The Gravitational Magnetoelectric Effect
Abstract
:1. Introduction
2. Spacetime as a Medium
2.1. Constitutive Tensor Density
2.2. Zero Weight Formalism
2.3. Unit Weight Formalism
3. Gravitational Magnetoelectric Effect
4. Applications
4.1. Minkowski-Langevin
4.2. Schwarzschild Spacetime
4.2.1. Schwarzschild Coordinates
4.2.2. Null Cone Coordinates
4.2.3. Painlevé–Gullstrand Coordinates
4.2.4. Kerr–Schild Coordinates
4.3. Gravitational Waves
4.3.1. Baldwin–Jeffery-Rosen Coordinates
4.3.2. Brinkmann Coordinates
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Landau, L.D.; Lifshitz, E.M. Electrodynamics of Continuous Media; Pergamon Press: Oxford, UK, 1984. [Google Scholar]
- Dzyaloshinskii, I.E. On the magneto-electrical effect in antiferromagnets. J. Exp. Theor. Phys. 1960, 37, 881–882. [Google Scholar]
- Astrov, D. The magnetoelectric effect in antiferromagnetics. Soviet Phys. JETP 1960, 11, 708–709. [Google Scholar]
- Sawada, K.; Nagaosa, N. Optical magnetoelectric effect in multiferroic materials: Evidence for a Lorentz force acting on a ray of light. Phys. Rev. Lett. 2005, 95, 237402. [Google Scholar] [CrossRef] [PubMed]
- Eerenstein, W.; Mathur, N.D.; Scott, J.F. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Plebanski, J. Electromagnetic waves in gravitational fields. Phys. Rev. 1960, 118, 1396–1408. [Google Scholar] [CrossRef]
- Skrotskii, G.V. The influence of gravitation on the propagation of light. Soviet Phys. Doklady 1957, 2, 226–229. [Google Scholar]
- Leonhardt, U.; Philbin, T.G. General relativity in electrical engineering. New J. Phys. 2006, 8, 247. [Google Scholar] [CrossRef]
- Crudo, R.A.; O’Brien, J.G. Metric approach to transformation optics. Phys. Rev. A 2009, 80, 033824. [Google Scholar] [CrossRef]
- Mashhoon, B. Can Einstein’s theory of gravitation be tested beyond the geometrical optics limit? Nature 1974, 250, 316–317. [Google Scholar] [CrossRef]
- Nouri-Zonoz, M. Gravoelectromagnetic approach to the gravitational Faraday rotation in stationary space-times. Phys. Rev. D 1999, 60, 024013. [Google Scholar] [CrossRef]
- Sereno, M. Gravitational Faraday rotation in a weak gravitational field. Phys. Rev. D 2004, 69, 087501. [Google Scholar] [CrossRef]
- Post, E.J. Formal Structure of Electromagnetics: General Covariance and Electromagnetics; North Holland: Amsterdam, The Netherlands, 1962. [Google Scholar]
- Bateman, H. Kummer’s quartic surface as a wave surface. Proc. Lond. Math. Soc. 1910, 8, 375–382. [Google Scholar] [CrossRef]
- Hehl, F.W.; Obukhov, Y.N. Foundations of Classical Electrodynamics; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Rätzel, D.; Rivera, S.; Schuller, F.P. Geometry of physical dispersion relations. Phys. Rev. D 2011, 83, 044047. [Google Scholar] [CrossRef]
- Frolov, V.P.; Shoom, A.A. Spinoptics in a stationary spacetime. Phys. Rev. D 2011, 84, 044026. [Google Scholar] [CrossRef]
- Torres del Castillo, G.F.; Mercado-Pérez, J. Three-dimensional formulation of the Maxwell equations for stationary spacetimes. J. Math. Phys. 1999, 40, 2882–2890. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Herdeiro, C.A.R.; Warnick, C.M.; Werner, M.C. Stationary metrics and optical Zermelo-Randers-Finsler geometry. Phys. Rev. D 2009, 79, 044022. [Google Scholar] [CrossRef]
- Volkov, A.M.; Izmest’ev, A.A.; Skrotskii, G.V. The propagation of electromagnetic waves in a Riemannian space. Sov. Phys. JETP 1971, 32, 686–689. [Google Scholar]
- Duff, M.J. Quantum tree graphs and the Schwarzschild solution. Phys. Rev. D 1973, 7, 2317–2326. [Google Scholar] [CrossRef]
- Baldwin, O.R.; Jeffery, G.B. The relativity theory of plane waves. Proc. R. Soc. Lond. A 1926, 111, 95–104. [Google Scholar] [CrossRef]
- Duval, C.; Gibbons, G.W.; Horvathy, P.A.; Zhang, P.-M. Carroll symmetry of plane gravitational waves. Class. Quantum Grav. 2017, 34, 175003. [Google Scholar] [CrossRef]
- Xanthopoulos, B.C. Exact vacuum solutions of Einstein’s equations from linearlised solutions. J. Math. Phys. 1978, 19, 1607–1609. [Google Scholar] [CrossRef]
- Brodutch, A.; Demarie, T.F.; Terno, D.R. Photon polarization and geometric phase in general relativity. Phys. Rev. D 2011, 84, 104043. [Google Scholar] [CrossRef]
- Harte, A.I. Optics in a nonlinear gravitational plane wave. Class. Quantum Grav. 2015, 32, 175017. [Google Scholar] [CrossRef]
- Shalaev, V.M. Transforming light. Science 2008, 322, 384–386. [Google Scholar] [CrossRef] [PubMed]
1 | In the language of Feynmann graphs [21] in this gauge, there is just a single non-vanishing tree graph. |
2 | Usually referred to as Rosen coordinates, however, cf. [22]. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibbons, G.W.; Werner, M.C. The Gravitational Magnetoelectric Effect. Universe 2019, 5, 88. https://doi.org/10.3390/universe5040088
Gibbons GW, Werner MC. The Gravitational Magnetoelectric Effect. Universe. 2019; 5(4):88. https://doi.org/10.3390/universe5040088
Chicago/Turabian StyleGibbons, Gary W., and Marcus C. Werner. 2019. "The Gravitational Magnetoelectric Effect" Universe 5, no. 4: 88. https://doi.org/10.3390/universe5040088
APA StyleGibbons, G. W., & Werner, M. C. (2019). The Gravitational Magnetoelectric Effect. Universe, 5(4), 88. https://doi.org/10.3390/universe5040088