparation. [Google Scholar]
- Available online: https://algassert.com/quirk (accessed on 25 July 2019).
- Available online: https://sites.google.com/view/quantum-kit/home (accessed on 25 July 2019).
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Oeckl, R. A ‘General boundary’ formulation for quantum mechanics and quantum gravity. Phys. Lett. B
**2003**, 575, 318–324. [Google Scholar] [CrossRef] - Baytas, B.; Bianchi, E.; Yokomizo, N. Gluing polyhedra with entanglement in loop quantum gravity. Phys. Rev. D
**2018**, 98, 026001. [Google Scholar] [CrossRef][Green Version] - Maldacena, J.M. The Large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys.
**1999**, 38, 1113–1133. [Google Scholar] [CrossRef] - Susskind, L. Dear Qubitzers, GR=QM. arXiv
**2017**, arXiv:1708.03040. [Google Scholar] - Swingle, B. Entanglement Renormalization and Holography. Phys. Rev. D
**2012**, 86, 065007. [Google Scholar] [CrossRef] - Ryu, S.; Takayanagi, T. Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett.
**2006**, 96, 181602. [Google Scholar] [CrossRef] [PubMed] - Rangamani, M.; Takayanagi, T. Holographic Entanglement Entropy; Lecture Notes in Physics; Springer: Cham, Switzerland, 2017; Volume 931, p. 1. [Google Scholar]
- Han, M.; Hung, L.Y. Loop Quantum Gravity, Exact Holographic Mapping, and Holographic Entanglement Entropy. Phys. Rev. D
**2017**, 95, 024011. [Google Scholar] [CrossRef] - Biamonte, J.; Bergholm, V. Tensor Networks in a Nutshell. arXiv
**2017**, arXiv:1708.00006. [Google Scholar] - Bojowald, M. Loop quantum cosmology. Living Rev. Relat.
**2008**, 11, 4. [Google Scholar] [CrossRef] [PubMed] - Bianchi, E.; Rovelli, C.; Vidotto, F. Towards Spinfoam Cosmology. Phys. Rev. D
**2010**, 82, 084035. [Google Scholar] [CrossRef] - Vidotto, F. Spinfoam Cosmology: Quantum cosmology from the full theory. J. Phys. Conf. Ser.
**2011**, 314, 012049. [Google Scholar] [CrossRef] - Czech, B.; Lamprou, L.; Susskind, L. Entanglement Holonomies. arXiv
**2018**, arXiv:1807.04276. [Google Scholar] - Donà, P.; Fanizza, M.; Sarno, G.; Speziale, S. SU(2) graph invariants, Regge actions and polytopes. Class. Quantum Gravity
**2018**, 35, 045011. [Google Scholar] [CrossRef][Green Version] - Sarno, G.; Speziale, S.; Stagno, G.V. 2-vertex Lorentzian Spin Foam Amplitudes for Dipole Transitions. Gen. Relat. Gravit.
**2018**, 50, 43. [Google Scholar] [CrossRef] - Dona, P.; Sarno, G. Numerical methods for EPRL spin foam transition amplitudes and Lorentzian recoupling theory. Gen. Relat. Gravit.
**2018**, 50, 127. [Google Scholar] [CrossRef][Green Version] - Dona, P.; Fanizza, M.; Sarno, G.; Speziale, S. Numerical study of the Lorentzian EPRL spin foam amplitude. arXiv
**2019**, arXiv:1903.12624. [Google Scholar] - Oriti, D. Spacetime as a quantum many-body system. arXiv
**2017**, arXiv:1710.02807. [Google Scholar] - Cleve, R.; Ekert, A.; Macchiavello, C.; Mosca, M. Quantum algorithms revisited. Proc. R. Soc. Lond. A
**1998**, 454, 339–354. [Google Scholar] [CrossRef][Green Version] - Kadowaki, T.; Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E
**1998**, 58, 5355. [Google Scholar] [CrossRef] - Available online: https://www.dwavesys.com/home (accessed on 25 July 2019).
- Available online: https://newsroom.intel.com/press-kits/quantum-computing/hashkeytag|quantum-computing (accessed on 25 July 2019).
- Available online: https://qutech.nl/ (accessed on 25 July 2019).
- Available online: https://ai.google/research/teams/applied-science/quantum-ai/ (accessed on 25 July 2019).
- Available online: https://www.rigetti.com/ (accessed on 25 July 2019).
- Available online: https://www.microsoft.com/en-us/quantum/ (accessed on 25 July 2019).
- Available online: https://ionq.co/ (accessed on 25 July 2019).
- Grumbling, E.E.; Horowitz, M. Quantum Computing—Progress and Prospects; The National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- Cross, A.W.; Bishop, L.S.; Sheldon, S.; Nation, P.D.; Gambetta, J.M. Validating quantum computers using randomized model circuits. arXiv
**2018**, arXiv:1811.12926. [Google Scholar] - Available online: https://www.ibm.com/blogs/research/2019/03/power-quantum-device/ (accessed on 25 July 2019).
- Moore, G.E. Cramming more components onto integrated circuits. Electronics
**1965**, 38, 114–117. [Google Scholar] [CrossRef] - Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November1994; pp. 124–134. [Google Scholar]
- Available online: https://complexityzoo.uwaterloo.ca/Complexityunderlinetag_Zoo (accessed on 25 July 2019).
- Grover, L.K. A Fast quantum mechanical algorithm for database search. In Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996. [Google Scholar]

