Conceptual Challenges on the Road to the Multiverse
Abstract
:1. Introduction
2. The Multiverse: Nothing New under the Suns?
3. Definition and Classification of the Multiverse
3.1. Physically Motivated Multiverse Scenarios
4. Philosophical Aspects
4.1. Philosophy of Science and the Description of Scientific Progress
4.2. Application to the Multiverse
4.2.1. Popper
4.2.2. Kuhn
4.2.3. Lakatos
4.2.4. Feyerabend
4.2.5. Bayesianism
4.3. Consistency and Uniqueness Claims
5. Fine-Tuning and the Multiverse… or Is It Really a Tale of Scales?
6. Physical Multiverse and Testability
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carr, B. (Ed.) Universe or Multiverse? Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Chamcham, K.; Silk, J.; Barrow, J.D.; Saunders, S. (Eds.) The Philosophy of Cosmology; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Dardashti, R.; Dawid, R.; Thébault, K. (Eds.) Epistemology of Fundamental Physics: Why Trust a Theory? Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Barrau, A. Physics in the multiverse: An introductory review. CERN Cour. 2007, 47, 13–17. [Google Scholar]
- Linde, A. A brief history of the multiverse. Rep. Prog. Phys. 2017, 80, 022001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, G.; Silk, J. Scientific method: Defend the integrity of physics. Nature 2014, 516, 321–323. [Google Scholar] [CrossRef] [PubMed]
- Ellis, G. Does the Multiverse Really Exist? Sci. Am. 2011, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Kragh, H. Contemporary History of Cosmology and the Controversy over the Multiverse. Ann. Sci. 2009, 66, 529–551. [Google Scholar] [CrossRef]
- Bettini, S. A Cosmic Archipelago: Multiverse Scenarios in the History of Modern Cosmology. arXiv 2005, arXiv:physics/0510111. [Google Scholar]
- Rioja, A.; Ordoñez, J. Teorías del Universo; Síntesis: Madrid, Spain, 2006. [Google Scholar]
- Bower, R.G.; McLeish, T.C.B.; Tanner, B.K.; Smithson, H.E.; Panti, C.; Lewis, N.; Gasper, G.E.M. A medieval multiverse?: Mathematical modelling of the thirteenth century universe of Robert Grosseteste. Proc. R. Soc. Lond. A 2014, 470, 20140025. [Google Scholar] [CrossRef] [Green Version]
- Bruno, G. De la causa, principio et Uno 1584. For a Modern Translation, see Bruno, G. Cause, Principle and Unity; Translated and Edited by De Lucca, R.; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Swedenborg, E. Principia Rerum Naturalium 1734; Translated by J. R. Rendell and I. Tansley as: The Principia Or The First Principles Of Natural Things; The Swedenborg Society: London, UK, 1912. [Google Scholar]
- Wright, T. An Original Theory or New Hypothesis of the Universe, Founded upon the Laws of Nature; Modern Edition; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Kant, I. Universal Natural History and Theory of the Heavens, 1755; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Von Humboldt, A. Cosmos: A Sketch of a Physical Description of the Universe, 1845–1862; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Shapley, H.; Curtis, H.D. The scale of the universe. Bull. Natl. Res. Council 1921, 2, 171–217. [Google Scholar]
- Leibniz, G.W. Essais de Théodicée sur la Bonté de Dieu, la Liberté de L’homme et L’origine du mal. Amsterdam 1710; For a Modern Translation, see e.g., Leibniz, G.W. Theodicy: Essays on the Goodness of God, the Freedom of Man, and the Origin of Evil; Huggard, E.M., Translator; Open Court: Lasalle, IL, USA, 1985. [Google Scholar]
- Schopenhauer, A. Von der Nichtigkeit und dem Leiden des Lebens. Chapter 46 in: Die Welt als Wille und Vorstellung, First Included in the 2nd Expanded Edition 1844; For a Modern Translation, see e.g., Schopenhauer, A. On the Vanity and Suffering of Life. Chapter 46 in: The World as Will and Representation; Payne, E.F.J., Translator; Dover: New York, NY, USA, 1969. [Google Scholar]
- Rees, M. Just Six Numbers: The Deep Forces that Shape the Universe; Weidenfeld & Nicolson: London, UK, 1999. [Google Scholar]
- Śrīmad-Bhāgavatam (Bhāgavata Purāna) 6.16.37; The Translation Is Taken from Ramesh Menon, Bhagavata Purana, The Holy Book of Vishnu (2 vols.); Vedic Books: Delhi, India, 2007.
