Next Article in Journal
The Dynamical Origin of the Graviton Mass in the Non-Linear Theory of Massive Gravity
Previous Article in Journal / Special Issue
Gravitational Radiation, Vorticity And Super–Energy: A Conspicuous Threesome
Article Menu

Export Article

Open AccessArticle

A HERO for General Relativity

Ministero dell’Istruzione, dell’Università e della Ricerca (M.I.U.R.)-Istruzione, Viale Unità di Italia 68, 70125 Bari (BA), Italy
Universe 2019, 5(7), 165; https://doi.org/10.3390/universe5070165
Received: 14 June 2019 / Revised: 29 June 2019 / Accepted: 1 July 2019 / Published: 5 July 2019
(This article belongs to the Special Issue Rotation Effects in Relativity)
  |  
PDF [1114 KB, uploaded 11 July 2019]

Abstract

HERO (Highly Eccentric Relativity Orbiter) is a space-based mission concept aimed to perform several tests of post-Newtonian gravity around the Earth with a preferably drag-free spacecraft moving along a highly elliptical path fixed in its plane undergoing a relatively fast secular precession. We considered two possible scenarios—a fast, 4-h orbit with high perigee height of 1047 km and a slow, 21-h path with a low perigee height of 642 km . HERO may detect, for the first time, the post-Newtonian orbital effects induced by the mass quadrupole moment J 2 of the Earth which, among other things, affects the semimajor axis a via a secular trend of ≃4–12 cm yr 1 , depending on the orbital configuration. Recently, the secular decay of the semimajor axis of the passive satellite LARES was measured with an error as little as 0 . 7 cm yr 1 . Also the post-Newtonian spin dipole (Lense-Thirring) and mass monopole (Schwarzschild) effects could be tested to a high accuracy depending on the level of compensation of the non-gravitational perturbations, not treated here. Moreover, the large eccentricity of the orbit would allow one to constrain several long-range modified models of gravity and accurately measure the gravitational red-shift as well. Each of the six Keplerian orbital elements could be individually monitored to extract the G J 2 / c 2 signature, or they could be suitably combined in order to disentangle the post-Newtonian effect(s) of interest from the competing mismodeled Newtonian secular precessions induced by the zonal harmonic multipoles J of the geopotential. In the latter case, the systematic uncertainty due to the current formal errors σ J of a recent global Earth’s gravity field model are better than 1 % for all the post-Newtonian effects considered, with a peak of 10 7 for the Schwarzschild-like shifts. Instead, the gravitomagnetic spin octupole precessions are too small to be detectable. View Full-Text
Keywords: general relativity and gravitation; experimental studies of gravity; experimental tests of gravitational theories; satellite orbits general relativity and gravitation; experimental studies of gravity; experimental tests of gravitational theories; satellite orbits
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Iorio, L. A HERO for General Relativity. Universe 2019, 5, 165.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Universe EISSN 2218-1997 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top