1. | In general, quantum variables associated with higher dimensional Hilbert spaces may be considered. |

2. | In order to prove it let us consider an asymmetric 1D random walk with probabilities $p=\frac{1}{16}$ (one of the basis states) and $q=1-p=\frac{15}{16}$ (rest of the 15 basis sates), for which $\frac{s}{n}=\sqrt{\frac{1}{16}\frac{15}{16}\frac{1}{n}}\approx \frac{1}{4\sqrt{n}}$. |

3. | Performing an inverse mapping ${\widehat{h}}_{x}^{\u2020}(\pi /2)$ we can map the state $i|1\rangle $ back to ${\widehat{h}}_{x}^{\u2020}(\pi /2)i|1\rangle =-i\widehat{X}i|1\rangle =|0\rangle $. |

4. | This statement is made under assumption that no ancilla qubits are required. |

**Figure 2.**A single 4-valent node together with the entering links with spin labels $j=1/2$. The intertwiner qubit $|\mathcal{I}\rangle $ is a degree of freedom defined at the node. The node is dual to the tetrahedron (3-symplex) as represented in the picture.

**Figure 3.**Quantum circuit used to generate $|{0}_{s}\rangle $ state from the initial state $|0000\rangle $. The (green) boxes with letter X represent the bit-flip gates, the (blue) boxes with letter H represents the Hadamard gates, while the next operations from the left are the CNOT 2-qubit gates. Finally, the (pink) boxes on the right represent measurements performed at every one of the four involved qubits.

**Figure 4.**Pentagram spin network corresponding to boundary of a single vertex of spin foam. The boundary geometry has topology of three-sphere.

**Figure 5.**A single-node spin network associated with identification of the pairs of face of a tetrahedron.

**Figure 6.**Quantum circuit used to evaluate ${\left|\langle W|\Psi \rangle \right|}^{2}$ the boundary transition amplitude of the spin network presented in Figure 5.

**Figure 8.**Quantum circuit used to evaluate ${\left|\langle W|\Psi \rangle \right|}^{2}$ the boundary transition amplitude of the spin network presented in Figure 7. The qubits $\{0,1,2,3\}$ belong to the one node while the qubits $\{4,5,6,7\}$ belong to the another. The links are between the pairs of qubits: $\{0,4\}$, $\{1,5\}$, $\{2,6\}$ and $\{3,7\}$.

**Figure 9.**Quantum circuit used to determine $|A({0}_{s},{0}_{s},{0}_{s},{0}_{s},{0}_{s}){|}^{2}$. Nodes of the spin network correspond to the following sets of qubits: $\{0,1,2,3\}$, $\{4,5,6,7\}$, $\{8,9,10,11\}$, $\{12,13,14,15\}$, $\{16,17,18,19\}$. The links are between the pairs of qubits: $\{0,19\}$, $\{1,14\}$, $\{2,9\}$, $\{3,4\}$, $\{5,18\}$, $\{6,13\}$, $\{7,8\}$, $\{10,17\}$, $\{11,12\}$ and $\{15,16\}$.

**Table 1.**Results of measurements of $P\left(i\right)=|{a}_{i}{|}^{2}$ for the quantum circuit presented in Figure 3.

No. | Probability | Theory | IBM Simulator | IBM Q ibmqx4 | QX Simulator |
---|---|---|---|---|---|