- Page, D. Does God So Love the Multiverse? In Science and Religion in Dialogue; Stewart, M.Y., Ed.; Blackwell Publishing: Hoboken, NJ, USA, 2010. [Google Scholar]
- Rees, M. On the Future—Prospects for Humanity; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar]
- Livio, M.; Rees, M. Fine-Tuning, Complexity, and Life in the Multiverse. arXiv arXiv:1801.06944. To appear in: Consolidation of Fine Tuning (forthcoming).
- Vilenkin, A. Many Worlds in One: The Search for Other Universes; Hill and Wang: New York, NY, USA, 2007. [Google Scholar]
- Kragh, H. An anthropic myth: Fred Hoyle’s carbon-12 resonance level. Arch. Hist. Exact Sci. 2010, 64, 721. [Google Scholar] [CrossRef]
- Vilenkin, A. The principle of mediocrity. Astron. Geophys. 2011, 52, 5–33. [Google Scholar] [CrossRef]
- Hartle, J.B.; Hawking, S.W. Wave function of the Universe. Phys. Rev. D 1983, 28, 2960. [Google Scholar] [CrossRef]
- Vilenkin, A. Boundary conditions in quantum cosmology. Phys. Rev. D 1986, 33, 3560. [Google Scholar] [CrossRef] [PubMed]
- Gott, J.R., III; Li, L.X. Can the universe create itself? Phys. Rev. D 1998, 58, 023501. [Google Scholar] [CrossRef]
- Tegmark, M. The multiverse hierarchy. In Universe or Multiverse? Carr, B., Ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Everett, H. Relative state formulation of quantum mechanics. Rev. Mod. Phys. 1957, 29, 454. [Google Scholar] [CrossRef]
- Linde, A.D. Eternal chaotic inflation. Mod. Phys. Lett. A 1986, 1, 81. [Google Scholar] [CrossRef]
- Linde, A.D. Eternally existing selfreproducing chaotic inflationary Universe. Phys. Lett. B 1986, 175, 395. [Google Scholar] [CrossRef]
- Linde, A.; Vanchurin, V. How many universes are in the multiverse? Phys. Rev. D 2010, 81, 083525. [Google Scholar] [CrossRef]
- Susskind, L. The anthropic landscape of string theory. In Universe or Multiverse? Carr, B., Ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Holman, R.; Mersini-Houghton, L.; Takahashi, T. Cosmological avatars of the landscape. II. CMB and LSS signatures. Phys. Rev. D 2008, 77, 063511. [Google Scholar] [CrossRef] [Green Version]
- Vafa, C. The String landscape and the swampland. arXiv 2005, arXiv:hep-th/0509212v2. [Google Scholar]
- Johnson, M.C.; Lehners, J.L. Cycles in the Multiverse. Phys. Rev. D 2012, 85, 103509. [Google Scholar] [CrossRef]
- Penrose, R. Before the Big Bang: An outrageous new perspective and its implications for particle physics. Conf. Proc. C060626 2006, 2759. [Google Scholar]
- Baumann, D.; McAllister, L. Inflation and String Theory. Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Bousso, R.; Susskind, L. The Multiverse Interpretation of Quantum Mechanics. Phys. Rev. D 2012, 85, 045007. [Google Scholar] [CrossRef]
- Dawid, R. String Theory and the Scientific Method; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Rees, M.J. Cosmology and the multiverse. In Universe or Multiverse? Carr, B., Ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Di Valentino, E.; Mersini-Houghton, L. Testing Predictions of the Quantum Landscape Multiverse 1: The Starobinsky Inflationary Potential. J. Cosmol. Astropart. Phys. 2017, 1703, 002. [Google Scholar] [CrossRef]
- Kinney, W.H. Limits on Entanglement Effects in the String Landscape from Planck and BICEP/Keck Data. J. Cosmol. Astropart. Phys. 2016, 1611, 013. [Google Scholar] [CrossRef]
- Aguirre, A.; Johnson, M.C.; Shomer, A. Towards observable signatures of other bubble universes. Phys. Rev. D 2007, 76, 063509. [Google Scholar] [CrossRef] [Green Version]
