Energy Dependent Chemical Potentials of Light Particles and Quarks from Yield Ratios of Antiparticles to Particles in High Energy Collisions
Abstract
1. Introduction
2. The Method and Formalism
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Data Availability
References
- Cleymans, J.; Oeschler, H.; Redlich, K.; Wheaton, S. Comparison of chemical freeze-out criteria in heavy-ion collisions. Phys. Rev. C 2006, 73, 034905. [Google Scholar] [CrossRef]
- Andronic, A.; Braun-Munzinger, P.; Stachel, J. The horn, the hadron mass spectrum and the QCD phase diagram: The statistical model of hadron production in central nucleus-nucleus collisions. Nucl. Phys. A 2010, 834, 237c–240c. [Google Scholar] [CrossRef]
- Adamczyk, L.; et al. [STAR Collaboration]. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program. Phys. Rev. C 2017, 96, 044904. [Google Scholar] [CrossRef]
- Bellwied, R. Sequential strangeness freeze-out. EPJ Web Conf. 2018, 171, 02006. [Google Scholar] [CrossRef]
- Turko, L.; et al. [NA61/SHINE Collaboration]. Looking for the phase transition—Recent NA61/SHINE results. Universe 2018, 4, 52. [Google Scholar] [CrossRef]
- Grebieszkow, K.; et al. [NA61/SHINE Collaboration]. News from strong interactions program of the NA61/SHINE experiment. Acta Phys. Polon. B Proc. Suppl. 2017, 10, 589–596. [Google Scholar] [CrossRef]
- Xu, N.; et al. [STAR Collaboration]. An overview of STAR experimental results. Nucl. Phys. A 2014, 931, 1. [Google Scholar] [CrossRef]
- Yang, C.; et al. [STAR Collaboration]. The STAR beam energy scan phase II physics and upgrades. Nucl. Phys. A 2017, 967, 800–803. [Google Scholar] [CrossRef]
- Arslandok, M.; et al. [ALICE Collaboration]. Event-by-event identified particle ratio fluctuations in Pb-Pb collisions with ALICE using the identity method. Nucl. Phys. A 2017, 956, 870–873. [Google Scholar] [CrossRef]
- Aaij, R.; et al. [LHCb Collaboration]. Measurement of the inelastic pp cross-section at a centre-of-mass energy of = 7 TeV. J. High Energy Phys. 2015, 2015, 129. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; et al. [CMS Collaboration]. Measurements of differential cross sections of top quark pair production as a function of kinematic event variables in proton-proton collisions at = 13 TeV. J. High Energy Phys. 2018, 2018, 002. [Google Scholar] [CrossRef]
- Aaboud, M.; et al. [ATLAS Collaboration]. Measurements of top-quark pair differential cross-sections in the eμ channel in pp collisions at = 13 TeV using the ATLAS detector. Eur. Phys. J. C 2017, 77, 292. [Google Scholar] [CrossRef] [PubMed]
- Klay, J.L.; et al. [E895 Collaboration]. Charged pion production in 2 to 8A GeV central Au + Au collisions. Phys. Rev. C 2003, 68, 054905. [Google Scholar] [CrossRef]
- Ahle, L.; et al. [E866/E917 Collaboration]. An excitation function of K− and K+ production in Au + Au reactions at the AGS. Phys. Lett. B 2000, 409, 53–60. [Google Scholar] [CrossRef]
- Klay, J.L.; et al. [E895 Collaboration]. Longitudinal flow from (2–8)A GeV Au + Au collisions. Phys. Rev. Lett. 2002, 88, 102301. [Google Scholar] [CrossRef] [PubMed]
- Akiba, Y. [E802 Collaboration]. Particle production in Au + Au collisions from BNL E866. Nucl. Phys. A 1996, 610, 139c. [Google Scholar] [CrossRef]
- Ahle, L.; et al. [E802 Collaboration]. Particle production at high baryon density in central Au + Au reactions at 11.6A GeV/c. Phys. Rev. C 1998, 57, R466–R477. [Google Scholar] [CrossRef]
