Gauge Structure of Teleparallel Gravity †
Abstract
:1. Lessons on Bundles and Gauge Theories
1.1. The Frame Bundle
1.2. The Gauge-Theoretic Bundle Framework of Teleparallel Gravity
2. Lessons on Spin Connections and Frames
2.1. Spin Connection in Special Relativity
2.2. Spin Connection in Teleparallel Gravity
3. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. The Flat Levi–Civita Connection
References
- Fontanini, M.; Huguet, E.; Le Delliou, M. Teleparallel gravity equivalent of general relativity as a gauge theory: Translation or Cartan connection? Phys. Rev. D 2019, 99, 064006. [Google Scholar] [CrossRef] [Green Version]
- Aldrovandi, R.; Pereira, J.G. An Introduction to Geometrical Physics, 2nd ed.; World Scientific: Singapore, 2017; Chapter 9. [Google Scholar]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Marsh, A. Mathematics for Physics: An Illustrated Handbook; World Scientific: Singapore, 2018. [Google Scholar]
- Cho, Y.M. Einstein Lagrangian as the translational Yang-Mills Lagrangian. Phys. Rev. D 1976, 14, 2521–2525. [Google Scholar] [CrossRef]
- Giulini, D. The Rich Structure of Minkowski Space. In Minkowski Spacetime: A Hundred Years Later; Petkov, V., Ed.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Skorobogatov, A. Torsors and Rational Points; Cambridge Tracts in Mathematics; Cambridge University Press: Cambridge, UK, 2001; Volume 144. [Google Scholar]
- Baez, J. Torsors Made Easy. Available online: http://math.ucr.edu/home/baez/torsors.html (accessed on 3 June 2019).
- Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry; Wiley: New York, NY, USA, 1963; Volume 1, Section III. [Google Scholar]
- Pereira, J.G. Teleparallelism: A new insight into gravity. In Springer Handbook of Spacetime; Ashtekar, A., Petkov, V., Eds.; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity: An Introduction; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Gribl Lucas, T.; Pereira, J.G. Hodge Dual for Soldered Bundles. J. Phys. A 2009, 42, 035402. [Google Scholar] [CrossRef]
- Itin, Y.; Obukhov, Y.N.; Boos, J.; Hehl, F.W. Premetric teleparallel theory of gravity and its local and linear constitutive law. Eur. Phys. J. C 2018, 78, 907. [Google Scholar] [CrossRef]
- Gribl Lucas, T.; Obukhov, Y.N.; Pereira, J.G. Regularizing role of teleparallelism. Phys. Rev. D 2009, 80, 064043. [Google Scholar] [CrossRef] [Green Version]
- Krššák, M.; van den Hoogen, R.J.; Pereira, J.G.; Boehmer, C.G.; Coley, A.A. Teleparallel Theories of Gravity: Illuminating a Fully Invariant Approach. arXiv 2018, arXiv:1810.12932. [Google Scholar]
- Krššák, M.; Pereira, J.G. Spin Connection and Renormalization of Teleparallel Action. Eur. Phys. J. C 2015, 75, 519. [Google Scholar] [CrossRef]
- Obukhov, Y.N.; Pereira, J.G. Metric-affine approach to teleparallel gravity. Phys. Rev. D 2003, 67, 044016. [Google Scholar] [CrossRef] [Green Version]
- Blagojević, M.; Hehl, F.W. (Eds.) Gauge Theories of Gravitation: A Reader with Commentaries; Imperial College Press: London, UK, 2013. [Google Scholar]
- Ponomarev, V.N.; Barvinsky, A.O.; Obukhov, Y.N. Gauge Approach and Quantization Methods in Gravity Theory; Nauka: Moscow, Russia, 2017. [Google Scholar]
1 | For practical purposes, we use the same notations of Ref. [1] |
2 | In differential geometry, this kind of space is sometimes called a G-torsor, where G is the group whose point set is the space itself [7]. For an intuitive, physically motivated description of the concept of torsor as a principal homogeneous space (i.e., a space that carries a free and transitive action of the structure group), see Ref. [8]. |
3 | The Levi–Civita connection is a special case of local Lorentz connection, which is uniquely determined by the metric-compatibility and the torsion-free conditions. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, J.G.; Obukhov, Y.N. Gauge Structure of Teleparallel Gravity. Universe 2019, 5, 139. https://doi.org/10.3390/universe5060139
Pereira JG, Obukhov YN. Gauge Structure of Teleparallel Gravity. Universe. 2019; 5(6):139. https://doi.org/10.3390/universe5060139
Chicago/Turabian StylePereira, José G., and Yuri N. Obukhov. 2019. "Gauge Structure of Teleparallel Gravity" Universe 5, no. 6: 139. https://doi.org/10.3390/universe5060139
APA StylePereira, J. G., & Obukhov, Y. N. (2019). Gauge Structure of Teleparallel Gravity. Universe, 5(6), 139. https://doi.org/10.3390/universe5060139