- Wainwright, C.L.; Johnson, M.C.; Aguirre, A.; Peiris, H.V. Simulating the universe(s) II: phenomenology of cosmic bubble collisions in full General Relativity. J. Cosmol. Astropart. Phys. 2014, 1410, 024. [Google Scholar] [CrossRef]
- Zhang, P.; Johnson, M.C. Testing eternal inflation with the kinetic Sunyaev Zel’dovich effect. J. Cosmol. Astropart. Phys. 2015, 1506, 046. [Google Scholar] [CrossRef]
- Zhang, J.; Blanco-Pillado, J.J.; Garriga, J.; Vilenkin, A. Topological Defects from the Multiverse. J. Cosmol. Astropart. Phys. 2015, 1505, 059. [Google Scholar] [CrossRef]
- Popper, K.R. Conjectures and Refutations: The Growth of Scientific Knowledge; Routledge: Abingdon, UK, 1963. [Google Scholar]
- Robles-Perez, S.; Gonzalez-Diaz, P.F. Quantum state of the multiverse. Phys. Rev. D 2010, 81, 083529. [Google Scholar] [CrossRef]
- Robles-Perez, S.; Gonzalez-Diaz, P.F. Quantum entanglement in the multiverse. J. Exp. Theor. Phys. 2014, 118, 34. [Google Scholar] [CrossRef]
- Kanno, S.; Shock, J.P.; Soda, J. Entanglement negativity in the multiverse. J. Cosmol. Astropart. Phys. 2015, 1503, 015. [Google Scholar] [CrossRef]
- Kanno, S. Quantum Entanglement in the Multiverse. Universe 2017, 3, 28. [Google Scholar] [CrossRef]
- Robles-Perez, S.; Alonso-Serrano, A.; Gonzalez-Diaz, P.F. Decoherence in an accelerated universe. Phys. Rev. D 2012, 85, 063511. [Google Scholar] [CrossRef]
- Alonso-Serrano, A.; Bastos, C.; Bertolami, O.; Robles-Perez, S. Interacting universes and the cosmological constant. Phys. Lett. B 2013, 719, 200. [Google Scholar] [CrossRef]
- Robles-Pérez, S.; Alonso-Serrano, A.; Bastos, C.; Bertolami, O. Vacuum decay in an interacting multiverse. Phys. Lett. B 2016, 759, 328. [Google Scholar] [CrossRef]
- Hacking, I. Representing and Intervening: Introductory Topics in the Philosophy of Natural Science; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Okasha, S. Philosophy of Science: A Very Short Introduction; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Chalmers, A. What Is This Thing Called Science? 4th ed.; Queensland University Press: Brisbane, Australia, 2013. [Google Scholar]
- Whitehead, A.N.; Russell, B. Principia Mathematica; Cambridge University Press: Cambridge, UK, 1910; Volume 1. [Google Scholar]
- Whitehead, A.N.; Russell, B. Principia Mathematica; Cambridge University Press: Cambridge, UK, 1912; Volume 2. [Google Scholar]
- Whitehead, A.N.; Russell, B. Principia Mathematica; Cambridge University Press: Cambridge, UK, 1913; Volume 3. [Google Scholar]
- Hilbert, D. Mathematische Probleme. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Math. Phys. Klasse 1900, 253–297. [Google Scholar]
- Hilbert, D. Grundlagen der Mathematik. Vorlesung, Winter-Semester 1921/22. Lecture notes by Paul Bernays; Universität Göttingen: Göttingen, Germany, 1922. [Google Scholar]
- Gödel, K. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik 1931, 38, 173–198. [Google Scholar] [CrossRef]
- Popper, K.R. Logik der Forschung. Zur Erkenntnistheorie der modernen Naturwissenschaft, Extended English version: K.R. Popper, The Logic of Scientific Discovery: Hutchison 1959; Springer: Berlin, Germany, 1934. [Google Scholar]
- Kuhn, T. The Structure of Scientific Revolutions; University of Chicago Press: Chicago, IL, USA, 1962. [Google Scholar]