- Adcox, K.; et al. [PHENIX Collaboration]. Single identified hadron spectra from = 130 GeV Au + Au collisions. Phys. Rev. C 2004, 69, 024904. [Google Scholar] [CrossRef]
- Adcox, K.; et al. [PHENIX Collaboration]. Centrality dependence of π+/π−, K+/K−, p and production from = 13 GeV Au + Au collisions at RHIC. Phys. Rev. Lett. 2002, 88, 242301. [Google Scholar] [CrossRef]
- Adler, S.S.; et al. [PHENIX Collaboration]. Identified charged particle spectra and yields in Au + Au collisions at = 200 GeV. Phys. Rev. C 2004, 69, 034909. [Google Scholar] [CrossRef]
- Abelev, B.; et al. [STAR Collaboration]. Identified particle production, azimuthal anisotropy, and interferometry measurements in Au + Au collisions at = 9.2 GeV. Phys. Rev. C 2010, 81, 024911. [Google Scholar] [CrossRef]
- Abelev, B.; et al. [STAR Collaboration]. Systematic measurements of identified particle spectra in pp, d + Au and Au + Au collisions from STAR. Phys. Rev. C 2009, 79, 034909. [Google Scholar] [CrossRef]
- Adams, J.; et al. [STAR Collaboration]. Identified particle distributions in pp and Au + Au collisions at = 200 GeV. Phys. Rev. Lett. 2004, 92, 112301. [Google Scholar] [CrossRef] [PubMed]
- Alt, C.; et al. [NA49 Collaboration]. Pion and kaon production in central Pb + Pb collisions at 20A and 30A GeV: Evidence for the onset of deconfinement. Phys. Rev. C 2008, 77, 024903. [Google Scholar] [CrossRef]
- Afanasiev, S.V.; et al. [NA49 Collaboration]. Energy dependence of pion and kaon production in central Pb + Pb collisions. Phys. Rev. C 2002, 66, 054902. [Google Scholar] [CrossRef]
- Alt, C.; et al. [NA49 Collaboration]. Energy and centrality dependence of and p production and the / ratio in Pb + Pb collisions between 20A GeV and 158A GeV. Phys. Rev. C 2006, 73, 044910. [Google Scholar] [CrossRef]
- Afanasiev, S.V.; et al. [NA49 Collaboration]. Energy and centrality dependence of deuteron and proton production in Pb + Pb collisions at relativistic energies. Phys. Rev. C 2004, 69, 024902. [Google Scholar]
- Bearden, I.G.; et al. [NA44 Collaboration]. Particle production in central Pb + Pb collisions at 158A GeV/c. Phys. Rev. C 2002, 66, 044907. [Google Scholar] [CrossRef]
- Abelev, B.; et al. [ALICE Collaboration]. Centrality dependence of π, K, p production in Pb-Pb collisions at = 2.76 TeV. Phys. Rev. C 2013, 88, 044910. [Google Scholar] [CrossRef]
- Aduszkiewicz, A.; et al. [NA61/SHINE Collaboration]. Measurements of π±, K±, p and spectra in proton-proton interactions at 20, 31, 40, 80 and 158 GeV/c with the NA61/SHINE spectrometer at the CERN SPS. Eur. Phys. J. C 2017, 77, 671. [Google Scholar] [CrossRef]
- Abelev, B.I.; et al. [STAR Collaboration]. Strange particle production in p+p collisions at = 200 GeV. Phys. Rev. C 2007, 75, 064901. [Google Scholar] [CrossRef]
- Aamodt, K.; et al. [ALICE Collaboration]. Production of pions, kaons and protons in pp collisions at = 900 GeV with ALICE at the LHC. Eur. Phys. J. C 2011, 71, 1655. [Google Scholar] [CrossRef]
- Chatrchyan, S.; et al. [CMS Collaboration]. Study of the inclusive production of charged pions, kaons, and protons in pp collisions at = 0.9, 2.76, and 7 TeV. Eur. Phys. J. C 2012, 72, 2164. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; et al. [CMS Collaboration]. Measurement of charged pion, kaon, and proton production in proton-proton collisions at = 13 TeV. Phys. Rev. D 2017, 96, 112003. [Google Scholar] [CrossRef]