1 | $|{a}_{0000}{|}^{2}$ | 0 | 0 | 0.014 | 0 |

2 | $|{a}_{0001}{|}^{2}$ | 0 | 0 | 0.058 | 0 |

3 | $|{a}_{0010}{|}^{2}$ | 0 | 0 | 0.050 | 0 |

4 | $|{a}_{0011}{|}^{2}$ | 0 | 0 | 0.004 | 0 |

5 | $|{a}_{0100}{|}^{2}$ | 0 | 0 | 0.023 | 0 |

6 | $|{a}_{0101}{|}^{2}$ | 0.25 | 0.264 | 0.109 | 0.252 |

7 | $|{a}_{0110}{|}^{2}$ | 0.25 | 0.232 | 0.091 | 0.241 |

8 | $|{a}_{0111}{|}^{2}$ | 0 | 0 | 0.009 | 0 |

9 | $|{a}_{1000}{|}^{2}$ | 0 | 0 | 0.034 | 0 |

10 | $|{a}_{1001}{|}^{2}$ | 0.25 | 0.248 | 0.159 | 0.230 |

11 | $|{a}_{1010}{|}^{2}$ | 0.25 | 0.256 | 0.158 | 0.276 |

12 | $|{a}_{1011}{|}^{2}$ | 0 | 0 | 0.012 | 0 |

13 | $|{a}_{1100}{|}^{2}$ | 0 | 0 | 0.034 | 0 |

14 | $|{a}_{1101}{|}^{2}$ | 0 | 0 | 0.132 | 0 |

15 | $|{a}_{1110}{|}^{2}$ | 0 | 0 | 0.110 | 0 |

16 | $|{a}_{1111}{|}^{2}$ | 0 | 0 | 0.003 | 0 |

**Table 2.**Results of measurements of $P\left(0\right)=|{a}_{0}{|}^{2}$ for the quantum circuit presented in Figure 6, using both the IBM simulator and the QX simulator. Each measurement corresponds to the number of shots equal to 1024.

No. | ${\mathit{P}}_{0}$ (QX) | Hits of $|0\rangle $ (QX) | ${\mathit{P}}_{0}$ (IBM) | Hits of $|0\rangle $ (IBM) |
---|---|---|---|---|

1 | 0.255859375 | 262 | 0.263671875 | 270 |

2 | 0.248046875 | 254 | 0.2529296875 | 259 |

3 | 0.267578125 | 274 | 0.2578125 | 264 |

4 | 0.2568359375 | 263 | 0.27734375 | 284 |

5 | 0.2568359375 | 263 | 0.232421875 | 238 |

6 | 0.25 | 256 | 0.263671875 | 270 |

7 | 0.2578125 | 264 | 0.25 | 256 |

8 | 0.23828125 | 244 | 0.244140625 | 250 |

9 | 0.240234375 | 246 | 0.2607421875 | 267 |

10 | 0.25 | 256 | 0.2763671875 | 283 |

**Table 3.**Results of measurements of $P\left(0\right)=|{a}_{0}{|}^{2}$ for the quantum circuit presented in Figure 8 using both the IBM simulator and the QX simulator. Each measurement corresponds to the number of shots equal 1024.

No. | ${\mathit{P}}_{0}$ (QX) | Hits of $|0\rangle $ (QX) | ${\mathit{P}}_{0}$ (IBM) | Hits of $|0\rangle $ (IBM) |
---|---|---|---|---|

1 | 0.0595703125 | 61 | 0.0556640625 | 57 |

2 | 0.0595703125 | 61 | 0.06640625 | 68 |

3 | 0.06640625 | 68 | 0.060546875 | 62 |

4 | 0.0615234375 | 63 | 0.064453125 | 66 |

5 | 0.080078125 | 82 | 0.0634765625 | 65 |

6 | 0.0498046875 | 51 | 0.0595703125 | 61 |

7 | 0.052734375 | 54 | 0.0615234375 | 63 |

8 | 0.072265625 | 74 | 0.0537109375 | 55 |

9 | 0.0673828125 | 69 | 0.052734375 | 54 |

10 | 0.0634765625 | 65 | 0.0654296875 | 67 |

**Table 4.**Results of measurements of $P\left(0\right)=|{a}_{0}{|}^{2}$ for the quantum circuit presented in Figure 9 using the QX simulator. Each measurement corresponds to the number of shots equal to 1024.

No. | ${\mathit{P}}_{0}$ | Hits of $|0\rangle $ |
---|---|---|

1 | 0.0009765625 | 1 |

2 | 0.0029296875 | 3 |

3 | 0 | 0 |

4 | 0.0009765625 | 1 |

5 | 0.001953125 | 2 |

6 | 0.0009765625 | 1 |

7 | 0.001953125 | 2 |

8 | 0.0009765625 | 1 |

9 | 0.0029296875 | 3 |

10 | 0.0009765625 | 1 |

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mielczarek, J.
Spin Foam Vertex Amplitudes on Quantum Computer—Preliminary Results. *Universe* **2019**, *5*, 179.
https://doi.org/10.3390/universe5080179

**AMA Style**

Mielczarek J.
Spin Foam Vertex Amplitudes on Quantum Computer—Preliminary Results. *Universe*. 2019; 5(8):179.
https://doi.org/10.3390/universe5080179

**Chicago/Turabian Style**

Mielczarek, Jakub.
2019. "Spin Foam Vertex Amplitudes on Quantum Computer—Preliminary Results" *Universe* 5, no. 8: 179.
https://doi.org/10.3390/universe5080179