- Dardashti, R. Physics without Experiments? In Epistemology of Fundamental Physics: Why Trust a Theory? Dardashti, R., Dawid, R., Thébault, K., Eds.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Oriti, D. No alternative to proliferation. In Epistemology of Fundamental Physics: Why Trust a Theory? Dardashti, R., Dawid, R., Thébault, K., Eds.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Sahlén, M. On Probability and Cosmology: Inference Beyond Data? In The Philosophy of Cosmology; Chamcham, K., Silk, J., Barrow, J.D., Saunders, S., Eds.; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Pickering, A. Constructing Quarks: A Sociological History of Particle Physics; Edinburgh University Press: Edinburgh, UK, 1984. [Google Scholar]
- Lakatos, I. Falsification and the Methodology of Scientific research programmes. In Criticism and the Growth of Knowledge; Lakatos, I., Musgrave, A., Eds.; Cambridge University Press: Cambridge, UK, 1970. [Google Scholar]
- Feyerabend, P. Against Method: Outline of an Anarchistic Theory of Knowledge; New Left Books: London, UK, 1975. [Google Scholar]
- Howson, C.; Urbach, P. Scientific Reasoning: The Bayesian Approach; Open Court: La Salle, IL, USA, 1989. [Google Scholar]
- Ortovela, P. Modeling the Change of Paradigm: Non-Bayesian Reactions to Unexpected News. Am. Econ. Rev. 2012, 102, 2410–2436. [Google Scholar] [Green Version]
- Smolin, L. Scientific alternatives to the anthropic principle. In Universe or Multiverse? Carr, B., Ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Susskind, L. The Cosmic Landscape: String Theory and the Illusion of Intelligent Design; Little Brown & Co.: Boston, MA, USA, 2005. [Google Scholar]
- Vinkers, C.; Tijdink, J.; Otte, W. Use of positive and negative words in scientific PubMed abstracts between 1974 and 2014: retrospective analysis. BMJ 2015, 351, h6467. [Google Scholar] [CrossRef] [Green Version]
- Scott, S.L.; Jones, C.W. Superlative Scientific Writing. ACS Catal. 2017, 7, 2218–2219. [Google Scholar] [CrossRef] [Green Version]
- Silk, J. Towards the limits of cosmology. Found. Phys. 2018, 48, 1305–1332. [Google Scholar] [CrossRef]
- Turner, M.S. ΛCDM: Much More Than We Expected, but Now Less Than What We Want. Found. Phys. 2018, 48, 1261–1278. [Google Scholar] [CrossRef]
- Nobbenhuis, S. Categorizing different approaches to the cosmological constant problem. Found. Phys. 2006, 36, 613. [Google Scholar] [CrossRef]
- Woit, P. Not Even Wrong: The Failure of String Theory and the Search for Unity in Physical Law; Basic Books: New York, NY, USA, 2006. [Google Scholar]
- Smolin, L. The Trouble with Physics: The Rise of String Theory, The Fall of a Science, and What Comes Next. Houghton Mifflin Harcourt 2006, 30, 66–69. [Google Scholar]
- Ellis, G. Multiverses, Science, and Ultimate Causation. In Georges Lemaître: Life, Science and Legacy; Holder, R.D., Mitton, S., Eds.; Springer: Berlin, Germany, 2012. [Google Scholar]
- Weinberg, S. Anthropic Bound on the Cosmological Constant. Phys. Rev. Lett. 1987, 59, 2607. [Google Scholar] [CrossRef]
- Barnes, L.A.; Elahi, P.J.; Salcido, J.; Bower, R.G.; Lewis, G.F.; Theuns, T.; Schaller, M.; Crain, R.A.; Schaye, J. Galaxy formation efficiency and the multiverse explanation of the cosmological constant with EAGLE simulations. Month. Not. R. Astron. Soc. 2018, 477, 3727. [Google Scholar] [CrossRef]
- Polchinski, J. String Theory to the Rescue. In Epistemology of Fundamental Physics: Why Trust a Theory? Dardashti, R., Dawid, R., Thébault, K., Eds.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Polchinski, J. Why trust a theory? Some further remarks (part 1). In Epistemology of Fundamental Physics: Why Trust a Theory? Dardashti, R., Dawid, R., Thébault, K., Eds.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Georgi, H.; Glashow, S. Unity of All Elementary-Particle Forces. Phys. Rev. Lett. 1974, 32, 438. [Google Scholar] [CrossRef]