- Gao, Y.-Q.; Lao, H.-L.; Liu, F.-H. Chemical potentials of light flavor quarks from yield ratios of negative to positive particles in Au+Au collisions at RHIC. Adv. High Energy Phys. 2018, 2018, 6047960. [Google Scholar] [CrossRef]
- Koch, P.; Rafelski, J.; Greiner, W. Strange hadron in hot nuclear matter. Phys. Lett. B 1983, 123, 151–154. [Google Scholar] [CrossRef]
- Braun-Munzinger, P.; Magestro, D.; Redlich, K.; Stachel, J. Hadron production in Au-Au collisions at RHIC. Phys. Lett. B 2001, 518, 41–46. [Google Scholar] [CrossRef]
- Andronic, A.; Braun-Munzinger, P.; Stachel, J. Thermal hadron production in relativistic nuclear collisions. Acta Phys. Pol. B 2009, 40, 1005–1012. [Google Scholar]
- Andronic, A.; Braun-Munzinger, P.; Stachel, J. Hadron production in central nucleus-nucleus collisions at chemical freeze-out. Nucl. Phys. A 2006, 772, 167. [Google Scholar] [CrossRef]
- Arsene, I.; et al. [BRAHMS Collaboration]. Quark gluon plasma and color glass condensate at RHIC? the perspective from the BRAHMS experiment. Nucl. Phys. A 2005, 757, 1–27. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, F.-H. On extraction of chemical potentials of quarks from particle transverse momentum spectra in high energy collisions. Adv. High Energy Phys. 2015, 2015, 137058. [Google Scholar] [CrossRef]
- Yu, N.; Luo, X.-F. Particle decay from statistical thermal model in high-energy nucleus-nucleus collisions. Eur. Phys. J. A 2019, 55, 26. [Google Scholar] [CrossRef]
- Begun, V.V.; Vovchenko, V.; Gorenstein, M.I.; Stoecker, H.; Motornenko, A. Hadron yields and fluctuations at energies available at the CERN Super Proton Synchrotron: System-size dependence from Pb + Pb to p+p collisions. Phys. Rev. C 2019, 99, 034909. [Google Scholar]
- Begun, V.V.; Vovchenko, V.; Gorenstein, M.I.; Stoecker, H. Statistical hadron-gas treatment of systems created in proton-proton interactions at energies available at the CERN Super Proton Synchrotron. Phys. Rev. C 2018, 98, 054909. [Google Scholar] [CrossRef]
- Begun, V.V.; Vovchenko, V.; Gorenstein, M.I. Surprises for the chemical freeze-out lines from the new data in p+p and A+A collisions. Acta Phys. Pol. B Proc. Supp. 2017, 10, 467–471. [Google Scholar] [CrossRef]
- Vovchenko, V.; Begun, V.V.; Gorenstein, M.I. Hadron multiplicities and chemical freeze-out conditions in proton-proton and nucleus-nucleus collisions. Phys. Rev. C 2016, 93, 064906. [Google Scholar] [CrossRef]



© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lao, H.-L.; Gao, Y.-Q.; Liu, F.-H. Energy Dependent Chemical Potentials of Light Particles and Quarks from Yield Ratios of Antiparticles to Particles in High Energy Collisions. Universe 2019, 5, 152. https://doi.org/10.3390/universe5060152
Lao H-L, Gao Y-Q, Liu F-H. Energy Dependent Chemical Potentials of Light Particles and Quarks from Yield Ratios of Antiparticles to Particles in High Energy Collisions. Universe. 2019; 5(6):152. https://doi.org/10.3390/universe5060152
Chicago/Turabian StyleLao, Hai-Ling, Ya-Qin Gao, and Fu-Hu Liu. 2019. "Energy Dependent Chemical Potentials of Light Particles and Quarks from Yield Ratios of Antiparticles to Particles in High Energy Collisions" Universe 5, no. 6: 152. https://doi.org/10.3390/universe5060152
APA StyleLao, H.-L., Gao, Y.-Q., & Liu, F.-H. (2019). Energy Dependent Chemical Potentials of Light Particles and Quarks from Yield Ratios of Antiparticles to Particles in High Energy Collisions. Universe, 5(6), 152. https://doi.org/10.3390/universe5060152