- Kragh, H. Higher Speculations: Grand Theories and Failed Revolutions in Physics and Cosmology; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Baggott, J. Farewell to Reality: How Modern Physics Has Betrayed the Search for Scientific Truth; Pegasus Books: New York, NY, USA, 2014. [Google Scholar]
- Hossenfelder, S. Lost in Math: How Beauty Leads Physics Astray; Basic Books: New York, NY, USA, 2018. [Google Scholar]
- Kragh, H. The Vortex Atom: A Victorian Theory of Everything. Centaurus 2003, 44, 32–114. [Google Scholar] [CrossRef]
- Popper, K.R. Objective Knowledge: An Evolutionary Approach; Oxford University Press: Oxford, UK, 1972. [Google Scholar]
- Anderson, P.W. More Is Different. Science 1972, 177, 393–396. [Google Scholar] [CrossRef] [Green Version]
- Battermnan, R.W. The Devil in the Details: Asymptotic Reasoning in Explanation, Reduction, and Emergence; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Jannes, G. Some comments on “The Mathematical Universe”. Found. Phys. 2009, 39, 397–406. [Google Scholar] [CrossRef]
- Weinberg, S. Dreams of a Final Theory: The Scientist’s Search for the Ultimate Laws of Nature; Vintage Book: New York, NY, USA, 1992. [Google Scholar]
- Carroll, S.M. The Cosmological Constant. Living Rev. Relativ. 2001, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Dieks, D. Bottom-Up versus Top-Down: The Plurality of Explanation and Understanding in Physics. In Scientific Understanding: Philosophical Perspectives; de Regt, H.W., Leonelli, S., Eigner, K., Eds.; University of Pittsburgh Press: Pittsburgh, PA, USA, 2009. [Google Scholar]
- Mattingly, D. Modern Tests of Lorentz Invariance. Living Rev. Relat. 2005, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Liberati, S. Tests of Lorentz invariance: A 2013 update. Class. Quantum Grav. 2013, 30, 133001. [Google Scholar] [CrossRef]
- Visser, M. Lorentzian Wormholes: From Einstein to Hawking; American Institute of Physics Press: Woodbury, NY, USA, 1995. [Google Scholar]
- Morris, M.; Thorne, K. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395. [Google Scholar] [CrossRef]
- Morris, M.; Thorne, K.; Yurtsever, U. Wormholes, time energy condition. Phys. Rev. Lett. 1988, 61, 1446. [Google Scholar] [CrossRef] [PubMed]
- González-Díaz, P.F. Observable effects from space-time tunneling. Phys. Rev. D 1997, 56, 6293. [Google Scholar] [CrossRef]
- Torres, D.F.; Romero, G.E.; Anchordoqui, L.A. Might some gamma-ray bursts be an observable signature of natural wormholes? Phys. Rev. D 1998, 58, 123001. [Google Scholar] [CrossRef]
- Safonova, M.; Torres, D.F.; Romero, G.E. Macrolensing signatures of large scale violations of the weak energy condition. Mod. Phys. Lett. A 2001, 16, 153. [Google Scholar] [CrossRef]
- Cramer, J.G.; Forward, R.L.; Morris, M.S.; Visser, M.; Benford, G.; Landis, G.A. Natural wormholes as gravitational lenses. Phys. Rev. D 1995, 51, 3117. [Google Scholar] [CrossRef]
- Eiroa, E.; Romero, G.E.; Torres, D.F. Chromaticity effects in microlensing by wormholes. Mod. Phys. Lett. A 2001, 16, 973. [Google Scholar] [CrossRef]
- Shatskiy, A. Passage of photons through wormholes and the influence of rotation on the amount of phantom matter around them. Astron. Rep. 2007, 51, 81. [Google Scholar] [CrossRef]
- González-Díaz, P.F.; Alonso-Serrano, A. Observing other universe through ringholes and Klein-bottle holes. Phys. Rev. D 2011, 84, 023008. [Google Scholar] [CrossRef]
- Alonso-Serrano, A.; Garay, L.J.; Marugán, G.A.M. Correlations across horizons in quantum cosmology. Phys. Rev. D 2014, 90, 124074. [Google Scholar] [CrossRef]
- Carroll, S. Beyond Falsifiability: Normal Science in a Multiverse. In Epistemology of Fundamental Physics: Why Trust a Theory? Dardashti, R., Dawid, R., Thébault, K., Eds.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
1. | Even though Everett’s many-worlds interpretation of quantum mechanics is presently considered a multiverse scenario (see Tegmark’s classification below), it really stands a bit apart for a variety of reasons, the first one being its historical origin purely within quantum mechanics. We will briefly mention this scenario again in Section 3.1 but otherwise focus mainly on cosmological multiverse scenarios. |
2. | For the relationship between the anthropic principle and the multiverse, see e.g., [25]. We will not discuss the anthropic principle here because, first, as paraphrased in [25], “many commentators have already thrown much darkness on this subject, and it is probable that, if they continue, we shall soon know nothing at all about it”; and second because, although the anthropic principle has undoubtedly contributed much to conceptual thinking about the multiverse, it is not clear whether it can also make any real contribution when it comes to empirical predictions, let alone—despite common claims to the contrary—whether it has done this so far [26]. |
3. | |
4. | In reality Polchinski’s four questions are not independent, so the numerical estimate is incorrect even from a purely probabilistic point of view. However, since Polchinski himself states that the number itself is not important, we will not further dissect this issue. |
5. | Just in case some reader might benefit from a reminder, the theoretical estimate comes essentially from assuming that the cosmological constant represents the vacuum energy , imposing a cut-off to the theory and calculating by integrating over all degrees of freedom up to , which gives (a result which is consistent with a straightforward dimensional analysis [102]). Assuming immediately leads to the undesired result, while even , with the electroweak scale, still leads to a discrepancy of some 50 orders of magnitude. It might be worth insisting that it is essential to insert a cut-off in the calculation in order to avoid an even more unpleasant prediction for the vacuum energy, namely infinity. Note that the observational energy scale associated with dark energy is in fact small, and might therefore be due to quantum field effects potentially accessible to near-future observations. However, this would still leave the cosmological coincidence problem unexplained, namely why the matter energy density and the dark energy density have the same order of magnitude in the present epoch. |
6. | The only well-developed bottom-up approach to “quantum gravity phenomenology” is the ongoing search for Lorentz Invariance Violations [104,105]. However, it might be useful to stress that neither string theory nor loop quantum gravity make clear and unambiguous predictions about Lorentz Invariance, not even at a qualitative level. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Serrano, A.; Jannes, G. Conceptual Challenges on the Road to the Multiverse. Universe 2019, 5, 212. https://doi.org/10.3390/universe5100212
Alonso-Serrano A, Jannes G. Conceptual Challenges on the Road to the Multiverse. Universe. 2019; 5(10):212. https://doi.org/10.3390/universe5100212
Chicago/Turabian StyleAlonso-Serrano, Ana, and Gil Jannes. 2019. "Conceptual Challenges on the Road to the Multiverse" Universe 5, no. 10: 212. https://doi.org/10.3390/universe5100212